
Deep SimNets

Nadav Cohen

The Hebrew University of Jerusalem

cohennadav@cs.huji.ac.il

Or Sharir

The Hebrew University of Jerusalem

or.sharir@cs.huji.ac.il

Amnon Shashua

The Hebrew University of Jerusalem

shashua@cs.huji.ac.il

Abstract

We present a deep layered architecture that generalizes

convolutional neural networks (ConvNets). The architec-

ture, called SimNets, is driven by two operators: (i) a sim-

ilarity function that generalizes inner-product, and (ii) a

log-mean-exp function called MEX that generalizes maxi-

mum and average. The two operators applied in succession

give rise to a standard neuron but in ”feature space”. The

feature spaces realized by SimNets depend on the choice

of the similarity operator. The simplest setting, which cor-

responds to a convolution, realizes the feature space of

the Exponential kernel, while other settings realize feature

spaces of more powerful kernels (Generalized Gaussian,

which includes as special cases RBF and Laplacian), or

even dynamically learned feature spaces (Generalized Mul-

tiple Kernel Learning). As a result, the SimNet contains a

higher abstraction level compared to a traditional ConvNet.

We argue that enhanced expressiveness is important when

the networks are small due to run-time constraints (such as

those imposed by mobile applications). Empirical evalua-

tion validates the superior expressiveness of SimNets, show-

ing a significant gain in accuracy over ConvNets when com-

putational resources at run-time are limited. We also show

that in large-scale settings, where computational complex-

ity is less of a concern, the additional capacity of SimNets

can be controlled with proper regularization, yielding accu-

racies comparable to state of the art ConvNets.

1. Introduction

Deep neural networks, and convolutional neural net-

works (ConvNets) in particular, have had a dramatic im-

pact in advancing the state of the art in computer vision,

speech analysis, and many other domains (cf. [23, 36, 17]).

It has been demonstrated time and time again, that when

ConvNets are trained in an end-to-end manner, they deliver

significantly better results than systems relying on manually

engineered features.

The goal of this paper is to introduce a generalization of

ConvNets we call Similarity Networks (SimNets), that pre-

serves the simplicity and effectiveness of ConvNets, yet has

a higher abstraction level. In a nutshell, the inner-product

operator, which lies at the core of the ConvNet architecture,

is replaced by an inner-product in “feature space”. The fea-

ture spaces are controlled by a family of kernel functions

which include in particular the conventional (linear) inner-

product as a special case.

We argue that the incentive for designing deep networks

with a higher abstraction level than ConvNets, arises from

the need for small networks that could fit into mobile plat-

forms in terms of space and run-time. With small networks

the approximation error becomes a limiting factor, which

could be ameliorated through network architectures that are

based on a higher level of abstraction.

The SimNet architecture is based on two operators. The

first is analogous to, and generalizes, the inner-product op-

erator of neural networks. The second, as special cases,

plays the role of non-linear activation and pooling, but has

additional capabilities that take SimNets far beyond Con-

vNets. In a detailed set of experiments, the SimNet architec-

ture achieves state of the art accuracy using networks with

complexity comparable to that of top performing ConvNets.

However, when network complexity is limited, SimNets de-

liver a significant boost in accuracy.

Recently, the task of reducing run-time complexity of

ConvNets is receiving increased attention. For example, a

method named FitNets ([29]), based on the knowledge dis-

tillation principle ([18]), has been suggested in order to as-

sist in compressing deep networks. In [34], a form of gating

inspired by Long Short-Term Memory recurrent networks is

introduced, allowing training of very deep and narrow net-

works. Another line of work considers imposing structural

constrains on network weights, such as sparsity, in order

4782

to improve run-time efficiency ([11, 9, 16, 3, 4]). Alterna-

tively, network weights may be factorized using matrix or

tensor decompositions, reducing storage and computational

complexity, at the expense of marginal deterioration in ac-

curacy ([10, 20, 39, 24, 28, 38, 5]). All of these approaches

consider ConvNets (or neural networks) as a baseline, and

use supplementary techniques to reduce run-time complex-

ity. In this work, we propose the alternative (generalized)

SimNet architecture, and argue that it is inherently more

efficient than ConvNets. The techniques listed here for re-

ducing run-time complexity of ConvNets could just as well

be applied to SimNets, thereby resulting in even more com-

putationally efficient models.

