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Abstract

Robust visual tracking is a challenging task in computer

vision. Due to the accumulation and propagation of esti-

mation error, model drifting often occurs and degrades the

tracking performance. To mitigate this problem, in this pa-

per we propose a novel tracking method called Recurrent-

ly Target-attending Tracking (RTT). RTT attempts to iden-

tify and exploit those reliable parts which are beneficial

for the overall tracking process. To bypass occlusion and

discover reliable components, multi-directional Recurren-

t Neural Networks (RNNs) are employed in RTT to capture

long-range contextual cues by traversing a candidate spa-

tial region from multiple directions. The produced confi-

dence maps from the RNNs are employed to adaptively reg-

ularize the learning of discriminative correlation filters by

suppressing clutter background noises while making full use

of the information from reliable parts. To solve the weighted

correlation filters, we especially derive an efficient closed-

form solution with a sharp reduction in computation com-

plexity. Extensive experiments demonstrate that our pro-

posed RTT is more competitive over those correlation filter

based methods.

1. Introduction

Visual object tracking is a fundamental research topic in

computer vision with a wide range of applications, includ-

ing video surveillance, traffic monitoring, and augmented

reality [45], etc. Despite the great progress that has been

made over the past decades, it remains very challenging due

to the existing unpredictable appearance variations such as

partial occlusion, illumination change, geometric deforma-

tion, background clutter, fast motion, etc.

A typical pipeline of visual tracking starts with an initial

location (e.g., a rectangle bounding box) of the object in the

* This work was performed when Zhen Cui was a Postdoctoral Fellow

at National University of Singapore.

first video frame, and then the location of the specified tar-

get in the subsequent frames is predicted. Among the exist-

ing tracking works, recent part-based methods [1, 35, 7, 31]

have been studied actively due to their robustness to local

appearance variations, particularly partial occlusion. By

partitioning the candidate region of the tracking target in-

to several parts, part-based methods attempt to extract some

useful cues from those identified reliable parts. For exam-

ple, Kwon et al. [26] used the topology structure of lo-

cal patches to find those reliable parts. Zhang et al. [46]

employed a locality-constrained low-rank and sparse prior

to establish correspondences between parts across frames.

More recently, Liu et al. [31] proposed to learn one response

function for each part, and integrated response maps of all

parts to generate the final tracking confidence. However,

those methods might suffer from some difficulties in cap-

turing large-range spatial dependencies between parts, es-

pecially for those objects with a large homogenous region.

In addition to the above methods, many holistic track-

ing methods have also been developed. In particular, cor-

relation filter (CF) based methods [4, 11, 13, 28, 33, 23]

arouse increasing interest due to their excellent efficiency

and robustness. CF based methods usually learn a group

of correlation filters, which produce correlation peaks for

the targets in the scene and meanwhile yield low respons-

es to background regions. The correlation filters are trained

by scanning the candidate regions using a circular sliding

window. As they adopt the holistically convolutional repre-

sentation, the whole candidate region is identically treated

without any identification during training. This might pro-

duce inaccurate filters which cause the learnt tracker to drift

away from its correct trajectory, especially when the candi-

date region embodies cluttered background.

To address the above problems, we propose a novel

tracking method called Recurrently Target-attending Track-

ing (RTT), which attempts to identify and exploit those reli-

able parts throughout the process of model learning. To dis-

cover reliable components, RTT employs multi-directional

Recurrent Neural Networks (RNNs) to spatially encode all
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parts from four different angles. The multi-directional RNN

offer the following advantages for tracking objects robust-

ly. (i) The spatial recurrent models can learn long-range

contextual dependencies between parts, and further produce

more accurate detection confidence maps associated with

the parts. (ii) Encoding from multiple directions can sig-

nificantly alleviate negative effects of occlusions that occur

in one separated direction. (iii) The generated representa-

tion of a target is translation-invariant to some extent as the

spatial networks are recurrently performed on local parts.

(iv) The multi-directional RNNs are very simple and easy

to implement compared to those graphic models with com-

plex structures. Benefited from these aforementioned char-

acteristics, multi-directional RNNs are able to provide a rea-

sonable confidence prediction for the target and background

region.

