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Abstract

Near-Infrared (NIR) images of most materials exhibit

less texture or albedo variations making them beneficial

for vision tasks such as intrinsic image decomposition and

structured light depth estimation. Understanding the re-

flectance properties (BRDF) of materials in the NIR wave-

length range can be further useful for many photometric

methods including shape from shading and inverse render-

ing. However, even with less albedo variation, many ma-

terials e.g. fabrics, leaves, etc. exhibit complex fine-scale

surface detail making it hard to accurately estimate BRDF.

In this paper, we present an approach to simultaneously es-

timate NIR BRDF and fine-scale surface details by imaging

materials under different IR lighting and viewing directions.

This is achieved by an iterative scheme that alternately esti-

mates surface detail and NIR BRDF of materials. Our setup

does not require complicated gantries or calibration and we

present the first NIR dataset of 100 materials including a

variety of fabrics (knits, weaves, cotton, satin, leather), and

organic (skin, leaves, jute, trunk, fur) and inorganic mate-

rials (plastic, concrete, carpet). The NIR BRDFs measured

from material samples are used with a shape-from-shading

algorithm to demonstrate fine-scale reconstruction of ob-

jects from a single NIR image.

1. Introduction

Since the introduction of active 3D sensors like Mi-

crosoft Kinect, NIR imaging is becoming increasingly pop-

ular. Compared to the images in visible spectrum, NIR

images of most materials exhibit much less texture (or

albedo) variations making them suitable for tasks such as

shadow detection [32], intrinsic image decomposition [21]

and structured light based depth recovery [6]. However, the

precise reflectance properties (i.e. BRDF [28]) of materials

in the NIR wavelength range are not well understood. Mea-

suring and modeling the BRDFs of materials will addition-

ally make NIR imaging useful for a range of photometry

based approaches such as shape from shading and inverse

rendering.

(a) (b)

(c) (d)

Figure 1. Fine-scale shape reconstruction from a single NIR image

of a sweater made of cotton and polyester. We simultaneously

estimate the surface detail and BRDF of over 100 material samples

and use the BRDF obtained in a shape-from-shading method. (a)

Input NIR image. (b) Rotated view of the 3D mesh. (c) Surface

details on the chest. (d) Surface details on the arm. Both types of

knits are well reconstructed.

BRDF estimation is well studied in the visible domain

using both parametric [37, 30] and non-parametric ap-

proaches [8, 27, 2, 1]. Several datasets such as CURET

[8] and MERL [27] have had a strong impact on photome-

try based research. In our work, Instead of using simple or

known (spheres, planar patches, etc.) [26] objects, we target

natural objects with fine surface geometries.

Our goal is to build a NIR database of real-world ma-

terials which contains NIR images captured under various

lighting directions, corresponding surface normal maps and

the BRDF models. The NIR domain offers both advantages

and challenges. Since materials like fabrics appear (mostly)

textureless, the BRDF remains constant spatially over at

least small patches of materials. Both organic materials like

leaves, tree trunks, and inorganic materials like knit and wo-

ven fabrics all show complex random or structural surface

detail. These fine-scale surface height variations are diffi-
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cult to measure or model [20] and pose challenges regard-

less of whether the NIR and visible wavelength spectra. We

present a photometric stereo-based approach to jointly esti-

mate both the NIR BRDF and the fine scale surface detail

from images of material samples captured under different

(known) lighting and viewing directions. This is achieved

using an iterative approach that alternately estimates per-

pixel surface normals and per-sample BRDFs. We restrict

ourselves to materials that have a measurable diffuse com-

ponent (so we do not measure metals or mirrors). This al-

lows us to start the iterative process by assuming the mate-

rial is simply Lambertian. Begin from the surface normal

of the photometric stereo, the BRDF curve is fitted. We fit

the data to a simple low-dimensional model parameterized

by half angles [33] that was sufficient to represent all the

materials we measured.

