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There is a bed with a striped bedspread. Beside 
this is a nightstand with a drawer. There is also a 
tall dresser and a chair with a blue cushion. On 
the dresser is a jewelry box and a clock.

I am inside a room surrounded by my favorite 
things. This room is filled with pillows and a 
comfortable bed. There are stuffed animals 
everywhere. I have posters on the walls. My 
jewelry box is on the dresser.

Real Clip art Sketches Spatial text Descriptions

There are brightly colored wooden tables with 
little chairs. There is a rug in one corner with 
ABC blocks on it. There is a bookcase with 
picture books, a larger teacher's desk and a 
chalkboard.

The young students gather in the room at their 
tables to color. They learn numbers and letters 
and play games. At nap time they all pull out 
mats and go to sleep.

Figure 1: Can you recognize scenes across different modalities? Above, we show a few examples of our new cross-modal

scene dataset. In this paper, we investigate how to learn cross-modal scene representations.

Abstract

People can recognize scenes across many different

modalities beyond natural images. In this paper, we in-

vestigate how to learn cross-modal scene representations

that transfer across modalities. To study this problem, we

introduce a new cross-modal scene dataset. While convolu-

tional neural networks can categorize cross-modal scenes

well, they also learn an intermediate representation not

aligned across modalities, which is undesirable for cross-

modal transfer applications. We present methods to regu-

larize cross-modal convolutional neural networks so that

they have a shared representation that is agnostic of the

modality. Our experiments suggest that our scene repre-

sentation can help transfer representations across modali-

ties for retrieval. Moreover, our visualizations suggest that

units emerge in the shared representation that tend to acti-

vate on consistent concepts independently of the modality.

∗denotes equal contribution

1. Introduction

Can you recognize the scenes in Figure 1, even though

they are depicted in different modalities? Most people have

the capability to perceive a concept in one modality, but rep-

resent it independently of the modality. This cross-modal

ability enables people to perform some important abstrac-

tion tasks, such as learning in different modalities (cartoons,

stories) and applying them in the real-world.

Unfortunately, representations in computer vision do not

yet have this cross-modal capability. Standard approaches

typically learn a separate representation for each modality,

which works well when operating within the same modality.

However, the representations learned are not aligned across

modalities, which makes cross-modal transfer difficult.

Two modalities are strongly aligned if, for two images

from each modality, we have correspondence at the level

of objects. In contrast, weak alignment is if we only have

global label that is shared across both images. For instance,

if we have a picture of a bedroom and a line drawing of a
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Figure 2: We learn low-level representations specific for each modality (white and grays) and a high-level representation

that is shared across all modalities (red). Above, we also show masks of inputs that activate specific units the most [44].

Interestingly, although the network is trained without aligned data, units emerge in the shared representation that tend to fire

on the same objects independently of the modality.

different bedroom, the only thing that we know is shared

across these two images is the scene type. However, they

will differ in the objects and viewpoint inside.

In this paper, our goal is to learn a representation for

scenes that has strong alignment using only data with weak

alignment. We seek to learn representations that will con-

nect objects (such as bed, car) across modalities (e.g., a pic-

ture of a car, a line drawing of a car, and the word “car”)

without ever specifying that such a correspondence exists.

To investigate this, we assembled a new cross-modal

scene dataset, which captures hundreds of natural scene

types in five different modalities, and we show a few ex-

amples in Figure 1. Using this dataset and only annotations

of scene categories, we propose to learn an aligned cross-

modal scene representation.

We present two approaches to regularize cross-modal

convolutional networks so that the intermediate represen-

tations are aligned across modalities, even when only weak

alignment of scene categories is available during training.

Figure 2 visualizes the representation that our full method

learns. Notice that our approach learns hidden units that

activate on the same object, regardless of the modality. Al-

though the only supervision is the scene category, our ap-

proach enables alignment to emerge automatically.

Our approach builds on a foundation of domain adapta-

tion [35, 16] and multi-modal learning [13, 29, 36] methods

in computer vision. However, our focus is learning cross-

modal representations when the modalities are significantly

different (e.g., text and natural images) and with minimal

supervision. In our approach, the only supervision we give

is the scene category, and no alignments nor correspon-

dences are annotated. To our knowledge, the adaptation of

intermediate representations across several extremely dif-

ferent modalities with minimal supervision has not yet been

extensively explored.

