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Abstract

Very long baseline interferometry (VLBI) is a technique

for imaging celestial radio emissions by simultaneously ob-

serving a source from telescopes distributed across Earth.

The challenges in reconstructing images from fine angular

resolution VLBI data are immense. The data is extremely

sparse and noisy, thus requiring statistical image models

such as those designed in the computer vision community.

In this paper we present a novel Bayesian approach for

VLBI image reconstruction. While other methods often re-

quire careful tuning and parameter selection for different

types of data, our method (CHIRP) produces good results

under different settings such as low SNR or extended emis-

sion. The success of our method is demonstrated on realis-

tic synthetic experiments as well as publicly available real

data. We present this problem in a way that is accessible to

members of the community, and provide a dataset website

(vlbiimaging.csail.mit.edu) that facilitates con-

trolled comparisons across algorithms.

1. Introduction

High resolution celestial imaging is essential for

progress in astronomy and physics. For example, imag-

ing the plasma surrounding a black hole’s event horizon at

high resolution could help answer many important ques-

tions; most notably, it may substantiate the existence of

black holes [10] as well as verify and test the effects of

general relativity [22]. Recently, there has been an inter-

national effort to create an Event Horizon Telescope (EHT)

capable of imaging a black hole’s event horizon for the first

time [12, 13]. The angular resolution necessary for this

observation is at least an order of magnitude smaller than

has been previously used to image radio sources [24]. As

measurements from the EHT become available, robust al-

gorithms able to reconstruct images in this fine angular res-

olution regime will be necessary.

Although billions of dollars are spent on astronomical

imaging systems to acquire the best images, current recon-

struction techniques suffer from unsophisticated priors and

(a) Telescope Locations (b) Spatial Frequency Coverage

Figure 1. Frequency Coverage: (A) A sample of the telescope locations

in the EHT. By observing a source over the course of a day, we obtain mea-

surements corresponding to elliptical tracks in the source image’s spatial

frequency plane (B). These frequencies, (u, v), are the projected baseline

lengths orthogonal to a telescope pair’s light of sight. Points of the same

color correspond to measurements from the same telescope pair.

a lack of inverse modeling [36], resulting in sub-optimal im-

ages. Image processing, restoration, sophisticated inference

algorithms, and the study of non-standard cameras are all

active areas of computer vision. The computer vision com-

munity’s extensive work in these areas are invaluable to the

success of these reconstruction methods and can help push

the limits of celestial imaging. [16, 17, 27, 43].

Imaging distant celestial sources with high resolving

power (i.e. fine angular resolution) requires single-dish

telescopes with prohibitively large diameters due to the in-

verse relationship between angular resolution and telescope

diameter [41]. For example, it is predicted that emission

surrounding the black hole at the center of the Milky Way

subtends ≈ 2.5 × 10−10 radians [15]. Imaging this emis-

sion with a 10−10 radian resolution at a 1.3 mm wavelength

would require a telescope with a 13000 km diameter. Al-

though a single telescope this large is unrealizable, by si-

multaneously collecting data from an array of telescopes

located around the Earth, it is possible to emulate samples

from a single telescope with a diameter equal to the maxi-

mum distance between telescopes in the array. Using mul-

tiple telescopes in this manner is referred to as very long

baseline interferometry (VLBI) [41]. Refer to Figure 1a.
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VLBI measurements place a sparse set of constraints on

the source image’s spatial frequencies. The task of recon-

structing an image from these constraints is highly ill-posed

and relies heavily on priors to guide optimization. Cur-

rent VLBI image reconstruction techniques have been rea-

sonably successful in imaging large celestial sources with

coarse angular resolution. However, as the demand for

higher resolving power increases, particularly for the EHT,

traditional reconstruction algorithms are quickly approach-

ing their limits [28, 38].

The difficulty of image reconstruction drastically in-

creases as the angular resolution of a VLBI array im-

proves. To improve angular resolution (i.e., increase resolv-

ing power), one must either increase the maximum distance

between two telescopes or decrease the observing wave-

length [41]. Due to the fixed size of Earth, increasing the

maximum telescope baseline results in a smaller set of pos-

sible telescope sites to choose from. Therefore, algorithms

must be designed to perform well with increasingly fewer

measurements [28]. Extending VLBI to millimeter and sub-

mm wavelengths to increase resolution requires overcoming

many challenges, all of which make image reconstruction

more difficult. For instance, at these short wavelengths,

rapidly varying inhomogeneities in the atmosphere intro-

duce additional measurement errors [31, 38].

In this paper, we leverage ideas from computer vision

to confront these challenges. We present a new algorithm,

CHIRP (Continuous High-resolution Image Reconstruction

using Patch priors), which takes a Bayesian approach and

novel formulation to solve the ill-posed inverse problem of

image reconstruction from VLBI measurements. Specifi-

cally, the contributions of this algorithm are:

• An improved forward model approximation that more ac-

curately models spatial-frequency measurements,

• A simpler problem formulation and optimization strategy

to model the effects of atmospheric noise on VLBI data.

Furthermore, current interferometry testing datasets are

small and have noise properties unsuitable for radio wave-

lengths [3, 6, 26].

• We introduce a large, realistic VLBI dataset website to

the community (vlbiimaging.csail.mit.edu).