Using this approach, we measured the NIR BRDF and

surface detail of over 100 materials that includes vari-

ous types of fabrics (cotton, polyester, leather, satin etc.),

leaves, papers, plastic, stones and concrete, etc. Each ma-

terial sample was imaged under 12 different lighting direc-

tions and 9 different viewpoints. Despite the few combina-

tions of lights and views, the BRDF is densely sampled due

to the intricate surface detail. Our setup is very simple with-

out requiring complicated gantries that are usually needed

to densely sample BRDFs. We use the measured BRDF

within a shape-from-shading algorithm to reconstruct a va-

riety of different scenes (for example, people wearing dif-

ferent types of clothing) from a single NIR image under

known lighting. Figure 1 shows the result of applying the

shape from shading approach for fine-scale reconstruction

of a sweater made of cotton and polyester with two dif-

ferent knit structures (checker and longitudinal). To our

knowledge, the NIR BRDF and surface detail is the first

such dataset and is publicly disseminated.

2. Related Work

Near IR imaging: Near IR imaging has been increasingly

used for various computer vision tasks. In [34, 25, 36], NIR

and visible images are jointly captured. The NIR image

has unique characteristics compared to visible image and is

used for scene understanding [5] and shadow detection [32].

In [21], NIR and visible images are used to compute an il-

lumination invariant. NIR images have been used in various

3D applications such as enhancing depth quality or refining

geometry of 3D meshes [6, 15]. These works show the NIR

image is not affected by general indoor (ambient) lighting,

which makes the lighting model simpler.

Material BRDF Estimation: BRDF estimation has been

extensively addressed in the past decades. Beginning with

the Lambertian model [22], various models based on em-

pirical observations are presented such as Phong [31] and

Schlick [35]. Torrance-Sparrow [37, 7], Oren-Nayar [30]

and Ward [39] have analyzed the physical properties of the

materials with micro-surface roughness. These parametric

BRDF models are based on physical light transport, how-

ever, they do not fully represent a wide range of real-world

material properties. Alternative approaches measure the re-

flectance properties using measurement devices such as re-

flectometers [9, 11]. Nishino [29] presents the directional

statistics based BRDF model and proposes to reduce the di-

mensions of BRDF data. Matusik et al. [27] present a gener-

ative model for isotropic BRDF via a data-driven approach.

They acquire reflectance data by using spheres coated or at-

tached with different materials. In CURET [8], novel bidi-

rectional texture function (BTF) and BRDF are analyzed.

They use 60 different samples of real-world materials and

measure 200 combinations of viewing and illumination di-

rections. Although they analyze various real-world material

samples, they average the observed value over the plane to

compute the BRDF.

Shape Estimation: BRDF models have been extensively

used for shape from shading in the visible wavelength

range. Shape from shading is an ill-posed problem and

many restrictions and constraints are assumed [42, 3]. Be-

ginning from numerical shape from shading [18, 16], var-

ious works rely on the Lambertian BRDF. Tsai et al. [38]

uses discrete approximation for surface normal. Lee and

Kuo [23] use triangular element surface model. The shape

from shading methods are compared and evaluated in [41].

In [12], they utilize the photometric stereo and deal with

both diffuse and specular surfaces. The parametric re-

flectance described in [4] is used in [17, 19]. In [17],

they use a first-order approximation for the parameters and

have bilinear reflectance, whereas, [19] uses second-order

approximation for the parameters and have a quadratic

one. Lensch et al. [24] present a generalized method for

modeling non-Lambertian surfaces by using wavelet-based

BRDFs. Several works exploit the depth sensor [13] as a

prior for shape estimation. In [14, 40], they generate high-

quality mesh model by estimating the natural illumination

and combining it with depth from Kinect. Joint estimation

of shape and reflectance based on the DSBRDF model [29]

has demonstrated results for synthetic and real objects with

smooth and simple shapes. In contrast, our work focuses on

BRDF and surface detail estimation in NIR domain.