We believe cross-modal representations can have a large

impact on several computer vision applications. For exam-

ple, data in one modality may be difficult to acquire for pri-

vacy, legal, or logistic reasons (eg, images in hospitals), but

may be abundant in other modalities, allowing us to train

models using accessible modalities. In search, users may

wish to retrieve similar natural images given a query in a

modality that is simpler for a human to produce (eg, draw-

ing or writing). Additionally, some modalities may be more

effective for human-machine communication.

The remainder of this paper describes and analyzes our

cross-modal representations in detail. In section 2, we first

discuss related work that our work builds upon. In section 3,

we introduce our new cross-modal scene dataset. In section

4, we present two complementary approaches to regularize

convolutional networks so that intermediate representations

are aligned across modalities. In section 5, we present sev-

eral visualizations and experiments in cross-modal retrieval

to evaluate our representations.

2. Related Work

Domain Adaptation: Domain adaptation techniques

address the problem of learning models on some source data

distribution that generalize to a different target distribution.

[35] proposes a method for domain adaptation using met-

ric learning. In [16] this approach is extended to work on

unsupervised settings where one does not have access to

target data labels, while [38] uses deep CNNs instead. [37]

shows the biases inherent in common vision datasets and

[21] proposes models that remain invariant to them. [26]

learns an aligned representation for domain adaptation us-

ing CNNs and the MMD metric. Our method differs from

these works in that it seeks to find a cross-modal represen-

tations between highly different modalities instead of mod-

elling close domain shifts.

One-Shot/Zero-Shot Learning: One-shot learning
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techniques [10] have been developed to learn classifiers

from a single or a few examples, mostly by reusing classi-

fier parameters [11], using contextual information [27, 18]

or sharing part detectors [3]. In a similar fashion, zero-shot

learning [25, 31, 9, 2, 40] addresses the problem of learn-

ing new classifiers without training examples in a given do-

main, e.g. by using additional knowledge in the form of tex-

tual descriptions or attributes. The goal of our method is to

learn aligned representations across domains, which could

be used for zero-shot learning.

Cross-modal content retrieval and multi-modal em-

beddings: Large unannotated image collections are diffi-

cult to explore, and retrieving content given fine-grained

queries might be a difficult task. A common solution to

this issue is to use query examples from a different modal-

ity in which it is easy to express a concept (such as a clip art

images, text or a sketches) and then rank the images in the

collection according to their similarity to the input query.

Matching can be done by establishing a similarity metric be-

tween content from different domains. [8] focuses on recov-

ering semantically related natural images to a given sketch

query and [41] uses query sketches to recover 3D shapes.

[19] uses an MRF of topic models to retrieve images us-

ing text, while [33] models the correlations between visual

SIFT features and text hidden topic models to retrieve media

across both domains. CCA [17] and variants [34] are com-

monly employed methods in content retrieval. Another pos-

sibility is to learn a joint embedding for images and text in

which nearest neighbors are semantically related. [13, 29]

learn a semantic embedding that joins representations from

a CNN trained on ImageNet and distributed word represen-

tations. [22, 43] extend them to include a decoder that maps

common representations to captions. [36] maps visual fea-

tures to a word semantic embedding. Our method learns

a joint embedding for many different modalities, including

different visual domains and text. Another group of works

incorporate sound as another modality [28, 30]. Our joint

representation is different from previous works in that it is

initially obtained from a CNN and sentence embeddings are

mapped to it. Furthermore, we do not require explicit one-

to-one correspondences across modalities.

Learning from Visual Abstraction: [46] introduced

clipart images for visual abstraction. The idea is to learn

concepts by collecting data in the abstract world rather than

the natural images so that we are not affected by mistakes

in mid-level recognition e.g. object detectors. [12] learns

dynamics and [47] learns sentence phrases in this abstract

world and transfer them to natural images. Our work can

complement this effort by learning models in a representa-

tion space that is invariant to modality.