The confidence maps produced from multi-directional

RNNs are further used to weight correlation filters in or-

der to suppress negative effects of cluttered background and

enhance learning from reliable parts. To this end, we re-

formulate the correlation filter learning into a regularized

version by using confidence maps as the weighting fac-

tor. To solve the weighted correlation filters, we propose

to factorize the high-dimensional space spanned by those

concatenated multi-channel features into low-dimensional

spaces on the single channel features, and finally derive an

efficient analytical solution to the problem of filter learning.

The solution sharply reduces the computation complexity

of its direct original solution by a factor of d3, where d is

the number of feature channels. Extensive experiments on

the public tracking benchmark dataset demonstrate that our

proposed RTT outperforms those existing correlation filter

based methods.

In summary, our main contributions are three folds: (i)

we propose a part-based confidence map learning method

to discover reliable target parts and cluttered background

regions; (ii) we develop an adaptively weighted correla-

tion filter method to improve tracking performance by us-

ing more reliable information during model updating; and

(iii) we derive an efficient closed-form solution to the learn-

ing of weighted correlation filters with a sharp reduction in

computation complexity.

2. Related Work

Our work is related to the object tracking methods, espe-

cially those part-based methods and correlation filter based

methods, as well as the current popular recurrent neural net-

work technique.

2.1. Object Tracking

Video object tracking has been extensively studied in

computer vision over the past decade [2, 21, 23, 1, 35,

7, 31]. Generally, they fall into two categories: genera-

tive models and discriminative models. Generative meth-

ods [3, 30, 47, 35] search for the most similar region to the

tracked target. The target is often represented by a series of

templates or spanned as a subspace. Discriminative meth-

ods [2, 21, 23] treat the object tracking as a classifier prob-

lem, which learns to distinguish the target from background.

The main related work is the part based and correla-

tion filter based methods. Typically, the part based track-

ers [1, 35, 7, 31] divide the entire target into several parts.

Adam et al. [1] represented the object by the grid of frag-

ments, and then voted the target position from these frag-

ments. Jia et al. [25] used l1 sparsity to search the closest

candidate patches in the next frame. Besides, many meth-

ods explore the topology representation of local parts, such

as tree structure [27] or graph structure on superpixels [6].

Different from these methods, we use recurrent neural unit-

s to model dependencies of parts from multiple direction-

s, which can not only reduce effects of partial occlusions

but also build long-range textural dependencies. Besides,

RNNs are simpler and easier to be controlled than those

models with tree or graph structures.

Correlation filters have made great progress in visual ob-

ject tracking [8]. Especially after Minimum Output Sum of

Squared Error (MOSSE) [4] filter was proposed, numerous

correlation filter methods have been developed. Henriques

et al. [22] introduced the kernel trick strategy, and Danell-

jan et al. [13] used color attributes to better represent the

input information. To deal with the scale problem, SAM-

F [28], DSST [11] and an improved KCF [23] have been

proposed subsequently and achieved state-of-the-art perfor-

mance. With more methods developed [33, 31, 29], corre-

lation filter based trackers have proven their high-efficiency

and robustness. Especially, a regularization work of corre-

lation filter [12] was synchronously developed. But differ-

ent from [12], RTT adaptively learns more reliable filters

by using RNNs, and meanwhile employs high-efficient op-

timization for filter learning.

Besides, some deep learning based tracking method-

s [32, 43] have been proposed more recently. They usual-

ly focus on learning more robust features by training Con-

volutional Neural Networks (CNN) on external large-scale

datasets. In contrast, the focus of this work is on the pure

tracking task where one can only use the first frame. It

is straightforward to incorporate CNN into our framework,

e.g., directly replacing HOG (used below) with CNN fea-

ture maps.

2.2. Recurrent Neural Network

Traditional RNNs learn complex temporal dynamics by

mapping input sequences to a sequence of hidden states, and
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Figure 1. Illustration of our proposed RTT tracker. To identify and exploit those reliable components during tracking, a confidence map is

estimated by using multi-directional RNNs, and further used to regularize correlation filters. The dash lines denote the work flow of RNNs.