2. The SimNet architecture

A feed-forward fully-connected neural network, also

known as a multilayer perceptron (MLP), is based on a sin-

gle operator. Given x ∈ R
d as input to a layer of neurons,

the output of the r’th neuron in the layer is σ(w⊤
r x + br),

where σ(·) is a non-linear activation function. An MLP is

constructed by forward chaining the input/output operation

to create a layered network. The learned parameters of the

network are the weight vectors wr and biases br, per neu-

ron.

The SimNet architecture consists of two operators. The

first operator is a weighted similarity function between an

input x ∈ R
d and a template z ∈ R

d:

similarity operator : u⊤φ(x, z)

where u ∈ R
d
+ is a weight vector and φ : Rd ×R

d → R
d is

a point-wise similarity mapping. We consider two forms of

similarity mappings: the “linear” form φlin(x, z)i = xizi,
and the “ℓp” form φℓp(x, z)i = −|xi − zi|

p defined for

p > 0. Note that when setting u = 1, the corresponding

similarities reduce to inner-product and p-distance (by the

power of p) respectively. Note also that unlike the MLP

operator, the similarity does not include a bias term. This

functionality is covered, in a much more general sense, by

the second operator described below.

For the second SimNet operator we define MEX – a log-

mean-exp function:

MEXβ
i=1,...,n

{ci} :=
1

β
log

(

1

n

n
∑

i=1

exp{β·ci}

)

(1)

The parameter β ∈ R spans a continuum between maxi-

mum (β → +∞), average (β → 0) and minimum (β →
−∞), and for a fixed value of β the function is smooth and

exhibits the following “collapsing” property 1:

MEXβ{MEXβ{cij}1≤j≤m}1≤i≤n

=MEXβ{cij}1≤j≤m,1≤i≤n

Given the definition in eqn. 1, the second SimNet oper-

ator consists of taking MEX over an input x ∈ R
d with a

bias vector b ∈ R
d – one per input coordinate 2:

MEX operator : MEXβ>0{xi + bi}i=1,..,d

Note that unlike a conventional MLP unit which has a bias

scalar, a MEX unit has a vector of biases. We may choose

to omit part or all of the biases as part of a network design.

For example, when all biases are dropped the MEX operator

implements a soft trade-off between maximum and average.

3. SimNet MLP

A SimNet analogy of an MLP with a single hidden layer

is obtained by applying the two operators defined in sec. 2

one after the other – similarity followed by MEX. The re-

sulting network is illustrated in fig. 1(a). It includes n hid-

den similarity units corresponding to weighted templates

{(zl,ul)}
n
l=1, and k output MEX units associated with bias

vectors {br}
k
r=1. Denote by hr(x) the value of the r’th

output unit when the network is fed with input x ∈ R
d:

hr(x) := MEXβ{u
⊤
l φ(x, zl) + brl}

n
l=1

3. As a classifier

of x into one of k categories, the network predicts the label

r for which hr(x) is maximal:

ŷ(x) = argmax
r=1,...,k

MEXβ{u
⊤
l φ(x, zl) + brl}

n
l=1

As it turns out, SimNet MLP is closely related to kernel

machines. In particular, with linear similarity, i.e. with the

1The collapsing property, as well as smoothly generalizing maximum

and average, will prove to be essential for us. We are not aware of other

functions that meet these three requirements. Specifically, the common

softmax function 1

β
log

(
∑

i exp{β·ci}
)

collapses and generalizes maxi-

mum but does not generalize average, and the alternative softmax function
∑

i cie
βci/

∑

i e
βci generalizes maximum and average but does not col-

lapse.
2The MEX operator can be viewed as an “inner-product in log-space”.