3. Cross-Modal Places Dataset

We assembled a new dataset1 to train and evaluate cross-

modal scene recognition models called CMPlaces. It covers

five different modalities: natural images, line drawings, car-

toons, text descriptions, and spatial text images. We show

a few samples from these modalities in Figure 1. Each ex-

ample in the dataset is annotated with a scene label. We use

the same list of 205 scene categories as Places [45], which is

one of the largest scene datasets available today. Hence, the

examples in our dataset span a large number of natural situ-

ations. Note that the examples in our dataset are not paired

between modalities since our goal is to learn strong align-

ments from weakly aligned data. Furthermore, this design

decision eased data collection.

We chose these modalities for two reasons. Firstly, since

our goal is to study transfer across significantly different

modalities, we seek modalities with different statistics to

those of natural images (such as line drawings and text).

Secondly, these modalities are easier to generate than real

images, which is relevant to applications such as image re-

trieval. For each modality we select 10 random examples in

each of the 205 categories for the validation set and the rest

for the training set, except for natural images for which we

employ the training and validation splits from [45] contain-

ing 2.5 million images.

Natural Images: We use images from the Places 205

Database [45] to form the natural images modality.

Line Drawings: We collected a new database of

sketches organized into the same 205 scene categories

through Amazon Mechanical Turk (AMT). The workers

were presented with the WordNet description of a scene and

were asked to draw it with their mouse. We instructed work-

ers to not write text that identifies the scene (such as a sign).

We collected 6,644 training examples and 2,050 validation

examples.

Descriptions: We also built a database of scene descrip-

tions through AMT. We once again presented users with the

WordNet definition of a scene, but instead we asked them to

write a detailed description of the scene that comes to their

mind after reading the definition. We specifically asked the

users to avoid using trivial words that could easily give away

the scene category (such as writing “this is a bedroom”), and

we encouraged them to write full paragraphs. We split our

dataset into 4,307 training descriptions and 2,050 validation

descriptions. We believe Descriptions is a good modality to

study as humans communicate easily in this modality and

allows to depict scenes with great detail, making it an inter-

esting but challenging modality to transfer between.

Clip Art: We assembled a dataset of clip art images for

the 205 scene categories defined in Places205. Clip art im-

1Dataset will be made available at http://projects.csail.

mit.edu/cmplaces/
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ages were collected from image search engines by using

queries containing the scene category and then manually

filtered. This dataset complements other cartoon datasets

[46], but focuses on scenes. We believe clip art can be an in-

teresting modality because they are readily available on the

Internet and depict everyday situations. We split the dataset

into 11,372 training and 1,954 validation images (some cat-

egories had less than 10 examples).

Spatial Text: Finally, we created a dataset that combines

images and text. This modality consists of an image with

words written on it that correspond to spatial locations of

objects. We automatically construct this dataset using im-

ages from SUN [42] and its annotated objects. We created

456,300 training images and 2,050 validation images. This

modality has an interesting application for content retrieval.

By learning a cross-modal representation with this modal-

ity, users could use a user interface to write the names of

objects and place them in the image where they want them

to appear. Then, this query can be used to retrieve a natural

image with a similar object layout.

4. Cross-Modal Scene Representation

In this section we describe our approach for learning

cross-modal scene representations. Our goal is to learn a

strongly aligned representation for the different modalities

in CMPlaces, that is, to learn a representation in which dif-

ferent scene parts or concepts are represented independently

of the modality.for scenes that is shared across all modali-

ties. This task is challenging partly because our training

data is only annotated with scene labels instead of hav-

ing one-to-one correspondences, meaning that our approach

must learn a strong alignment from weakly aligned data.

4.1. Scene Networks

We extend single-modality classification networks [24]

in order to handle multiple modalities. The main modifica-

tions we introduce are that we a) have one network for each

modality and b) enforce higher-level layers to be shared

across all modalities. The motivation is to let early lay-

ers specialize to modality specific features (such as edges

in natural images, shapes in line drawings, or phrases in

text), while higher layers are meant to capture higher-level

concepts (such as objects) in a representation that is inde-

pendent of the modality .