The ⊙ is an element-wise multiplication operation. More details are described in Section 3.

hidden states to outputs via the recurrence equations:

ht = σ(Wxhxt +Whhht−1 + bh), (1)

ot = σ(Whoht + bo), (2)

where σ is an element-wise non-linear activation function

(e.g., a sigmoid or hyperbolic tangent), xt is the t-th in-

put (frame), ht is the corresponding hidden state, and ot

is the predicted output at time t. Given an input sequence

{x1,x2, · · · ,xT } with length T , the inference is computed

sequentially as {h1,o1,h2,o2, · · · ,hT ,oT } with the ini-

tial hidden state h0 = 0.

Recently, RNNs [36], including the long-term version

called Long Short-Term Memory (LSTM) model [24] and

Gated Recurrent Unit (GRU) [9], have attracted increas-

ing attention in modeling sequential data. The applications

cover multilingual machine translation [41], action recog-

nition [14, 15], scene labeling [39, 34], speech recogni-

tion [19], etc. More recently, the conventional RNNs are

generalized into more complex structure models, such as

2D RNNs [20, 37], multi-dimensional RNNs [20, 40, 5],

tree RNNs [42, 48], etc. Our method is a simple generaliza-

tion of their methods, and to the best of our knowledge, it

is the first attempt to adapt RNNs to modeling the complex

long-range dependencies for the tracking task.

3. Recurrently Target-Attending Tracker

In this section, first we give an overview of the proposed

RTT tracker. Then we illustrate the generation of confi-

dence maps and the learning process of discriminative fil-

ters in details.

3.1. Overview

An overview on the RTT framework is shown in Fig. 1.

Given a video frame, we first determine a small candidate

region of 2.5 times the size of the bounding box surround-

ing the localization result in the previous frame, considering

that the motion between continuous video frames is usual-

ly subtle. For this candidate region, a grid-like partition is

used to produce visual parts, and the feature from each part

is extracted for the next tracking. In practice, some descrip-

tors pooled on spatial grids such as HOG [17] or high-level

features from CNN [38] can be utilized. Thereafter we can

obtain the part-based feature X ∈ R
h×w×d of d channels

for each candidate region, where h,w are the height and the

width of spatial parts/grids.

RTT attempts to identify those reliable parts and then uti-

lize them for robust tracking. As intimate interactions exist

among those spatially adjacent parts and even disjoint parts,

between-part relationships can offer valuable contextual in-

formation beyond purely relying on a single part. However,

the interactions of parts in a 2D space are far more complex

than Markov chain structures. Here we employ recurrent

neural network to characterize the parts and their complex

dependencies, since it is simper and capable of gleaning

long-range contextual cues. Moreover, to compensate the

inadequacy of a single RNN used in a 2D space, we use sev-

eral spatial RNNs (e.g., quaddireactional RNNs) to traverse

the spatial candidate region from different angles. Such a s-

trategy can effectively alleviate the contamination from par-

tial occlusion or local appearance variation during tracking.

The spatial RNNs produces confidence scores for each part,

which compose a confidence map for the whole candidate

region. The confidence map factually represents the prob-

ability of every part being background or target. Thus the

confidence map may be used to predict the existence of oc-

clusions and guide the model update. More details about

the confidence map generation are described in Section 3.2.

Furthermore, the confidence map can be incorporated in-
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to the learning of a discriminative tracker. As the conven-

tional correlation filter trackers usually treat all parts identi-

cally, the incremental learning tends to produce results de-

viating from the expected trajectory due to its sensitiveness

to noises from clutter background or occluded regions. For-

tunately, the confidence map produced from RNNs can re-

flect the reliability of candidate region to some extent. Thus

the confidence map may be employed to adaptively mask

correlation filters to resist those negative effects of clut-

tered backgrounds or partial occlusions during filter learn-

ing. The filter weighting strategy makes RTT more robust

to alleviate model drifting due to the use of reliable compo-

nents during model updating. Similar to those correlation

filter based methods, RTT conducts the learning process in

the frequency domain. More details about the learning of

weighted filters are given in Section 3.3.

As aforementioned, during model training and updating,

RTT learns more discriminative correlation filters by adap-

tively regularizing the filters with the confidence map. In

testing, RTT simply employs the learnt discriminative fil-

ters to detect the target as discriminative information has

adaptively permeated into the tracker.

