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Abstract

Image segmentation is a key component in many com-

puter vision systems, and it is recovering a prominent spot

in the literature as methods improve and overcome their

limitations. The outputs of most recent algorithms are in the

form of a hierarchical segmentation, which provides seg-

mentation at different scales in a single tree-like structure.

Commonly, these hierarchical methods start from some low-

level features, and are not aware of the scale information of

the different regions in them. As such, one might need to

work on many different levels of the hierarchy to find the

objects in the scene. This work tries to modify the existing

hierarchical algorithm by improving their alignment, that

is, by trying to modify the depth of the regions in the tree

to better couple depth and scale. To do so, we first train a

regressor to predict the scale of regions using mid-level fea-

tures. We then define the anchor slice as the set of regions

that better balance between over-segmentation and under-

segmentation. The output of our method is an improved hi-

erarchy, re-aligned by the anchor slice. To demonstrate the

power of our method, we perform comprehensive experi-

ments, which show that our method, as a post-processing

step, can significantly improve the quality of the hierar-

chical segmentation representations, and ease the usage of

hierarchical image segmentation to high-level vision tasks

such as object segmentation. We also prove that the im-

provement generalizes well across different algorithms and

datasets, with a low computational cost.1

1. Introduction

Generic image segmentation has been part of computer

vision and image processing communities since the advent

of these fields many decades ago. The definition of the

problem, although vague, is easy to give and understand:

“to divide the pixels of an image into different pieces, where

each piece represents a distinguished thing in the image.”

1Codes are publicly available at: https://github.com/

yuhuayc/alignhier

Figure 1. Example of improved hierarchy alignment: The orig-

inal hierarchy (top row) needs three different flat partitions to rep-

resent the four objects (highlighted in red). Our aligned hierarchy

(bottom row) correctly puts all objects in the same level.

Martin et al. [19] provided these instructions to annota-

tors to create the Berkeley Segmentation Database (BSDS),

which proved that the problem of image segmentation was,

indeed, well defined, as humans provided consistent parti-

tions of the images up to refinement. In other words, image

segmentation is inherently a multi-scale problem.

We refer to flat image segmentation techniques as those

whose output is a single partition of the image pixels into

sets [29, 4, 10]. In these cases, in order to capture the afore-

mentioned multi-scale nature of objects, one needs to sweep

different parameterizations to obtain multiple partitions that

contain the different scales when working with flat segmen-

tation techniques.

On the other hand, hierarchical segmentation produces

a single multi-scale structure that aims at capturing the

objects at all scales [1, 14, 28, 26, 22]. These types

of structures have been successfully used in image filter-

ing [28], semantic segmentation [16, 9], salient object de-

tection [34], object proposals generation [22], or video seg-

mentation [32, 31].

The representation power of these hierarchies comes at a

cost, however, which is the difficulty to handle them from a

practical (coding) point of view. While a flat partition can

be represented by a matrix of labels of each pixel, hierarchi-

cal structures need a much more complex representation. In

this context, the Ultrametric Contour Map (UCM) [1] repre-

sentation is the one that gained more traction and it is widely

used in the literature. In it, flattening the hierarchy can be

achieved simply by thresholding the UCM.
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Figure 2. Our proposed hierarchy realignment: Given a hierarchy (a) in which the objects at the same scale are not well aligned

(represented in the same scale level), we produce a realigned hierarchy (b) that has the similar-scale regions in the same level.

The process of flattening or pruning a hierarchy is there-

fore of paramount importance for segmentation, because it

is the main proxy used towards the final application. This

work presents a novel technique to improve the flattening of

any given hierarchy, that is, to get better flat partitions from

the same hierarchical segmentation.

Figure 1 motivates this work. In the first row we can

see different flat partitions extracted from the same hierar-

chy. To get the regions representing the four lions we need

to search in three different flat partitions, extracted at three

different levels of the hierarchy. The second row shows our

results, where the same hierarchy is aligned to have all ob-

jects represented in the same flat partition.