We show this network topology in Figure 3 with modal-

specific layers (white) and shared layers (red). The modal-

specific layers each produce a convolutional feature map

(pool5), which is then fed into the shared layers (fc6

and fc7). For visual modalities, we use the same con-

volutional network architecture (Figure 3a), but different

weights across modalities. However, since text cannot be

fed into a CNN (descriptions are not images), we instead

encode each description into skip thought vectors [23] and

Specific to 

Modality

Shared Across All 

Modalities

SceneImage

(a) Images

Shared Across All 

Modalities
Specific

to Text

Scene
Skip 

Thought 

Vector

(b) Descriptions

Figure 3: Scene Networks: We use two types of networks.

a) For pixel based modalities, we use a CNN based off [45]

to produce pool5. b) When the input is a description, we

use an MLP on skip-thought vectors [23] to produce pool5

(as text cannot be easily fed into the same CNN).

use a multiple layer perceptron to map them into a represen-

tation with the same dimensionaly as pool5 (Figure 3b).

Note that, in contrast to siamese networks [5], our architec-

ture allows learning alignments without paired data.

We could train these networks jointly end-to-end to cate-

gorize the scene label while sharing weights across modali-

ties in higher layers. Unfortunately, we empirically discov-

ered that this method by itself does not learn a robust cross-

modal representation. This approach encourages units in

the later layers to emerge that are specific to a modality

(e.g., fires only on cartoon cars). Instead, our goal is to

have a representation that is independent the modality (e.g.,

fires on cars in all modalities).

In the rest of this section, we address this problem with

two complementary ideas. Our first idea modifies the pop-

ular fine-tuning procedure, but applies it on modalities in-

stead. Our second idea is to regularize the activations in the

network to have common statistics. We finally discuss how

these methods can be combined.

4.2. Method A: Modality Tuning

Our first approach is inspired by finetuning, which is a

popular method for transfer learning with deep architectures

[6, 15, 45]. The conventional approach for finetuning is to

replace the last layer of the network with a new layer for

the target task. The intuition behind fine-tuning is that the

earlier layers can be shared across all vision tasks (which

may be difficult to learn otherwise without large amounts of

data in the target task), while the later layers can specialize

to the target task.

We propose a modification to the fine-tuning procedure

for cross-modal alignment. Rather than replacing the last

layers of the network (which are task specific), we can in-

stead replace the earlier layers of the network (which are

modality specific). By freezing the later layers in the net-

work, we transfer a high level representation to other modal-

ities. This approach can be viewed as finetuning the net-
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Figure 4: Cross-Modality Retrieval : An example of

cross-modal retrieval given a query from each of the modal-

ities. For each row, the leftmost column depicts the query

example, while the rest of the columns show the top 2

ranked results in each modalitiy.

work for a modality rather than a task.

To do this, we must first learn a source representation

that will be utilized for all five modalities. We use the

Places-CNN network as our initial representation. Places is

a reasonable representation to start with because [44] shows

that high-level concepts (objects) emerge in the later lay-

ers. We then train each modal-specific network to catego-

rize scenes in its modality while holding the shared higher

layers fixed. Consequently, each network will be forced to

produce an aligned intermediate representation so that the

higher layers will categorize the correct scene.

Since the higher level layers were originally trained with

only one modality (Natural images), they did not have a

chance to adapt to the other modalities. After we train the

networks for each modality for a fixed number of iterations,

we can unfreeze the later layers, and train the full network

jointly, allowing the later layers to accommodate informa-

tion from the other modalities without overfitting to modal-

specific representations.

Our approach is a form of curriculum learning [4]. If

we train this multi-modal network with the later layers un-

frozen from the beginning, units tend to specialize to a par-

ticular modality, which is undesirable for cross-modal trans-

fer. By enforcing a curriculum to learn high level concepts

first, then transfer to modalities, we can obtain representa-

tions that are more modality-invariant.

4.3. Method B: Statistical Regularization

Our second approach is to encourage intermediate layers

to have similar statistics across modalities. Our approach

builds upon [14, 1] who transfer statistical properties across

object detection tasks. Here, we instead transfer statistical

properties of the activations across modalities.

Let xn and yn be a training image and the scene label

respectively, which we use to learn the network parameters

w. We write hi(xn;w) to refer to the hidden activations for

the ith layer given input xn, and z(xn;w) is the output of

the network. During learning, we add a regularization term

over hidden activations h:

min
w

∑

n

L(z(xn;w), yn) +
∑

n,i

λi · Ri (hi(xn;w)) (1)

where the first term L is the standard softmax objective and

the second term R is a regularization over the activations.2

The importance of this regularization is controlled by the

hyperparameter λi ∈ R.