3.2. Spatial Confidence Map

The recurrent neural network has the memory ability

endowed by its repetitive connections. A popular mod-

el is the recently proposed long short-term memory (LST-

M) [24]. However, LSTM has a high-freedom parameter

space. Searching parameters in such a large space suffers

from the risk of overfitting specifically for the online track-

ing task, where training samples are usually scarce. To ad-

dress this problem, here we choose the conventional RNN

unit, which has a few model parameters to be solved.

Concretely, we suppose the candidate parts X are rep-

resented by a graph G = {V , E}, where V = {xij}(i =
1, · · · , h, j = 1, · · · , w) denotes the vertex set of parts in-

dexed by their spatial coordinates, and E = {eij,kl} repre-

sents the edges of spatial neighboring parts. By traversing

through G with a predefined forward evolution sequence, we

can define the input state and previous states for a recurrent

neural network unit. Here the only requirement for travers-

ing is that one node cannot be processed until the processing

of its predecessors is finished. Formally, the adopted multi-

directional RNNs in RTT can be written as

hr
ij = σ1(U

rxij +
∑

(k,l)∈Nij

Wrhr
kl + br), (3)

oij = σ2(
∑

r∈D

Vrhr
ij + b), (4)

where xij ,h
r
ij ,oij respectively denote the representation of

input, hidden and output node at the location of (i, j), Nij

is the set of predecessors of the vertex (i, j) in the graph G,

and r represents a traversing direction in D. hr
ij collects in-

formation of all the predecessors of the current state (i, j),
and the output summarizes the stimulus from all directions

D. The learned parameters {Ur,Wr,br,Vr,b} are recur-

rently utilized in traversing the graph G. Here the non-linear

function σ1 for hidden layers is ReLU [10].

To make the traversing information from traversing pro-

cesses mutually complementary, we consider four travers-

ing directions starting from four angular points. For ex-

ample, the directional traversing from the top-left corner

is responsible for capturing contextual cues about the top-

left areas, with the adjacent predecessor set Nij = {(i, j −
1), (i−1, j−1), (i−1, j)}. Thus, in a 2D spatial plane, by

connecting contiguous parts and traversing these parts re-

spectively from four directions, four directed acyclic chains

can be generated to represent the 2D neighborhood system.

With successive propagations in chains as formulated in E-

qn. (3), the interactions among parts can be achieved.

To obtain a probability map in the output layer, we use

the standard softmax function, i.e., σ2(x) = expxi
∑

k
expxk

.

Thus the cross entropy loss can be naturally used as the ob-

jective function:

E = −
∑

(i,j)

∑

c∈C

ycij lnPr(c|xij), (5)

where y ∈ C = {0, 1} is the expected binary indicator of

being background or target regions, and Pr(·) is the output

probability of this model. In model training and updating,

we simply assign the label 1 to those parts within the local-

ized bounding box while 0 for outside parts because we do

not have accurate labels.

3.3. Weighted Correlation Filter

The correlation filter based methods are to learn a group

of filters {fk}, k = 1, · · · , d, each for one feature chan-

nel in X = {x1,x2, · · · ,xd}. The learning of a weighted

correlation filter can be formally written as minimizing the

following loss function:

ς(f) = ∥
d∑

k=1

xk ∗ fk − y∥2 +
d∑

k=1

∥w ⊙ fk∥2, (6)

where ∗ denotes a spatial convolution, ⊙ is an elementwise

multiplication operation, fk convolves with the k-th channel

features, and the weight w regularizes the correlation filter-

s by using the confidence map produced from the multi-

directional RNNs. According to Parseval theorem, the ob-

jective function in Eqn. (6) is equivalent to the following

loss function in the frequency domain:

ς(f̂) = ∥
d∑

k=1

x̂k ⊙ f̂k − ŷ∥2 + λ
d∑

k=1

∥ŵ ∗ f̂k∥2, (7)
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where ·̂ denotes the FFT of the involved variable, and the

constant factor λ is a balance parameter, which is simply

set to 1
h2w2 according to the practical implementation of

FFT [23].