More accurately, if x and b are log-space representations of two vec-

tors c and d respectively (i.e. xi = log ci and bi = log di), then

MEXβ=1{xi + bi}i = log 〈c,d〉 − log d. In words, the MEX op-

erator (with β = 1) taken over the log-space representations of c and d is

equal (up to an additive constant) to the log-space representation of their

inner-product.
3Note that with uniform weights (ul ≡ 1), linear similarity map-

ping φ and β → +∞ we have hr(x) = max
{

z
⊤

l x+ brl
}n

l=1
,

i.e. the network outputs are “maxout” units ([13]). SimNet MLP is

not the first to generalize maxout. Other generalizations have been sug-

gested, notably the recently proposed Lp unit ([15]), which is defined by

(
∑

l |z
⊤

l x+ brl|
p)1/p, and tends to maxl

{

|z⊤l x+ brl|
}

as p → +∞.

The differences between SimNet MLP and Lp unit as maxout generaliza-

tions are: (i) Lp unit generalizes maximum of absolute values which only

coincides with maxout if the arguments are non-negative, and (ii) Lp unit

tries to realize maxout with a single operator whereas SimNet MLP imple-

ments maxout with a succession of two operators.

4783

inner-product operator on which neural networks are based,

it is a support vector machine (SVM) based on the Exponen-

tial kernel. Replacing the linear similarity with ℓp boosts the

abstraction level of SimNet MLP, by lifting it to a General-

ized Multiple Kernel Learning (GMKL, [37]) engine with a

Generalized Gaussian kernel. The remainder of this section

provides the details.

SimNet MLP outputs can be written as:

hr(x) = MEXβ{u
⊤
l φ(x, zl) + brl}

n
l=1

=
1

β
ln

(

1

n

n
∑

l=1

αrl exp

{

β

d
∑

i=1

ul,iφ(x, zl)i

})

= σ

(

n
∑

l=1

αrl ·Kθ(x, zl)

)

where αrl := exp{βbrl}, θ = (φ,u), and σ(t) =
(1/β) ln(t/n) is a non-linear activation function. The map-

pingKθ for the linear and ℓp similarities takes the following

forms:

Klin(x, z) = exp
{

βx⊤z
}

Kℓp(x, zl) = exp

{

−β
d
∑

i=1

ul,i|xi − zl,i|
p

}

Klin is known as the Exponential kernel ([30]), and Kℓp

is a GMKL. Specifically, fixing uniform weights (ul ≡ 1)

and p ≤ 2 reduces Kℓp to what is known as the General-

ized Gaussian kernel. For the particular cases p = 2 and

p = 1 we get the radial basis function (RBF) and Laplacian

kernels respectively. When the weights ul and/or order p
are learned, the exact underlying kernel is selected during

training and we amount at a GMKL.

Denoting by ψθ a feature mapping associated with Kθ,

we get:

hr(x) = σ (〈ψθ(x),wr〉)

where wr :=
∑n

l=1 αrlψθ(zl) is a learned vector in feature

space. We thus conclude that SimNet MLP output units are

“neurons in feature space”, where the space corresponds to

the Exponential kernel in the case of linear similarity, and

to the Generalized Gaussian kernel in the case of ℓp simi-

larity with fixed weights ul and order p. When the weights

and/or order are learned, the feature space is selected during

training, which is equivalent to saying that SimNet MLP is

a GMKL.

One may ask if perhaps a different choice of kernel,

more elaborate than Generalized Gaussian, will suffice in

order to capture SimNet MLP with ℓp similarity and learned

weights as a simple kernel machine. Apparently, as theo-

rem 1 (proven in [8]) shows, such a kernel does not exist,

i.e. a GMKL is indeed necessary in order to represent Sim-

Net MLP in all its glory.