In other words, the threshold level of the hierarchy better

relates with the scale of the objects, not only in the same

image, but also across images. To further grasp the intuition

of our work, Figure 2 shows a UCM and its interpretation

as a region tree (a). In it, the needed regions to form the

car are spread into different scale levels (thresholds of the

UCM), as marked by the red band. Our proposed realigned

hierarchy (b) aims at containing them all in the same scale.

Since the hierarchies are constructed based on low-level

features (edges, color, etc.), the scale of the objects is not

imposed to be coherent. We propose to learn the concept

of object scale from mid-level features within the hierarchy.

Our objective is to take advantage of these mid-level fea-

tures as much as possible without getting to high-level fea-

tures that would allow us to go beyond scale. This way, the

global approach would be to construct the hierarchies using

low-level features, and then exploit mid-level features to re-

align them, thus taking the maximum advantage of the most

simple features possible.

Our alignment also aims at providing a global alignment

among different images, that is, providing levels of scale

that keep meaning even when changing images, allowing

higher-level methods to generalize in a more straightfor-

ward manner. Specifically, we train a regressor to predict

whether each region of the hierarchy is oversegmented, un-

dersegmented, or correctly segmented; and we rescale the

hierarchy according to the prediction of this classifier. Back

to the example in Figure 1, the majority of regions in the

first column (bottom) are undersegmented, in the middle

column they are correctly segmented, and oversegmented

in the last column.

We perform comprehensive experiments using four dif-

ferent hierarchical segmenters, and we obtain consistent im-

provements on all hierarchies which proves the usefulness

of our approach and its generalization power. The remain-

der of the paper is organized as follows. First, Section 2

gives a brief overview of the related work. Then Section 3

presents our algorithm for re-scaling and aligning hierar-

chies. We demonstrate the effectiveness of our method in

the experiments in Section 4 and draw the conclusions in

Section 5.

2. Related Work

Hierarchical Segmentation: There is a rich literature of

hierarchical segmentation. As stated in the introduction,

our focus in this paper is not to develop a better hierarchi-

cal segmentation algorithm, but to provide a better align-

ment of a given hierarchy. Hierarchical segmentation typi-

cally starts from various local information embedded in an

affinity matrix, such as Pointwise Mutual Information [13],

or multiscale local brightness, color, and texture cues [1].

It then greedily constructs a hierarchy of regions by itera-

tively merging the most similar sets of regions according

to a certain metric. The result of hierarchical segmentation

is commonly represented as an Ultrametric Contour Map

(UCM), where different levels of segmentation can be pro-

duced by applying different thresholds to the UCM. This

work proposes to realign the hierarchies in order to make

the thresholds of the UCM more closely related to the scale

of objects. Hierarchical segmentation has become the major

trend in image segmentation and most of top-performance

segmenters [1, 22, 26, 14] fall into this category.

365



Multiple Segmentations: Working with multiple seg-

mentations at the same time has been used in the computer

vision community for a long time, with the idea that, while

none of the segmentations is likely to partition the image

perfectly, some parts in some segmentations might be use-

ful. Hoiem et al. [11] use this idea to estimate the scene

structure. A similar idea was exploited by Russell et al. [27]

to discover objects, and by Malisiewicz et al. [18] to im-

prove the spatial support of regions for recognition. By re-

aligning the hierarchies we aim to minimize the number of

partitions from a hierarchy needed to obtain reasonable re-

sults, since we concentrate same-scale regions in the same

partition. Our work also shares some similarities with [32],

where they flatten supervoxel hierarchies in videos by find-

ing a slice with uniform entropy.

Predicting Segmentation Quality by Classification:

Classification has been exploited to predict segmentation

quality in many works. Ren et al. [25] use a linear clas-

sifier base on Gestalt features [20] to distinguish good and

bad segmentations. Their negative training data are gener-

ated by randomly placing a ground-truth mask over an im-

age. A similar idea is used to select parameters by Peng et

al. [21] to select λ in graph-cut based interactive segmen-

tation. They compute the segmentation with different λ,

then select the one with highest predicted quality. More re-

cently, Carreira et al. [2], Pont-Tuset et al. [22], and Endres

et al. [7] use a regression forest to predict the good over-

lap between segments (object proposals) and ground truth

objects. We use similar features to [2], which are based on

graph partition, region, and Gestalt properties.