To vectorize the objective function, we introduce some

extra notations. Let X̂ = diag(x̂) denote the diagonal

matrix with diagonal elements from the vector x̂. W rep-

resents a circulant matrix by shifting its basis vector ŵ in

each row, with the first row being set to ŵ. Therefore, the

objective function in Eqn. (7) can be written as

ς(f̂) = ∥
d∑

k=1

X̂k f̂k − ŷ∥2 + λ

d∑

k=1

∥W f̂k∥2. (8)

However, the above equation is defined in a complex do-

main, where some theories cannot directly apply from the

real space. To transform ς(f̂) into the real domain, we de-

compose each complex value in the vector/matrix into two

real values corresponding to its real and imaginary part re-

spectively. Concretely, the matrix and the vector are respec-

tively expanded in the following formulation:



a11 + b11i, · · · a1n + b1ni

...
...

...

an1 + bn1i, · · · ann + bnni


→




a11,−b11, · · · a1n,−b1n
b11, a11, · · · b1n, a1n

...
...

...
...

...

an1,−bn1, · · · ann,−bnn
bn1, an1, · · · bnn, ann



,

[
c11 + d11i, · · · c1n + d1ni

]⊺
→
[
c11, d11, · · · c1n, d1n

]⊺
.

Thus the objective function in Eqn. (8) equates with the fol-

lowing function in the real domain:

ς(f̃) = ∥
d∑

k=1

X̃k f̃k − ỹ∥2 + λ

d∑

k=1

∥W̃f̃k∥2, (9)

where X̃,W̃ ∈ R
2n×2n, f̃ , ỹ ∈ R

2n are real-valued matri-

ces/vectors corresponding to X̂,W, f̂ , ŷ, and n = h× w.

The loss function in Eqn. (9) can be further sim-

plified by introducing matrix calculation. By defin-

ing the concatenation matrix X = [X̃1, · · · , X̃d] ∈

R
2n×2nd, f = [(f̃1)⊺, · · · , (f̃d)⊺]⊺ ∈ R

2nd,W =

diag([W̃,W̃, · · · ,W̃]) ∈ R
2nd×2nd, where W is a block

diagonal matrix with the diagonal element being W̃, we

have a loss function in a more concise form,

ς(f) = ∥Xf − ỹ∥2 + λ∥Wf∥2. (10)

Obviously, this loss function has a closed-form minimum

solution obtained by setting its differential to be zero, i.e.,

f = (X⊺X+ λW⊺W)−1X⊺ỹ. (11)

However, we have to calculate an inverse operation on a real

matrix of size 2nd × 2nd , which dominates the computa-

tion cost of the optimization. As multiple channel features

are usually employed, the computation complexity on the

matrix inverse is usually O(n3d3), which is too expensive

for real-world applications. Fortunately, we develop an ef-

ficient solution which only requires computing the inverse

of a matrix of size 2n × 2n. It reduces the computation

complexity by a factor of d3, which is quite significant for

high-dimensional features. The solution is presented in the

following proposition.

Proposition 1. Suppose W is invertible1. The optimal so-

lution f to Eqn. (9) is

f =
1

λ
G(I− (λI+H)−1H)ỹ, (12)

where G = [X̃1(W̃⊺W̃)−1, · · · , X̃d(W̃⊺W̃)−1]⊺ and

H =
∑d

k=1 X̃
k(W̃⊺W̃)−1(X̃k)⊺.

Proof. As the matrix W is invertible, the matrix P =
W⊺W is symmetrical and positive definite. Performing

Singular Value Decomposition (SVD) on P can be written

as P = SVS⊺, where S is an orthonormal matrix and V

is a diagonal matrix with nonnegative elements. Let Q de-

note the term (X⊺X+ λW⊺W) in Eqn. (11), according to

general matrix algebras we have

Q−1 = (X⊺X+ λW⊺W)−1 = (X⊺X+ λSVVS⊺)−1

= SV−1(V−1S⊺X⊺XSV−1 + λI)−1V−1S⊺. (13)

Let U , XSV−1, by using the Woodbury matrix identity,

we have

Q−1 = SV−1(U⊺U+ λI)−1V−1S⊺

= SV−1(
1

λ
(I−U⊺(λI+UU⊺)−1U))V−1S⊺.(14)

According to the definition of W and X, and (W̃⊺W̃)−1 =
SV−1V−1S⊺, we can derive the solution in Eqn. (12).