3. Data Acquisition

This section describes our measurement setup and data

collection. Compared to conventional methods, our setup is

more practical and does not require devices such as robot

arms, high-speed cameras or reflectometers. Also typical

indoor ambient light (fluorescent bulbs) do not affect the

NIR capture process. The experimental setup is shown in

Figure 2.
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NIR camera

Visible camera

Beam-

splitter

(a) (b)

Figure 2. (a) Our acquisition setup. The NIR camera and the vis-

ible camera are co-located via beam-splitter. (b) 12 NIR light

sources mounted at different locations. Note that our methods only

requires the NIR camera and the visible camera is only used for vi-

sual comparisons but the data can be used for further research.

Figure 3. The lighting directions and viewing angles for one ma-

terial sample (artificial leather). (a) 12 NIR distant point lightings

reflected on the chrome ball. (b) 9 different viewing angles of the

sample under one light direction.

3.1. Measurement Setup

Our setup consists of 12 IR LED sources and a near IR

camera. We co-locate the NIR camera with a visible spec-

trum camera. The visible camera is not used for our algo-

rithms, but only used for visual comparisons of the images.

We use a pointgrey GS3-U3-41C6NIR-C camera with an IR

pass filter that blocks visible light under the wavelength of

760nm (see supplementary material for spectral sensitivity

of the camera). As seen in Figure 2, we co-locate the cam-

eras with the beam-splitter and register the images using

a homography transformation. After setting up our device

for measurement, we collect real-world samples of differ-

ent types of materials. As seen in Figure 3, the material

samples are attached to a 10cm high and 13cm wide rect-

angular board. Both NIR and visible cameras are calibrated

and undistorted.

3.2. NIR BRDF Database

Each material sample is tilted to 9 different angles w.r.t

the camera and imaged under 12 different lighting direc-

tions, giving a total of 108 images of size 1600× 1200 pix-

els. Assuming that the BRDF is constant spatially across the

material sample, each image provides a dense set of BRDF

samples. We have collected 100 real-world materials that

include various types of fabrics (cotton, polyester, leather,

satin, jute etc.), leaves, papers, plastic, stone, carpets, tree

trunk, furs, human skin and concretes etc. A complete list-

Artificial shell Chevron poly-cotton

Leaf 6

Peach-print polyester plastic bag

Table-cloth cotton Wood-texture quilter flannel

Floral-print polyester

Figure 4. Differences in texture as seen in visible and NIR images.

We show 8 examples from our 100 materials dataset. For each

example, the left image shows visible and right image shows NIR

image. Compared to the visible images, the NIR images show

virtually no texture and most of the intensity gradients correspond

to the shading due to surface geometry.

ing is provided in the supplementary material. All the im-

ages are captured under the same set of illumination direc-

tions. We capture a white paper as a reference target for

lighting and include in the database. In Figure 5, the NIR

images of our database is shown. The image set along with

the BRDF and surface detail models are publicly available

online1.

3.3. Comparison of NIR and Visible Images

To compare the reflectance characteristics of the NIR im-

ages to visible images, we capture an RGB image using the

visible camera with the same resolution as the NIR camera.

We capture both NIR and visible images for 100 materi-

als in Figure 5. In Figure 4, we show a representative set

of 8 materials from our database. For each material, visi-

ble and NIR images are compared and we readily observe

that the NIR images show less texture than visible images.

The comparisons for the entire dataset are provided in the

supplementary material. This allows us to assume that the

BRDF is constant spatially across the material sample.

4. Joint Surface Detail and BRDF Estimation

If the surface normals of the material are known, then

it is possible to directly observe and tabulate the BDRF or

fit a parametric model. On the other hand, if the BRDF is

known, photometric stereo can be used to estimate surface

normals at every pixel. We jointly estimate both BRDF and

1http://rcv.kaist.ac.kr/gmchoe/project/NISAR/

2454



Figure 5. Our database consists of 100 real-world materials that include both natural and manmade and organic and inorganic samples.