Scale-aware Vision Algorithms: Our work also bear a

resemblance to the scale-aware algorithms for other vision

tasks. For instance, exploiting the scale information has

proven helpful for semantic image segmentation [3] and

pedestrain detection [17]. [6] show that vision algorithms

employing super-resolved images (higher-resolution) per-

form better than using low-resolution images directly. Other

scale-aware applications include object tracking [15] and

image thumbnailing [30].

3. Flattening and Re-scaling Hierarchies

As discussed in the introduction, while segmentation hi-

erarchies contain a rich multiscale decomposition of the

image, it is not trivial to distill such knowledge because

the hierarchies generated by current methods are not fully

scale-aware. Simply taking a layer yields a segmentation

of which some parts are under-segmented while others are

over-segmented. In this section, we present our method

which aligns the scales of segmentation hierarchies, mak-

ing image hierarchies easier to use in practice. We start

(a) (b) (c)

Figure 3. Examples of the slices and paths of the segmentation

tree, where one path of the tree is shown in green (a) and one slice

is shown in grey (b). In (b), all nodes in blue are in L−, and all

nodes in red are in L+. Our approach re-aligns the hierarchy using

the anchor slice. The aligned tree is shown in (c).

with scale labeling, and then present the alignment strategy.

3.1. Flattening Hierarchies via Scale Labeling

Let’s denote the segmentation tree of image I by T , with

node vi indicating its i-th node. The nodes correspond to

regions (segments) of I . Given T , our task is to find a

tree slice L to divide all nodes vi’s (segments) into three

groups: L−, L, and L+ indicating under-, properly- and

over-segmented, respectively. See Figure 3(b) for an exam-

ple of nodes in the three groups.

The visual representation of a slice can be seen in Fig-

ure 2 as red bands covering different regions and in Figure 3

as gray bands. An example of the flat partitions resulting

from the three types of slices can be found in Figure 1 (bot-

tom row), where the left partition is mainly oversegmented

(L−), the middle one correctly segmented (L), and the right

one undersegmented (L+).

The problem is formulated as a three-class labeling prob-

lem. For each node vi, we use x(vi) ∈ {−1, 0, 1} as its

class label, with −1, 0, and 1 indicating the membership of

vi to L−, L, and L+ respectively. Assume now that a func-

tion f(vi) : vi → [−1, 1] is provided to measure the granu-

larity of image segments, where negative values stand for

under-segmented, 0 for properly-segmented, and positive

for over-segmented regions. The magnitude of f(vi) signals

the deviation from being properly-segmented. Section 3.1.2

presents the proposed learning algorithm for f(vi).

The labeling of all vi’s could be done by greedily tak-

ing the best-scoring class for each node. However, not any

labeling represents a valid slice of the tree. Following the

definition in [23, 32], a tree slice is a set of nodes such that

every path Pn, n ∈ {1, 2, ..., N} from the leaf node v̄n to

the root node v0 contains one and only one node v in the

slice. Figure 3(a) shows one of these paths in green.

From the nature of segmentation hierarchies, the labels

of parent nodes v
p
i should be equal or smaller than their

child nodes vi. Intuitively, if a region is correctly seg-

mented, the parent cannot be oversegmented. On the other

hand, the parent of an undersegmented region will also be

undersegmented. Putting the two constraints together, the
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labeling problem can be formulated as:

X̂ = argmin
X

E(X)

E(X) =
∑

vi∈L

#(vi) · ‖f(vi)‖
2 + λ

∑

vi /∈L

#(vi) · l(vi)

s.t ∀n :
∑

v∈Pn

✶L(v) = 1

∀v : x(v) >= x(vp)

(1)

where #(v) is the size (number of pixels) of segment (node)

v, λ is a weighting value for the two energy terms, and l(vi)
is the loss function defined for vi ∈ {L

−,L+}, it encour-

ages the sign of x(vi) to be consistent with f(vi).

l(vi) = max(0,−f(vi) · x(vi)). (2)

The loss function penalizes two contradictory cases: (i) seg-

ments in the group of under-segmented with positive scores;

and (ii) segments in the group of over-segmented with neg-

ative scores. The problem will be solved via dynamic pro-

gramming, as explained in the following section.