Theorem 1. For any dimension d ∈ N, and constants c > 0
and p > 0, there are no mappings Z : R

d → R
d and

U : R
d → R

d
+ and a kernel K : (Rd × R

d
+) × (Rd ×

R
d
+) → R

d ×R
d
+, such that for all z,x ∈ R

d and u ∈ R
d
+:

K ([Z(x), U(x)], [z,u]) = exp
{

−c
∑d

i=1 ui|xi − zi|
p
}

.

4. Deep SimNets for processing images

In the previous section we presented the basic MLP ver-

sion of SimNets. In this section we describe two (orthog-

onal) directions of extension. The first is the addition of

locality, sharing and pooling for processing images (Sim-

Net MLPConv, sec. 4.1), while the second focuses on deep-

ening the network (adding layers) for enhanced capacity

(sec. 4.3). In this context we introduce a “whitened” ℓp
similarity layer through a succession of a convolution (lin-

ear similarity) followed by ℓp similarity with receptive field

1× 1.

4.1. SimNet MLPConv

The extension of SimNet MLP for processing images

follows the line of the MLPConv structure suggested

in [26], and we accordingly refer to it as SimNet MLPConv.

In particular, [26] convolved a standard MLP across an in-

coming 3D array by successively applying it to patches and

stacking the outputs in a spatially coherent manner. This re-

sults in a bank of feature maps, which may be summarized

into prediction scores through global average pooling. Sim-

Net MLPConv follows the same principles – a SimNet MLP

is convolved across an incoming 3D array, and the resulting

feature maps are summarized via global MEX pooling. An

illustration of SimNet MLPConv is provided in fig. 1(c). In

the figure, xij ∈ R
hwD refers to the input patch in location

ij, zl ∈ R
hwD and ul ∈ R

hwD
+ denote similarity templates

and weights respectively, φ : RhwD × R
hwD → R

hwD is

the similarity mapping (linear or ℓp), β1 ∈ R and brl ∈ R

are the MEX parameter and offsets of the underlying Sim-

Net MLP, and β2 ∈ R is the MEX parameter of the final

global pooling layer.

When used to classify images, the prediction rule

associated with SimNet MLPConv is given by: ŷ(input) =
argmaxrMEXβ2

{

MEXβ1

{

u⊤
l φ(xij , zl) + br,l

}

l

}

i,j
.

Setting β1 = β2 = β, and using the collapsing property of

MEX, we get a “patch-based” version of SimNet MLP’s

classification:

ŷ(input) = argmax
r

MEXβ
i,j,l

{u⊤
l φ(xij , zl) + br,l}

It can be shown ([8]) that all results put forth in sec. 3 for

relating SimNet MLP to kernel machines apply to SimNet

MLPConv as well, but with the underlying kernels being

based on “patch-representations”. In other words, SimNet

MLPConv – a “patch-based” extension of SimNet MLP,

4784

Figure 1. (a) SimNet MLP – SimNet analogy of MLP with single hidden layer (sec. 3) (b) conv→ ℓp-sim structure – implements whitened ℓp similarity

(sec. 4.2) (c) SimNet MLPConv – single layer SimNet for processing images (sec. 4.1) (d) L-layer SimNet for processing images (sec. 4.3). Best viewed

in color.

maintains all kernel relations of the latter, with a “patch-

based” extension of the underlying kernels.