The purpose of R is to encourage activations in the in-

termediate hidden layers to have similar statistics across

modalities. Let Pi(h) be a distribution over the hidden ac-

tivations in layer i. We then define R to be the negative log

likelihood:

Ri(h) = − logPi(h; θi) (2)

Since Pi is unknown we learn it by assuming it is a paramet-

ric distribution and estimating its parameters with a large

training set. To that goal, we use activations in the hidden

layers of Places-CNN to estimate Pi for each layer. The

only constraint on Pi is that its log likelihood is differen-

tiable with respect to hi, as during learning we will opti-

mize Eqn.1 via backpropagation. While there are a variety

of distributions we could use, we explore two:

Multivariate Gaussian (B-Single). We consider model-

ing Pi with a normal distribution: Pi(h;µ,Σ) ∼ N (µ,Σ).
By taking the negative log likelihood, we obtain the regu-

larization term Ri(h) for this choice of distribution:

Ri(h;µi,Σi) =
1

2
(h− µi)

TΣi
−1(h− µi) (3)

where we have omitted a constant term that does not af-

fect the fixed point dynamics of the objective. Notice that

the derivatives δRi

δh
can be easily computed, allowing us to

back-propagate this cost through the network.

Gaussian Mixture (B-GMM). We also consider using a

mixture of Gaussians to parametrize Pi, which is more flex-

ible than a single Gaussian distribution. Under this model,

the negative log likelihood is:

Ri(h;α, µ,Σ) = − log

K∑

k=1

αk · Pk(h;µk,Σk) (4)

such that Pk(h;µ,Σ) ∼ N (µ,Σ) and
∑

k αk = 1, αk ≥

0 ∀k. Note that we have dropped the layer subscript i for

clarity, however it is present on all parameters. Since δRi

δh

can be analytically computed, we can efficiently incorporate

this cost into our objective during learning with backpropa-

gation. To reduce the number of parameters, we assume the

covariances Σk are diagonal.

2We omitted the weight decay from the objective for clarity. In practice,

we also use weight decay.
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Cross Modal
Query NAT CLP SPT LDR DSC Mean

Retrieval Target CLP SPT LDR DSC NAT SPT LDR DSC NAT CLP LDR DSC NAT CLP SPT DSC NAT CLP SPT LDR mAP

BL-Ind 17.8 15.5 10.1 0.8 11.4 13.1 9.0 0.8 9.0 10.1 5.6 0.8 4.9 7.6 6.8 0.8 0.6 0.9 0.9 0.9 6.4

BL-ShFinal 10.3 13.5 4.0 12.7 7.2 8.7 2.8 8.2 8.1 5.7 2.2 9.3 2.4 2.5 3.1 3.2 3.3 3.4 8.5 2.4 6.1

BL-ShAll 15.9 14.2 9.1 0.8 8.9 10.9 7.0 0.8 8.4 7.4 4.2 0.8 4.3 5.6 5.7 0.8 0.6 0.9 0.9 0.9 5.4

A: Tune 12.9 23.5 5.8 19.6 9.7 15.5 4.0 13.7 19.0 13.5 5.6 24.0 4.1 3.8 5.8 5.9 6.4 4.5 9.5 2.5 10.5

A: Tune (Free) 14.0 29.8 6.2 18.4 9.2 17.6 3.7 12.9 21.8 15.9 6.2 27.7 3.7 3.1 6.6 5.4 5.2 3.5 10.5 2.1 11.2

B: StatReg (Gaussian) 18.6 20.2 10.2 0.8 11.1 15.4 8.5 0.8 13.3 15.1 7.7 0.8 4.7 6.6 6.9 0.9 0.6 0.9 0.8 0.9 7.2

B: StatReg (GMM) 17.8 23.7 9.5 5.6 13.4 18.1 8.9 4.6 16.7 16.2 8.8 5.3 6.2 8.1 9.4 3.3 3.0 4.1 4.6 2.8 9.5

C: Tune + StatReg (GMM) 14.3 32.1 5.4 22.1 10.0 19.1 3.8 14.4 24.4 17.5 5.8 32.7 3.3 3.4 6.0 4.9 15.1 12.5 32.6 4.6 14.2

Table 1: Cross-Modal Retrieval mAP: We report the mean average precision (mAP) on retrieving images across modalities

using fc7 features. Each column shows a different query-target pair. On the far right, we average over all pairs. For

comparison, chance obtains 0.73mAP. Our methods perform better on average than the finetuning baselines with method C

performing the best.