3.1.1 Inference by Dynamic Programming

The optimization problem in Equation 1 is highly structured

and can be solved recursively by Dynamic Programming.

For the subtree rooted at node v, its optimal slice L(v) is

either the node v itself or the union of the optimal slices of

all its child nodes vc’s, depending on whose energy is lower.

Thus, the problem has optimal substructure [5] and so it

naturally fits to the framework of dynamic programming to

find the global optimal solution.

The problem proceeds from bottom to the top of the tree.

For each subtree rooted at the current node v, the energy of

v ∈ L(v) is computed and the energy of the optimal slices

of all its child nodes is requested for comparison. The algo-

rithm traverses back, and all comparison will be completed

when the algorithm reaches the root node, and the global

optimal of Equation 1 is obtained. The method is highly ef-

ficient with complexityO(N), where N is the total number

of nodes. The global optimal of the energy can be found by

applying Algorithm 1 to the root node, and the optimal slice

is the corresponding set of nodes labeled to 0.

3.1.2 Predicting the Scales of Segments

In order to predict the scales (under-, properly-, or over-

segmented) of the segments, we follow the route of modern

computer vision systems to learn a predictor from human-

annotated training data. To this end, we define a mea-

sure to compare the scale of an image segment r to that

of the corresponding human-annotated segment g. The cor-

respondence is built up by computing the overlap between

Algorithm 1 Dynamic Programming in a Tree

Input: tree node vi
if vi is a leaf node then

Cvi ← #(vi) ·max(0,−f(vi))

E∗
vi ← #(vi) · ‖f(vi)‖

2

else

Cvi ←
∑

vj∈{vc} Cvj +#(vi) ·max(0,−f(vi))

E∗
vi
← min(

∑
vj∈{vc} E

∗
vj
+λ·#(vi)·max(0, f(vi)),

#(vi) · ‖f(vi)‖
2 + λ ·

∑
vj∈{vc} Cvj

)
end if

return Cvi
, E∗

vi

computer-generated segments and human-annotated ones –

the most-overlapping human-annotated segment is taken as

the ground-truth of the computer-generated ones. The over-

lap is computed with the Intersection over Union (IoU).

After having the ground-truth segment g, the scale of the

segment r is then defined as:

S(r) =
#(g)−#(r)

max(#(r),#(g)))
. (3)

The value of S(r) is in [−1, 1], with negative values

for under-, 0 for properly- and positive values for over-

segmented regions, the magnitude of the values representing

the extent of being under- or over-segmented, which casts to

what we expected from f(v) (see Section 3.1).

With Equation 3, the scales of the segments by segmen-

tation methods can be computed and used as the training

data to train our scale predictor.

As to the learning method, we employ a regression forest

as the predictor f(v). As to the features, we use a set of

low-, and middle-level features, mainly following the work

done for object proposals [2, 22]. The features are designed

to capture a variety of region properties, and the detailed list

of the features is provided in Section 4.1.

The main difference between our prediction and the pre-

vious work [2, 25, 22] is that they predict the quality of

segments, while we predict the scale of the segments. We

argue that its is easier to quantify the granularity of the seg-

ments than its quality, apart from providing more specific

information such as under-segmented or over-segmented.

3.2. Hierarchy Re­scaling with Labeled Scales

After setting the optimal slice, we use it as an anchor

to stretch the segmentation tree accordingly. In our experi-

ments, we use the threshold value of each optimal node as a

control point, and linearly interpolate the original hierarchy.