4.2. Whitening with convolutional layer

We now describe a simple yet powerful addition to the ℓp
similarity operator. Recall that the ℓp similarity between an

input x ∈ R
d and a template z ∈ R

d with weights u ∈ R
d
+,

is defined by −
∑d

i=1 ui|xi−zi|
p. Up to a constant that de-

pends on u (and p), this is equal to the log probability den-

sity of the input x being drawn from a Generalized Gaussian

distribution with independent components, shape p, mean

z, and scales u−1/p. These ideas are further developed in

sec. 5, however it is clear at this point that in order to cap-

ture this probabilistic model, it would be desirable for the

input x to have statistically independent coordinates. Com-

mon practice in such cases is to seek for a matrix W for

which the linearly transformed vector Wx has independent

coordinates. This is referred to in the literature as ICA –

independent component analysis ([19]). Assuming such a

matrix is found, it would then be natural to “whiten” inputs,

i.e. multiply them by W , before measuring their ℓp similar-

ities to weighted templates. Besides better compliance with

the coordinate independence assumption, this also gives rise

to the possibility of dimensionality reduction. In particular,

we may set the matrix W to cancel-out low-variance prin-

cipal components of x, thereby producing whitened vectors

of a lower dimension. This can be useful for both noise

reduction and computational efficiency.

In the context of SimNet MLPConv, adding support for

whitening before ℓp similarity is simple – it merely requires

a convolutional layer (linear similarity) followed by an ℓp
similarity layer with receptive field 1 × 1. Such a con-

struct, which we refer to as conv→ ℓp-sim, is illustrated

in fig. 1(b). In this figure, input patches xij are trans-

formed into d-dimensional vectors yij by a convolutional

layer with d filters wt that hold the rows of the whiten-

ing matrix W . The whitened vectors yij are then matched

against n weighted templates in the ℓp similarity layer, pro-

ducing n similarity maps as output. To recap, one may add

whitening to ℓp similarity by replacing the similarity layer

with a conv→ ℓp-sim structure, which consists of convolu-

tion followed by 1× 1 similarity.

In sec. 5 we describe how to pre-train a conv→ ℓp-sim

structure, and in particular how to initialize the filters so

that they perform the whitening transformation they are in-

tended for. Before that however, we show how SimNet

MLPConv can be extended into an image processing Sim-

Net of arbitrary depth.

4.3. Going deep with SimNet MLPConv

After laying out the basic SimNet construct (SimNet

MLP – sec. 3), equipping it with spatial structure (SimNet

MLPConv – sec. 4.1), and adding whitening to its ℓp simi-

larity (conv→ ℓp-sim – sec. 4.2), we are finally in a position

to define an arbitrarily deep SimNet for processing images.

4785

Our starting point is SimNet MLPConv with whitened ℓp
similarity. This network accounts for a single layer (conv→
ℓp-sim) followed by a classifier (classification MEX and

global MEX pooling). Adding depth to the network simply

amounts to appending preceding conv→ ℓp-sim layers, op-

tionally separated by MEX pooling. A general L-layer Sim-

Net following this architectural prescription is illustrated in

fig. 1(d). In this structure, conv→ ℓp-sim layers measure

whitened ℓp similarities of incoming patches to weighted

templates, MEX pooling operations summarize spatial re-

gions in similarity maps by MEX’ing them together (note

that both average pooling and max pooling are special cases

of this), the MEX classification uses its offsets brl to clas-

sify each location in the final similarity maps, and the fi-

nal global MEX pooling summarizes the local classifica-

tions into global class scores. The parameters that may be

learned during training are: W (1). . .W (L) – linear filters

in conv→ ℓp-sim; z
(1)
l . . .z

(L)
l and u

(1)
l . . .u

(L)
l – similar-

ity templates and weights in conv→ ℓp-sim; p(1). . .p(L) –

similarity orders in conv→ ℓp-sim; β(1). . .β(L) – MEX pa-

rameters in local pooling; β(c) – MEX parameter in clas-

sification; brl – MEX offsets in classification; β(p) – MEX

parameter in global pooling. In the following section we

describe methods for initializing these parameters prior to

training (pre-training).

5. Pre-training

In this section we briefly describe a method for pre-

training an L-layer SimNet as illustrated in fig. 1(d).