Cross-Modal Retrieval vs Layers pool5 fc6 fc7

BL-Ind 1.9 3.6 6.4

BL-ShFinal 1.5 3.0 6.1

BL-ShAll 1.8 3.1 5.4

A: Tune 4.8 10.7 10.5

A: Tune (Free) 4.4 9.9 11.2

B: StatReg (Gaussian) 2.0 4.7 7.2

B: StatReg (GMM) 2.0 7.5 9.5

C: Tune + StatReg (GMM) 3.6 13.2 14.2

Table 2: Mean Cross-Modal Retrieval mAPs across Lay-

ers: Note that the baseline results decrease drastically as

we go lower levels (e.g. fc7 to fc6) in the deep network.

However the alignment approaches are much less affected.

Within Modality Retrieval NAT CLP SPT LDR DSC Mean

BL-Ind 19.3 31.7 83.0 18.1 11.1 32.6

BL-ShFinal 18.2 22.0 81.2 13.8 29.8 33.0

BL-ShAll 18.4 26.7 82.7 16.6 11.1 31.1

A: Tune 19.0 23.9 74.2 13.7 36.3 33.4

A: Tune (Free) 19.4 22.9 85.0 13.5 34.2 35.0

B: StatReg (Gaussian) 19.4 31.1 84.0 17.3 11.1 32.6

B: StatReg (GMM) 19.3 31.1 82.5 16.7 13.5 32.6

C: Tune + B: StatReg (GMM) 20.2 22.5 82.2 13.1 37.0 35.0

Table 3: Within Modal Retrieval mAPs: We report the

mean average precision (mAP) for retrieving images within

the same modality using fc7 features.

We fit a separate distribution for each of the regularized

layers in our experiments (pool5, fc6, fc7). During

learning, the optimization will favor solutions that catego-

rize the scene but also have an internal shared representation

that is likely under Pi. Since Pi is estimated using Places-

CNN, we are enforcing each modality network to have sim-

ilar higher layers statistics to those of Places-CNN.

4.4. Method C: Joint Method

The two proposed methods (A and B) operate on com-

plementary principles and may be jointly applied while

learning the networks. We combine both methods by first

fixing the shared layers for a given number of iterations.

Then, we unfreeze the weights of the shared layers, but

now train with the regularization of method B to encour-

age activations to be statistically similar across modalities

and avoid overfitting to a specific modality.

4.5. Implementation Details

We implemented our network models using Caffe [20].

Both our methods build on top of the model described in

[24], with the modification that the activations from lay-

ers pool5 onwards are shared across modalities, and lay-

ers before are modal-specific. Architectures for method A

only use standard layer types found in the default version of

the framework. In contrast, for model B we implemented

a layer to perform regularization given the statistics of a

GMM as explained in the previous sections. In our experi-

ments the GMM models are composed by K = 100 differ-

ent single gaussians.

For each model we have a separate CNN initialized using

the weights of Places-CNN [45]. The weights in the lower-

layers can adapt independently for each modality, while we

impose restrictions in the higher layer weights as explained

for each method. Because CNNs start training from a good

initialization, we set up the learning rate to lr = 1e−3

(higher learning rates made our models diverge). We train

the models using Stochastic Gradient Descent.

To adapt textual data to our models we use the network

architecture described here. First, we represent descriptions

by average-pooling the Skip-thought [23] representations of

each sentence in a given description (a description contains

multiple sentences). To adapt this input to our shared repre-

sentation we employ a 2-layer MLP. The layer size is con-

stant and equal to 4800 units, which is the same dimension-

ality as that of a Skip-thought vector, and we use ReLU non-

linearities. The weights of these layers are initialized using

a gaussian distribution with std = 0.1. This choice is im-

portant as the statistics of the Skip-thought representations

are quite different to those of images and inadequate weight

initializations prevent the network from adapting textual de-

scriptions to the shared representation. Finally, the out-

put layer of the MLP is fully-connected to the first layer

(pool5) of our shared representation.
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5. Experimental Results

Our goal in this paper is to learn a representation that is

aligned across modalities. We show three main results that

evaluate how well our methods address this problem. First,

we perform cross-modal retrieval of semantically-related

content. Secondly, we show visualizations of the learned

representations that give a qualitative measure of how this

alignment is achieved. Finally, we show we can reconstruct

natural images from other modalities using the features in

the aligned representation as a qualitative measure of which

semantics are preserved in our cross-modal representation.