This is a superset of the materials in the original CURET database. Caputured NIR images are shown. Full set of images under 12 lighting

and 9 viewing angles, corresponding visible images and the BRDF and the surface detail models are available on-line. A complete listing

of the materials is in the on-line web page.

surface detail using alternating optimization and show this

approach converges for all the 100 materials.

The traditional image formation model relates observed

radiance of an opaque scene point to the source radiance L,

BRDF ρ and local surface normal Nx. We radiometrically

calibrate the camera so the scene radiance is proportional to

image intensity:

Iψ(Nx,L) =

∫
ρ(ωi, ωo;ψ)L(ωi)max(0,Nx · ωi)dωi,

(1)

The BRDF ρ is a function of incident angle ωi and outgoing

angle ωo for specific material ψ.

4.1. Initial Estimation of Surface Detail

Since the materials in our database have measurable

diffuse component, we initially assume that the BRDF

ρ(ωi, ωo) is invariant to the incident light directions or view-

ing directions in order to to initialize the normal directions

of the surface on the target samples. Using this Lamber-

tian assumption, we apply traditional photometric stereo to

compute the surface normals and albedo. Equation (1) can

be written in a simplified matrix form with albedo α as:

I = α(N · S), (2)

where Nx ∈ N and ωi ∈ S. Setting G = αN and solve it

using least squares yields:

G = (ST
S)−1

S
T
I. (3)

The surface orientation N is obtained by normalizing ma-

trix of G and the albedo is set to be the norm, ‖G‖. We

denote the solution normal matrix as N+ and compute the

error e to eliminate unreliable normals. The error is com-

puted as an absolute deviation between the original inten-

sity and the intensity computed from the solution normal,
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(a) (b)

Figure 6. Coordinate systems. (a) Standard coordinate with respect

to ωi and ωo. (b) Half-angle coordinate h.

e = ‖I − N
+ · S‖. We set a threshold δ for selecting the

reliable normals and the ith normal satisfying ei < δ is used

for our BRDF estimation. Although our BRDF assumption

is most likely erroneous, we show that the pixel-wise sur-

face normals we computed provide a strong initial guess for

the optimization.

4.2. Parametric BRDF Model

The next step is to fit the BRDF model using the com-

puted initial surface orientations. For this, we parameterize

the angles and map the intensity values to the parameters. In

our work, we use the commonly used half angle coordinates

for BRDF [33, 27]. The coordinate frame is with respect to

half angle h which is a half vector of the incident angle ωi

and the outgoing angle ωo (see Figure 6). The BRDF is now

mapped to a function with respect to half angle parameters.

ρ(ωi, ωo) = ρ(f(θh, θd)), (4)

where θh = cos−1 Nx·h
‖Nx‖‖h‖

and θd = cos−1 wi·h
‖wi‖‖h‖

. By

using the computed surface orientations and image intensi-

ties, we fit the data with respect to the half angle param-

eters, θh and θd. Note that in our work, we estimate the

model for each discrete slice of θd. Since the camera is

fixed and the object is rotated 9 different views, our setup

leads (108 × 1200 × 1600) θh and 9 θd. We normalize the

original NIR image I by albedo α, and compute ρ for pixel

i as follows:

ρi =
Ii

max(Nx,i · hi)αi

. (5)

Here, we fit the data to a simple low-dimensional model pa-

rameterized by the half angles, which is sufficient to repre-

sent all the 100 materials. The model ρ(θh) for the specific

slice of θd is defined as:

ρ(θh) = β(γ)θh + κ. (6)

To find the best β, γ, and κ, we use RANSAC [10] that best

fits in 100 iterations by randomly sampling the data.