Our initialization scheme covers the parameters of conv→
ℓp-sim layers (linear filters W (1), ...,W (L), similarity

templates z
(1)
l , ..., z

(L)
l , weights u

(1)
l , ...,u

(L)
l and orders

p(1), ..., p(L)), assuming predetermined local MEX pooling

parameters (β(1), ..., β(L)). Two attractive properties of the

scheme are: (i) it is unsupervised (does not require any

labels), and (ii) it gives rise to automatic selection of the

number of channels in the convolutions and similarities of

conv→ ℓp-sim layers.

The initialization is applied layer by layer in a forward

sweep, thus in order for it to be defined, it suffices to con-

sider a single conv→ ℓp-sim layer (fig. 1(b)). Recall from

sec. 4.2 that we interpret the convolution in conv→ ℓp-

sim as a linear transformation that whitens (and possibly

reduces the dimension of) input patches prior to similar-

ity measurements. Accordingly, we initialize its filters

w1, ...,wd as the rows of a whitening matrix W estimated

via ICA ([19]) on patches.

Turning to the initialization of similarity templates

(z1, ...zn), weights (u1, ...,un) and order (p), we recall that

an ℓp similarity between an input y ∈ R
d and a tem-

plate z ∈ R
d with weights u ∈ R

d
+, is defined to be

−
∑d

t=1 ut|yt − zt|
p. Consider now a probability distribu-

tion over Rd defined by a mixture of n Generalized Gaus-

sians (with priors λl ≥ 0,
∑

l λl = 1), all having the same

shape parameter (β > 0), and each having independent

coordinates with separate scales and means (αl,t > 0 and

µl,t ∈ R respectively, for coordinate t of component l):

P (y) =

n
∑

l=1

λl

d
∏

t=1

β

2αl,tΓ(1/β)
e−(|yt−µl,t|/αl,t)

β

The log probability density of a vector drawn from this dis-

tribution being equal to y and originating from component

l is: logP (y ∧ comp. l) = −
∑d

t=1 α
−β
l,t |yt − µl,t|

β + cl,

where cl := log
{

λl
∏d

t=1
β

2αl,tΓ(1/β)

}

is a constant that

does not depend on y. This implies that if we model

whitened patches yij with a Generalized Gaussian mixture

as above, initializing the similarity templates via zl,t = µl,t,

the weights via ul,t = α−β
l,t and the order via p = β would

give:

u⊤
l φℓp(yij , zl) = logP (y ∧ comp. l)− cl

In words, similarity channel l would hold, up to a constant,

the probabilistic heat map of component l and the whitened

patches yij . This observation suggests estimating the pa-

rameters of the mixture (shape β, scales αl,t and means µl,t)

based on whitened patches (via EM, cf. [1]), and initializing

the similarity parameters accordingly. We note in passing

that it is possible to append additive biases bl to the simi-

larity (through offsets of the succeeding MEX operator), in

which case initializing these via bl = cl would make the

probabilistic heat maps exact (not up to a constant).

Finally, as stated above, the initialization scheme pre-

sented induces an automatic selection of the number of con-

volution and similarity channels in conv→ ℓp-sim. The

number of convolution channels corresponds to the dimen-

sion to which input patches are reduced during whitening,

thus may be set via methods for estimating effective di-

mensionality of data (e.g. [31]). Similarity channels corre-

spond to components in the mixture estimated for whitened

patches, thus may be set via methods for estimating the

number of components in a mixture (e.g. [2]).