We represent the segmentation trees as UCMs [1], which

are a matrix with size (2h+1)∗(2w+1), where h is the height

of the original image, and w is its width. For each pair of
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Algorithm 2 Rescaling Hierarchy

Input: Optimal Slice S , UCM map Mucm

for r ∈ S do

b← Boundary(r)
a← InnerArea(r)
m← min(Mucm(b))

Mucm(a)← Mucm(a)
2m

end for

ball ← Boundary(S)
mmin ← min(Mucm(ball))

Mucm(ball)←
1+Mucm(ball)−2mmin

2(1−mmin)

neighboring pixels in the image, the value in the UCM ma-

trix represents their boundary strength (between 0 and 1).

A partition at a certain scale can be extracted by threshold-

ing the UCM at a certain strength value. Our algorithm is

summarized in Algorithm 2, where the function Boundary

finds the corresponding elements of boundary of a region r

in the UCM, and InnerArea its inner area. We perform a

local linear transform on the UCM map, and align the opti-

mal slice to threshold 0.5, for the convenience of later use.

4. Experiments

We evaluate our approach on the segmentation hierar-

chies generated by multiple segmentation methods, and fur-

ther examine its usefulness on the task of object segmenta-

tion. The goal is to demonstrate that the proposed method

is able to improve general segmentation hierarchies and the

improvement is reflected to high-level vision tasks as well.

4.1. Experiment Settings

Dataset: We benchmark the performance of our approach

on the BSDS500 dataset [1], which includes 500 images

(200 for training, 100 for validation, and 200 for testing).

Each image is annotated by 5 different people on average.

As segmentation evaluation measures, we use Segmentation

Covering (SC), Probabilistic Rand Index (PRI), and Varia-

tion of Information (VI); all at Optimal Dataset Scale (ODS)

and Optimal Image Scale (OIS) – see [24] for a review of

these measures and scales. We select these three particular

measures given their wide acceptance in previous work [1].

Segmentation Techniques: As to the hierarchical seg-

mentation techniques, we chose the following due to pop-

ularity, good performance, and the availability of public

code:

• UCM [1]: A widely-used hierarchical segmentation

method. Discriminative features are learned for local

boundary detection and spectral clustering is applied

on top of it for boundary globalization.

• MCG [22]: A unified framework for segmentation and

object proposals. It combines information from multi-

ple resolutions of the image to produce image segmen-

tations and object proposals.

• SCG [22]: The single-resolution version of MCG. It

gets competitive results and is faster than MCG.

• PMI [13]: A recent work for unsupervised boundary

detection. It can be applied for image segmentation as

well in order to generate a hierarchical segmentation.

Training: The training set and the validation set of

BSDS500 are pooled together as the training set for our re-

gression forest. The four segmentation methods are used to

generate hierarchies, over which the training samples (seg-

ments) are extracted. We train method-specific regression

forests as the scale predictor. Since a large portion of re-

gions in the hierarchies are very small and features extracted

from them are not reliable, we exclude regions smaller than

50 pixels for the training of the predictor.

Specifically, for each region r, we find its corresponding

ground-truth region g by taking the human-annotated one

with the highest IoU score. The relative scale of r is then

computed with Equation 3 for the regression target of r. As

to the features for r, we draw on the success of object pro-

posals [2, 22]. There, a large pool of middle-level features

have been defined for segment description. The features

used are summarized as follows:

• Graph partition properties: cut, ratio cut, normalized

cut, unbalanced normalized cut.

• Region properties: area, perimeter, bounding box size,

major and minor axis lengths of the equivalent ellipse,

eccentricity, orientation, convex area, Euler number.

• Gestalt properties: inter- and intra-region texton sim-

ilarity, inter- and intra-region brightness similarity,

inter- and intra-region contour energy, curvilinear con-

tinuity, convexity.

Readers are referred to [2] for the details of these features.