As X̃k is produced from a diagonal complex matrix ac-

cording to the above expansion, it is highly sparse. Thus

the matrix multiplication with X̃k can be implemented by

simply switching matrix rows/columns and performing an

element-wise multiplication operation. Therefore, the over-

all computation complexity is O(n3+dn2), which is signif-

icantly smaller than O(d3n3) of directly solving Eqn. (11).

4. Implementation

Here we present some implementation details including

feature extraction, occlusion decision, scale estimation and

model updating.

Feature Extraction. Here we use a variant of HOG [17],

which is popular in the tracking task. The HOG features

1In practice, a small regularization term ϵI may be used to avoid its

singularity.
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are sampled from a series of spatial grids with 4 × 4 pixels

and then are quantized into 31 bins. We do not use oth-

er features such as color information or even convolution-

al features, even though more robust features can promote

the tracking performance, since our aim is to explore some

intrinsic effects to mitigate model drifting problem in the

tracking task.

Scale Estimation. Similar to [28], we use the mul-

tiple scale searching technique to estimate changes of

the target size, where the scaling factors are defined as

{0.985, 0.99, 0.995, 1.0, 1.005, 1.01, 1.015}.

Occlusion Decision. The confidence map produced

from spatial RNNs is used to predict the existence of oc-

clusion. When the object is predicted to be occluded with

a high probability, the model is not updated. Concretely,

we define the entire confidence score as an accumulation of

the probability values within the target region. If the cur-

rent score is less than a certain ratio τ of the average score

of previous frames, the current frame is considered to be

occluded. In practice, the threshold τ is set to 0.85.

RNN Training and Updating. The standard Back-

Propagation Through Time (BPTT) strategy is used for

training RNN. In spatial RNNs, the dimension of hidden

layers is the same as the number of channels. As the training

samples are insufficient, we employ the first five frames to

train spatial RNNs with a learning rate of 0.02. The RNNs

are updated in the subsequent frames with a fixed interval

of five frames. To avoid over-fitting in the current frame, we

employ a small learning rate 0.001 and a few iteration times

100 in fine-tuning. The learning momentum is fixed as 0.9.

Filter Updating. The update procedure is straightfor-

ward except that the first frame is used to initialize the mod-

el. Similar to previous correlation filter based methods, we

linearly combine the new filter with the old one as below:

f̄ = θfnew + (1− θ)f̄ , (15)

where the learning factor θ is set to 0.025.

5. Experiments

In the following experiments, two evaluation criteria are

used. The first one is mean center location error (CLE), i.e.,

the difference between ground truth and prediction results.

A smaller CLE means a more accurate tracking result. The

second one is the Pascal VOC Overlap ratio (VOR) [16],

which is defined as V OR = Area(BT ∩BG)/Area(BT ∪
BG), where BG is the bounding box of ground truth, and

BT is the predicted bounding box. A bigger value indicates

a more accurate prediction. We employ all the 51 video

sequences in the popular benchmark [44] to extensively e-

valuate our method.

(a) Coke Sequence

(b) Football Sequence

Figure 2. Examples of confidence maps. The blue line represents

the probability of the current bounding box, and the red line de-

notes the average probability of the previous observation. The val-

leys below the average line means the possible occurrence of dra-

matic appearance variations such as occlusion, deformation and

illumination changes.

5.1. Appearance Variation­Attending Prediction

To investigate the effectiveness of multi-directional

RNNs for predicting appearance variations, in Fig. 2 we

show two video sequences covering diverse appearance

variations including object occlusion, deformation and il-

lumination changes. We take the average value of scores of

parts within the bounding box as the response value of the

bounding box. To predict the existence of occlusion, we use

the average of previous responses as a reference value, as

depicted in real lines in Fig. 2. The valleys below the mov-

ing average lines indicate that there are dramatic appearance

variations in the corresponding frame. For example, the two

valleys in Fig. 2(a) are caused by partial occlusion and glar-

ing lights. Based on the observation, we can conclude that

adaptively updating the model according to the current state

is necessary for reducing the artifacts incurred by dramatic

appearance variations.
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(a) VOR plot

(b) CEL plot

Figure 3. Comparisons with correlation filter based methods.