6. Experiments

To evaluate the effectiveness of SimNets, we compared

them against alternative ConvNets in three experiments of

increasing complexity. In the first experiment, we ran a sin-

gle layer SimNet against an equivalent single layer Con-

vNet, and studied the effect of model size (number of con-

volution/similarity channels) on the accuracy of the two net-

works. In a second experiment, we compared compact two

layer SimNets against the best performing publicly avail-

able ConvNet we are aware of that has comparable com-

plexity. In the third and final experiment, we constructed a

4786

Figure 2. (a) Single layer ConvNet compared against single layer SimNet on CIFAR-10 (b) CIFAR-10 cross-validation accuracies of single-layer networks

as a function of the number of floating-point operations required to classify an instance (c) Caffe ConvNet compared against two layer SimNet on CIFAR-10

and SVHN (for CIFAR-100, number of output units increased from 10 to 100). Best viewed in color.

large three layer SimNet designed to compete against state

of the art ConvNets. Our experiments demonstrate that Sim-

Nets are significantly more accurate than ConvNets when

networks are constrained to be compact, i.e. when compu-

tational load at run-time is limited. This complies with our

theoretical analysis in sec. 3, which shows that weighted

ℓp similarity exhibits an expressive power that goes beyond

kernel machines, whereas linear similarity (the case associ-

ated with ConvNets) is fully captured by the Exponential

kernel. Asymptotically as the dimension increases, even

a simple kernel machine becomes expressive enough for a

given problem, and more elaborate expressiveness may ac-

tually be a burden, as it aggravates overfitting. Nonetheless,

we see in our experiments that with proper regularization,

large-scale SimNets achieve accuracies comparable to state

of the art ConvNets.

6.1. Experimental details

The datasets used in our experiments are CIFAR-10 and

CIFAR-100 ([22]), as well as SVHN ([27]). These three

datasets together form an image recognition benchmark that

is diverse and challenging on one hand, yet simple enough

to enable granular controlled experiments such as those

needed to evaluate a new architecture. All datasets con-

sist of 32x32 color images. SVHN (Street View House

Numbers) represents a rather simple classification bench-

mark, where various methods are known to produce near-

human accuracies. It contains approximately 600K images

for training and 26K images for testing, partitioned into 10

categories that correspond to the digits 0 through 9. CIFAR-

100 contains 50K images for training and 10K images for

testing, equally partitioned into 100 categories. With a rel-

atively large number of categories, and only a few hundred

training examples per class, CIFAR-100 represents a chal-

lenging classification task. CIFAR-10 contains 50K im-

ages for training and 10K images for testing, equally par-

titioned into 10 categories. It brings forth a balanced trade-

off between the simplicity of SVHN and the complexity of

CIFAR-100, and accordingly served as the central dataset

throughout our experiments. Namely, all cross-validations

were carried out on CIFAR-10 (with 10K training images

held out for validation), with SVHN and CIFAR-100 used

for final evaluation only. In terms of implementation, we

have integrated SimNets into Caffe toolbox ([21]), with the

aim of making our code publicly available in the near future.

In all our experiments, we trained both SimNets and

ConvNets by minimizing softmax loss using SGD with

Nesterov acceleration ([35]). Batch size, momentum,

weight decay and learning rate were chosen through cross-

validation, though we observed, at least for the case of

SimNets, that the following choices consistently produced

good results: batch size 128, momentum 0.9, weight de-

cay 0.0001 and learning rate 0.01 decreasing by a factor

of 10 after 200 and 250 epochs (out of 300 total). Un-

like ConvNets which are mostly initialized randomly nowa-

days ([23]), SimNets are naturally pre-trained using statis-

tical estimation methods (sec. 5). For computational effi-

ciency, we implemented stochastic versions of these algo-

rithms. Unless otherwise stated, all reported SimNet results

were obtained using its pre-training scheme.

6.2. Single layer SimNet

As an initial experiment we compared a single layer Sim-

Net, i.e. a SimNet MLPConv with whitened ℓp similarity

(conv→ ℓp-sim), to an equivalent single layer ConvNet de-

fined for this purpose. We chose to design the ConvNet in

accordance with the prescription given by Coates et al. in

their study of single layer networks ([7]). The resulting net-

work is illustrated in fig. 2(a). As can be seen, it includes

a single convolutional layer with 5x5 receptive field and

ReLU activation, followed by max pooling over quadrants

and dense linear classification. To align the SimNet with

4787