We extract the features from a subset of layers uniformly

sampled from the hierarchies, over the range of UCM val-

ues. As to the parameters of our method, we set 100 trees

for the random forest; and λ in Equation 1 is set to 0.1 to

balance information from the three groups, because there

are more segments over and under the optimal slice L.

4.2. Results

Table 1 shows the results of our method evaluated on

top of the four segmentation techniques. The improvements

achieved by our alignment are considerable and, more im-

portantly, they are consistent across different methods. The
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SC (↑) PRI (↑) VI (↓)

ODS OIS ODS OIS ODS OIS

MCG 0.61 0.67 0.83 0.86 1.57 1.39

MCG-Aligned 0.63 0.68 0.83 0.86 1.53 1.38

SCG 0.60 0.66 0.83 0.86 1.63 1.42

SCG-Aligned 0.61 0.67 0.83 0.86 1.61 1.41

UCM 0.59 0.65 0.83 0.86 1.69 1.48

UCM-Aligned 0.60 0.66 0.83 0.86 1.66 1.46

PMI 0.53 0.59 0.76 0.81 2.03 1.80

PMI-Aligned 0.54 0.59 0.76 0.81 2.01 1.80

Table 1. The results of our aligned hierarchies with a comparison

to the original hierarchies.

method improves more on ODS than OIS, because OIS ac-

cesses the ground-truth segmentations to search for the best-

performing threshold, which somehow diminish the influ-

ence of the learned knowledge. We argue that ODS is more

practical than OIS in a real vision systems, because for real

applications there is no human-annotated segmentations.

Figure 4 shows segmentation examples of MCG and

aligned MCG by our method. As the figure shows, the

aligned hierarchies generate characteristics closer to what

human expect when flat segmentations are sampled out of

the hierarchies. More particularly, after alignment, sam-

pled segmentations of the hierarchies generate consistent

responses across all parts of the image: all parts under-

segmented, to all parts properly-segmented, and finally to

all over-segmented while sampling from the top to the bot-

tom of the hierarchies. This alignment greatly simplifies the

use of hierarchical image segmentation for other high-level

vision tasks.

Figure 5 shows qualitative results with different hierar-

chies. Our approach shows a consistent improvement over

the original results. Again, since our approach is scale-

aware, regions at the same level of the hierarchy are of sim-

ilar scales across all areas of the images after the alignment.

Also, our method demonstrates better ability of preserving

region scale across images.

We also tested the method in the scenario where the ran-

dom forests are trained with segments from all of the four

methods, and applied to all of them at test time. This gives

slightly poorer results but in turn shows that our method can

be applied in a method-agnostic approach.

4.3. Comparison to Other Methods

As the previous section shows, the MCG aligned by our

method generally performs the best. Here, we compare

MCG-aligned to other competing methods. The results are

summarized in Table 2 and demonstrate that segmentation

quality can be improved by our alignment. In particular, the

aligned MCG achieves the best result in SC and VI. After

alignment, the results are on par with the newest method

SC (↑) PRI (↑) VI (↓)

ODS OIS ODS OIS ODS OIS

Ncut [29] 0.45 0.53 0.78 0.80 2.23 1.89

Felz-Hutt [10] 0.52 0.57 0.80 0.82 2.21 1.87

Mean Shift [4] 0.54 0.58 0.79 0.81 1.85 1.64

Hoiem [12] 0.56 0.60 0.80 0.77 1.78 1.66

UCM [1] 0.59 0.65 0.83 0.86 1.69 1.48

ISCRA [26] 0.59 0.66 0.82 0.85 1.60 1.42

PFE+mPb [33] 0.62 0.67 0.84 0.86 1.61 1.43

PFE+MCG [33] 0.62 0.68 0.84 0.87 1.56 1.36

MCG [22] 0.61 0.67 0.83 0.86 1.57 1.39

MCG+Ours 0.63 0.68 0.83 0.86 1.53 1.38

Table 2. Segmentation results on BSDS500 test set, with a com-

parison to the state-of-the-art competitors.

of PFE+MCG [33]. It is noteworthy that our method and

theirs are complementary, and the combination of the two

may yield even better results. Their method is to improve

feature embedding for a better local distance measure, while

we aim to improve the hierarchy of existing segmentation

methods.