4.3. Iterative Process

We use the initial BRDF model and estimate the surface

details via iterative optimization described in (7). Our goal

is to find the normal vector N∗ which minimizes the cost

function (7). The cost function consists of the data term Ep

and a smoothness term Es,

N
∗ = argmin

N

(Ep(N) + Es(N)). (7)

The data term is designed to minimize the difference be-

tween Intensity values of I and the rendered intensity based

on image formation model (1). We use least square error

for the data term. Note that we clamp the negative values

for rendered intensity, max(0,Nx,i · hi), and the normals

are estimated for all 9 images with different viewing angles.

The smoothness term is minimizing the difference of neigh-

boring normals.

Ep(N)=

n∑
i=1

λ(Ii − ρi(θh)(Nx,i · hi))
2, (8)

Es(N)=
n∑

i=1

∑
j∈Mi

(1− λ)(Ni −Nj)
2, (9)

where ρ(θh) is a estimated reflectance from (6) and Mi is

pixel neighborhood of i. The optimization re-estimates the

surface normal N∗ and updates Nt as:

N
t = sNt−1 + (1− s)N∗, (10)

where Nt denotes the nomal vector at updated time step and

N
t−1 is the initial normal vector. s is a weight balancing

the normals. We use the updated normal (10) for the BRDF

model fitting again, as described in Section 4.2. After a few

such iterations, we obtain the final BRDF and surface detail

models.

Another approach to initialize the optimization is to as-

sume the material patch is planar and compute the BRDF

as an average over the patch [8]. This produces very sparse

BRDF estimates and are generally clustered depending on

the positioning of the light sources and the optimization

failed to converge satisfactorily.

5. Experimental Results

For all our experiments, we set the parameters λ = 0.2,

δ = 0.15, s = 0.6. First, we present our results of surface

detail and BRDF model estimation from material samples.

We show 9 representative results in Figure 7 (see supple-

mentary material for the rest). From the left column, we

show (a) original NIR images, (b) surface normal map, (c)

surface geometry from the reconstructed mesh, (d) albedo

images, (e) estimated BRDF ρ(θh) for the slice of θd = 34◦

which is plotted with red. The x-axis is θh and the y-axis is

ρ(θh). Two hundred of randomly sampled data are shown as

blue points. Please notice the vein structure of the leaf, the

crumpled ridges of paper and the knits in artificial leather.

Slight smoothing of the results are partly due to the smooth-

ing term in the optimization and partly due to the fact that

we do not model inter-reflections.
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Figure 7. Nine examples out of 100 real-world samples are shown. (a) Near IR image. (b) Surface normal. (c) Fine surface detail. (d)

Albedo. (e) Estimated ρ(θh) is plotted as a red curve. x-axis is θh and y-axis is ρ. 200 randomly sampled data are shown as blue points.

2457



Initial

E
s
ti

m
a

te
d

 B
R

D
F

2nd iteration 4th iteration 6th iteration 3D mesh

L
a

m
b

e
r
ti

a
n

Figure 8. Normal map at each iteration for the Artificial leather. First row shows the normal estimation using Lambertian assumption and

second row shows the normal estimation using our estimated BRDF. We use random normals for initialization. The rightmost column

shows the reconstructed 3D mesh models.

Figure 9. (a) Visible image. (b) Input NIR image. (c) Mesh from Kinect. (d) Mesh from our method using Lambertian assumption. (e)

Mesh from our method using the estimated BRDF. First row is Sweater and second row is Backpack dataset.

Evaluation and Comparisons: In Figure 8, we demon-

strate the iterations for a particular material sample. We

display the normal maps at each iteration of our shape es-

timation method using both Lambertian and our measured

BRDF. We initialize the normals with random values and

observe how the optimization proceeds with each iteration.

We did experiment using the Artificial leather sample under

same parameter of λ = 0.2 for both cases. As iteration pro-

ceeds, the optimization using our BRDF converges better

quality of solution. On the other hand, assuming the mate-

rial to be Lambertian leads to the noisy and unstable results.