5.1. Cross­Modality Retrieval

In this experiment we test the performance of our models

to retrieve content depicting the same scene across modali-

ties. Our hypothesis is that, if our representation is strongly

aligned, then nearest neighbors in this common representa-

tion will be semantically related and similar scenes will be

retrieved.

We proceed by first extracting features for the validation

set of each modality from the shared layers of our cross-

modal representation. Then, for every modality, we ran-

domly sample a query image and compute the cosine dis-

tance to the extracted feature vectors of all content in the

other modalities. We rank the documents according to the

distances and compute the Average Precision (AP) when us-

ing the scene labels. We repeat this procedure 1000 times

and report the obtained mean APs for cross-modality re-

trieval in Table 1 and the results for within-modality re-

trieval in Table 3. For completeness, we also show examples

of retrievals in Figure 4. We compare our results against

three different finetuning baselines:

Finetuning individual networks (BL-Ind): In this

baseline we finetune a separate CNN for each of the modal-

ities. The CNNs follow the AlexNet [24] architecture and

are initialized with the weights of Places-CNN. We then

finetune each one of them using the training set from the

corresponding modality. This is the current standard ap-

proach employed in the computer vision community, but it

does not enforce the representations in higher CNN layers

to be aligned across modalities.

Finetuning with shared final layers (BL-ShFinal):

similarly to our method A, we force networks for each

modality to share layers from pool5 onwards. However,

as opposed to our method, in this baseline we do not fix the

weights in the shared layers and instead let them be updated

by backpropagation of the scene classification error.

Finetuning with a single shared CNN (BL-ShAll):

here we use a single instance of Places-CNN shared by all

modalities. We finetune it using batches that contain data

from each modality. Note that this baseline can only be

applied to pixel data because of the different architecture

required for text, hence we excluded the descriptions here.

Unit 31 

(Fountain)

Unit 50 

(Arcade)

Unit 81 

(Ring)

Unit 86 

(Car)

Unit 104

(Castle)

Unit 115

(Bed)

we, water, fishes, you, 

drink, formed, greek, 

would, ball, have

play, children, there, 

equipment, are, for, 

train, hole, games, path

ropes, recess, seats, 

dug, that, square, down, 

each, fight, it

bed, nightstand, window, 

gas, shampoo, you, 

tallest, rock, i, my

church, priest, sermon, 

religious, he, impressive, 

large, stared, fountain, 

gas

ice, terrain, plane, cold, i, 

nightstand, inside, beds, 

two, movement

Real Clip art Sketches Spatial text Descriptions

Figure 5: Visualizing Unit Activations: We visualize

pool5 in our cross-modal representation above by finding

masks of images/descriptions that activate a specific unit the

most [44]. Interestingly, the same unit learns to detect the

same concept across modalities, suggesting that it may has

learned to generalize across these modalities.

However, we employed the textual features from BL-Ind for

completeness.

CCA approaches are common for cross-modal retrieval,

however past approaches were not directly comparable to

our method. Standard CCA requires sample-level align-

ment, which is missing in our dataset. Cluster CCA [34]

works for class-level alignments, but the formulation is in-

tended for only two modalities. On the other hand, General-

ized CCA [17] does work for multiple modalities but still re-

quires sample-level alignments. Concurrent work with ours

extends CCA to multi-label settings [32].

As displayed in Table 1 both method A and B improve

over all baselines, suggesting that the proposed methods

have a better semantic alignment in fc7. Furthermore,

method C outperforms all other reported methods. Par-

ticularly, we can observe how method C is able to obtain

a comparable performance for retrievals using descriptions

to method A, while retaining the superior performance of

method B for the other modalities. Note that in our experi-

ments the baseline methods perform similarly to our method

in all modalities except for descriptions, as they were not

able to align the textual and visual data very well. Also

note that the performance gap between our method and the

baselines increases as modalities differ from each other (see

SPT and DSC results). For statistical regularization, using

GMM instead of a single Gaussian also notably improves

the performance, arguably because of the increased com-

plexity of the model.