5.2. Comparison with Correlation Filter Based
Trackers

To evaluate the performance gain of our proposed RTT,

we compare six correlation filter based methods, including

CN [13], CSK [22], KCF [23], SA [28], MF [28] and SAM-

F [28]. As RTT only employs the HOG feature, SA should

be a standard baseline. SA is a scale adaptive correlation fil-

ter method that also uses HOG feature. Fig. 3 shows VOR

curves and CEL curves of One-Pass Evaluation (OPE) [44]

for these compared trackers on the benchmark dataset. Al-

though all of these trackers use the circulant filters, their

tracking performance is quite different. CSK only employs

the raw features, thus it gives worst results among the com-

pared methods. CN exploits the color features and improves

the performance. The remaining compared methods adop-

t the robust HOG feature. Moreover, SAMF and MF also

fuse gray and color information as their features. Compared

with the standard baseline SA, the performance gains of RT-

T are about 5% and 10% respectively in terms of VOR and

CEL metrics. Among previous CF based methods, SAMF

achieves the best performance with a VOR score of 56.7%

(a) VOR plot

(b) CEL plot

Figure 4. Comparisons with five state-of-the-art methods.

and a CEL score of 77.4%. Our proposed RTT approach

outperforms the SAMF tracker by about 2.1% and 4.7% in

terms of VOR and CEL curves respectively. The experi-

ments suggest that using reliable part information can im-

prove the tracking performance.

5.3. Comparison with State­of­the­art Trackers

Fig. 4 provides the comparisons between RTT and

well-established state-of-the-art methods on the bench-

mark dataset [44], including KCF [23], SCM [47],

STRUCK [21], CN [13], SAMF [28], TGPR [18], and

DSST [11]. Only the results of the top five trackers are

reported. Correspondingly, the performance on the specific

video sequences including object deformation, occlusion,

and out-of-plane is shown in Fig. 5. From the results, we

can observe that the proposed RTT achieves very appealing

performance. Especially, the location errors of our proposed

RTT are largely reduced on the sequences with dramatic

appearance variations, which benefits from regularizing the

correlation filter on those reliable parts. As shown in these

VOR curves, RTT has slightly inferior performance on esti-

mating accurate bounding boxes with an overlap threshold
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(a) (b) (c)

(d) (e) (f)

Figure 5. The plot curves on the tracking targets with deformation, occlusion and out-of-plane rotation. Numbers in parentheses are quantity

of corresponding videos.

larger than 0.8. A possible reason may be that the confi-

dence map estimated by multi-directional RNNs incorpo-

rates a few errors, which might contaminate the scale esti-

mation.

5.4. Discussion

The proposed model predicts confidence scores on local

parts, so it gives a rough probability estimation for the can-

didate regions. More accurate estimations at finer-grained

level such as superpixel level should be meaningful for

more robust tracking. A possible direction is to simultane-

ously perform object segmentation and tracking. However,

this will lead to higher computation cost. Currently, our im-

plementation runs about 3∼4 Fps using the non-optimized

python code on a general PC (2.80GHz, 16G Memory). The

main time cost is still spent on the matrix inversion even

though we have reduced the computation complexity by a

factor of d3. A future work to speed up the algorithm by

approximating matrix inversion needs to be explored.

6. Conclusion

In this paper, we introduce Recurrently Target-attending

Tracker (RTT) to identify and utilize those reliable compo-

nents and achieve better tracking results. To efficiently find

those reliable components, we employ the quaddirectional

spatial recurrent neural networks to traverse the whole can-

didate region from different angles. Due to modeling local

parts and their dependencies, recurrent networks are shown

to be able to capture some invariant and reliable information

even though partial occlusion exists. The produced confi-

dence map from recurrent neural networks is shown to be

effective for predicting the existence of occlusion. At the

same time, the confidence map is used to weight the corre-

lation filters during training, which successfully suppress-

es some clutter background information and makes full use

of reliable components. To learn discriminative filters, we

provide an accurate analytic solution with low computation

complexity. Finally, we obtain encouraging empirical re-

sults from our extensive experiments compared with several

state-of-the-art trackers.
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