The reconstructed 3D mesh of our method shows accurate

surface detail. Once we capture the BRDF of materials, it is

possible to use them within a shape from shading method to

reconstruct the shapes of objects made of those materials.

Here, example of Sweater and Backpack are shown. We

use Microsoft Kinect for the comparison. The depth reso-

lution of Kinect is 640 × 480. To make a fair comparison,

our input NIR image is down-sampled to the resolution of

Kinect. For the sweater and backpack objects, qualitative

comparisons between the Kinect mesh and the mesh from

our method are provided in Figure 9. We capture the fine

knitting of the sweater and the wrinkles on the backpack.

In Figure 9, we show (a) visible images, (b) our input NIR

images, (c) the mesh from the Kinect, (d) the mesh from

our method with Lambertian assumption and (e) the mesh

from our method using BRDF from our database. The ran-

dom initial normals are used for both (d) and (e). The mesh

from Kinect cannot reconstruct fine detail and the mesh us-

ing the Lambertian assumption generates noisy and unsta-

ble results. On the other hand, the mesh from our method

shows better quality.

Results of Shape from Shading with Measured BRDF:

The surface normal of arbitrary objects are estimated using

the measured material BRDF. We use the known lighting

direction (10th among 12) and the uniform value for nor-

mal initialization. We show the reconstructions of a person

wearing jackets, sweaters and shirts made of different ma-

terials. These examples contain the fine geometry details

on the surface and the BRDFs are complex and cannot be

considered Lambertian. For better visualization, the result

mesh models are rendered with a shader model and viewed
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Sweater : Cotton & Polyester, Jeans : Blue denim 

Check shirts :100% Cotton

Leather jacket : 100% Genuine leather

Hoodie : Polyester & Cotton & Rayon

Rotated views

Figure 10. Results of our shape estimation using various real-world clothings - Sweater, Check shirts, Leather Jacket, and Hoodie. From

the left, each column presents visible images, NIR images, Normal map and Reconstructed 3D mesh. Note that our method requires only

a NIR image for the input, the visible images are provided for visual comparison of reflectance.

from a different angle. We use different BRDF models for

each part of the target objects from our database (sweater:

cotton-polyester, button: plastic, and jeans: blue denim

BRDF). In Figure 10, notice the fine knitting of the sweater

and wrinkles of jeans. We provide a video shape reconstruc-

tion of dynamic scene in the supplementary material. Check

shirts (cotton) is also used. Even though it shows red-black

check patterns in visible image, our input NIR image shows

an uniform texture and only has ”geometric” edges such as

wrinkles. Thus, unlike the visible spectrum, it is possible to

apply shape from shading assuming a uniform albedo in the

NIR spectrum preserving fine details such as wrinkles and a

pocket. For the Leather jacket, we use the BRDF model of

the genuine leather. Our method reconstructs the wrinkles

on the jacket and patterns on the arm. A hoodie is also used

to evaluate our algorithm. The letter patch on the chest has a

popped-out surface and once again the method reconstructs

the fine detail as well as the wrinkles of the cloth.

6. Conclusion
We proposed a method for estimating the NIR BRDF and

fine surface detail models of real-world materials. To the

best of our knowledge, this is the first work to construct and

provide a large dataset of NIR BRDFs and use it for shape

from shading. We presented shape from shading results

of various worn clothing by directly using our estimated

BRDFs. Also we demonstrated that our results show im-

proved quality over assuming a Lambertian model or Kinect

depths on various challenging cases. In this work, we

did not handle the inter-reflections which introduce some

smoothing of the fine detail. Also our materials do not in-

clude very shiny metallic or mirrored objects, therefore our

method has a limitation initializing the surface normal of

those materials using Lambertian photometric stereo. Our

dataset is publicly disseminated online.
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