Table 3 reports the within-modal retrieval results. By

performing alignment through proposed methods, we also

increase within-modal retrieval results on average. Table 2

shows the mean performances across layers. We can ob-

serve how in general the proposed methods outperform the

different baselines in cross-modal retrieval for each of the

layers. We can also observe how, as we use features from

higher layers in the CNN, the results improve, since they

represent higher-level semantics closer to the scene label.
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5.2. Hidden Unit Visualizations

We now investigate what input data activates units in our

shared representation. For visual data, we use a visualiza-

tion similar to [44]. For textual descriptions, we compute

the paragraphs that maximally activate each filter, and then

we employ tf-idf features to determine the most common

relevant words in these paragraphs.

Figure 5 shows, for some of the 256 filters in pool5,

the images in each visual modality that maximally acti-

vated the filter with their mask superimposed, as well as

the most common words in the paragraphs that maximally

activated the units. We can observe how the same concept

can be detected across modalities without having explicitly

aligned training data. These results suggest that our method

is learning some strong alignments across modality only us-

ing weak labels coming from the scene categories.

To quantify this observation, we set up an experiment.

We showed human subjects activations of 100 random units

from pool5. These activations included the top five re-

sponses in each modality with their mask. The task was to

select, for each unit, those images that depicted a common

concept if it existed. Activations could be generated from

either the baseline BL-Ind or from our method A, but this

information is hidden from the subjects.

After running the experiment, we selected those results

in which at least 4 images for the real modality were se-

lected. This ensured that the results were not noisy and

were produced using units with consistent activations, as

we empirically found this to be a good indicator of whether

a unit represented an aligned concept. We then computed

the number of times subjects selected at least one image

in each of the other modalities. With our method, 33% of

the times this process selected at least one image from each

modality, whereas for the baseline this only happened 25%

of the times. Furthermore, 19% of the times we selected

at least two images for each modality as opposed to only

14% for the baseline. These results suggest that, when a

unit is detecting a clear concept, our method outperforms

the best finetuning method and can strongly align the differ-

ent modalities.

5.3. Feature Reconstructions

Here we investigate if we can generate images in dif-

ferent modalities given a query. The motivation is to gain

some visual understanding of which concepts are preserved

across modalities and which information is discarded [39].

We use the reconstruction approach from [7] out-of-the-

box, but we train the network using our features. We learn

an inverting network for each modality that learns a map-

ping from features in the shared pool5 layer to downsam-

pled reconstructions of the original images. We refer read-

ers to [7] for full details. We employ pool5 features as op-

posed to fc7 features because the amount of compression

Input Inversion Input Input Input

N
A
T

LD
R

S
P
T

Inversion Inversion Inversion

Figure 6: Inverting features across modalities: We visu-

alize some of the generated images by our inverting network

trained on real images. Top row: reconstructions from real

images. These preserve most of the details of the original

image but are blurry because of the low dimensionality of

the pool5 representation. Middle row: reconstructions

from line drawings, wehere the network adds colors to the

reconstructions while preserving the original scene compo-

sition. Bottom row: inversions from the spatial text modal-

ity. Reconstructions are less detailed but roughly preserve

the location, shape and colors of the different parts of the

input scene.

of the input image in the latter produces worse reconstruc-

tions.

If concepts in our representation are correctly aligned,

our hypothesis is that the reconstruction network will learn

to generate images that capture the statistics of the data in

the output modality and while show same concepts across

modalities in similar spatial locations. Note that one lim-

itation of these inversions is that output images are blurry,

even when reconstructing images within a same modality,

due to the data compression in pool5. However, our re-

constructions have similar quality to those in [7] when re-

constructing from pool5 features within a modality.

Figure 6 shows some successful examples of reconstruc-

tions. We observed this is a hard, arguably because the

statistics of the activations in the common representation

are very different across modalities despite the alignment,

which might be due to the reduced amount of information

in some of the modalities (i.e. clipart and spatial text im-

ages contain much less information that natural images).

However, we note that in the examples the trained model

is capable of reproducing the statistics of the output modal-

ity. Moreover, the reconstructions usually depict the same

concepts present in the original image, indicating that our

representation is aligning and preserving scene information

across modalities.
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