4.4. Evaluation towards Object Segmentation

Segmentation per se is rarely the final objective of real

applications, it is rather a middle tool towards, for instance,

object segmentation [22] or semantic segmentation [16].

This section is devoted to show that better aligned hierar-

chies also help in this scenario.

We first perform the evaluation using the object annota-

tions provided on the BSDS300 set by [7] (we retrain on

only BSDS300 train instead of BSDS500). The intuitive

idea is to measure how well we can segment these objects

by selecting regions from the different flattened hierarchies.

Figure 6 (left) shows the achievable quality that an or-

acle could reach if selecting the regions from the original

hierarchies or the ones with our newly-proposed alignment.

The X axis corresponds to the number of needed regions,

i.e., the lower the better.

We can observe that the aligned hierarchies consistently

need less regions to get the same quality in all the tested hi-

erarchies. In PMI, for instance, we need to select 5 regions

to achieve the same quality that we can get with 4 on the

aligned hierarchy. The combinatorial space of all possible

4-region combinations is significantly smaller and thus the

search is more probable to succeed. On the other direction,

if we limit the number of regions we get improvements up

to 3 points (9%) in the achievable quality.

To further illustrate the scalability of the hierarchy align-

ment on a larger dataset, we evaluated our alignment algo-

rithm on the Pascal VOC 2012 Segmentation set [8]. We

retrain our scale predictor using the training set of Pascal

2012. In it, only the segmentation of foreground objects are

given, in contrast to BSDS which is fully annotated. Thus
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Figure 4. Qualitative results of MCG (first row) and MCG improved by our approach (second row). Original images are shown in the left

most. Segmentations of Optimal Dataset Scale (ODS) are given in the middle. From left to right we find different scales, fine to coarse.

The red bounding box indicates the scale with best results achieved by MCG, and the blue box for ours. It can be seen that our approach

provides better alignment, both across images and within one image.

during training we only consider all the segments that have

overlap with foreground object annotations. The scale pre-

dictor is trained as described in Sec 3.1.2, the only differ-

ence is that g can only be foreground object. This strategy

introduces extra bias towards foreground objects, because

no information about the scale of background is given in

the training phase. However, we are still able to improve

alignment of segmentation hierarchies. As shown in Fig-

ure 6 (right), we see that for the range of 2-3 regions (the

one in which the MCG object proposal work), the aligned

hierarchy provides a 2.5-point improvement (∼6%), which

shows that our method generalizes to larger datasets.
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Image UCM UCM + ours SCG SCG + ours MCG MCG + ours

Figure 5. Qualitative comparison of segmentation results, hierarchies are flattened by Optimal Dataset Scale (ODS)
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Figure 6. Flattened hierarchies for object detection: Achievable object quality by an oracle selecting regions from the flattened partitions,

with respect to the number of regions needed

4.5. Running Time

Our approach takes approximately 3 seconds in total for

each image, of which 2.39 seconds are spent on feature ex-

traction from the segments. The prediction of regression

forest takes about 0.45 seconds, and the dynamic program-

ming takes 0.05 seconds for the inference. Finally, 0.11 sec-

onds are spent for re-scaling the UCM. All times are mea-

sured on a standard desktop machine.

5. Conclusions

In this work, we presented a novel technique to align seg-

mentation hierarchies, which learns and predicts the scale

of their segments. We formulated the scale prediction for

the segments in a hierarchy as a graph label problem, which

is solved by dynamic programming. With the labeled scales

as constraints, we then re-align the segmentation hierarchies

by stretching the UCM maps.

The method is evaluated on four different segmentation

hierarchies on BSDS500, and it consistently improves their

quality. We also showed that the improvement of seg-

mentation hierarchies by our alignment is reflected well to

a higher-level task of getting object segmentations on the

BSDS300 as well as the larger, more challenging PASCAL

Segmentation dataset.
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