This website allows researchers to easily access a large

VLBI dataset, and compare their algorithms to other leading

methods. Its automatic evaluation system facilitates unbi-

ased comparisons between algorithms, which are otherwise

difficult to make and are lacking in the literature. Further-

more, we hope to make this computational imaging problem

accessible to computer vision researchers, cross-fertilizing

the astronomy and computer vision communities.

2. A Brief Introduction to VLBI

We briefly describe VLBI to provide the necessary back-

ground for building an accurate likelihood model. Our
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Figure 2. Simplified Interferometry Diagram: Light is emitted from a

distant source and arrives at the telescopes as a plane wave in the direction

ŝ. An additional distance of B · ŝ is necessary for the light to travel to

the farther telescope, introducing a time delay between the received sig-

nals that varies depending on the source’s location in the sky. The time-

averaged correlation of these signals is a sinusoidal function related to the

location of the source. This insight is generalized to extended emissions

in the van Cittert-Zernike Thm. and used to relate the time-averaged cor-

relation to a Fourier component of the emission image in the direction ŝ.

goal is to provide intuition; for additional details we rec-

ommend [41]. As with cameras, a single-dish telescope

is diffraction limited. However, simultaneously collecting

data from an array of telescopes, called an interferometer,

allows us to overcome the single-dish diffraction limit.

Figure 2 provides a simplified explanation of a two

telescope interferometer. Electromagnetic radiation travels

from a point source to the telescopes. However, because

the telescopes are separated by a distance B, they will not

receive the signal concurrently. For spatially incoherent ex-

tended emissions, the time-averaged correlation of the re-

ceived signals is equivalent to the projection of this sinu-

soidal variation on the emission’s intensity distribution.

This phenomenon is formally described by the van

Cittert-Zernike Theorem. The theorem states that, for ideal

sensors, the time-averaged correlation of the measured sig-

nals from two telescopes, i and j, for a single wavelength,

λ, can be approximated as:

Γi,j(u, v) ≈
∫

ℓ

∫

m

e−i2π(uℓ+vm)Iλ(ℓ,m)dldm (1)

where Iλ(ℓ,m) is the emission of wavelength λ traveling

from the direction ŝ = (ℓ,m,
√
1− ℓ2 −m2). The dimen-

sionless coordinates (u, v) (measured in wavelengths) are

the projected baseline, B, orthogonal to the line of sight.1

Notice that Eq. 1 is just the Fourier transform of the source

emission image, Iλ(ℓ,m). Thus, Γi,j(u, v) provides a sin-

gle complex Fourier component of Iλ at position (u, v) on

the 2D spatial frequency plane. We refer to these mea-

surements, Γi,j , as visibilities. Since the spatial frequency,

1The change in elevation between telescopes can be neglected due to

corrections made in pre-processing. Additionally, for small FOVs wide-

field effects are negligible.
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(u, v), is proportional to the baseline, B, increasing the dis-

tance between telescopes increases the resolving power of

the interferometer, allowing it to distinguish finer details.

Earth Rotation Synthesis At a single time, for an N tele-

scope array, we obtain
N(N−1)

2 visibility measurements cor-

responding to each pair of telescopes. As the Earth rotates,

the direction that the telescopes point towards the source

(ŝ) changes. Assuming a static source, this yields measure-

ments of spatial frequency components (visibilities) of the

desired image along elliptical paths in the (u, v) frequency

plane (see Fig. 1b).

Phase Closure All equations thus far assumed that light

travels from the source to a telescope through a vacuum.

However, inhomogeneities in the atmosphere cause the

light to travel at different velocities towards each telescope.

These delays have a significant effect on the phase of mea-

surements, and renders the phase unusable for image recon-

structions at wavelengths less than 3 mm [31].

Although absolute phase measurements cannot be used,

a clever observation - termed phase closure - allows us to

still recover some information from the phases. The at-

mosphere affects an ideal visibility (spatial frequency mea-

surement) by introducing an additional phase term: Γmeas

i,j =

ei(φi−φj)Γideal

i,j , where φi and φj are the phase delays intro-

duced in the path to telescopes i and j respectively. By

multiplying the visibilities from three different telescopes,

we obtain an expression that is invariant to the atmosphere,

as the unknown phase offsets cancel, see Eq. 2 [14].

Γmeas

i,j Γ
meas

j,kΓ
meas

k,i = ei(φi−φj)Γideal

i,j e
i(φj−φk)Γideal

j,ke
i(φk−φi)Γideal

k,i

= Γideal

i,jΓ
ideal

j,kΓ
ideal

k,i (2)

We refer to this triple product of visibilities as the bis-

pectrum. The bispectrum is invariant to atmospheric noise;

however, in exchange, it reduces the number of constraints

that can be used in image reconstruction. Although the

number of triple pairs in an N telescope array is
(

N
3

)

, the

number of independent values is only
(N−1)(N−2)

2 . For

small telescope arrays, such as the EHT, this effect is large.

For instance, in an eight telescope array, using the bispec-

trum rather than visibilities results in 25% fewer indepen-

dent constraints [14].

3. Related Work

We summarize a few significant algorithms from the as-

tronomical interferometry imaging literature.

CLEAN CLEAN is the de-facto standard method used for

VLBI image reconstruction. It assumes that the image is

made up of a number of bright point sources. From an ini-

tialization image, CLEAN iteratively looks for the brightest

point in the image and “deconvolves” around that location

by removing side lobes that occur due to sparse sampling in

the (u, v) frequency plane. After many iterations, the final

image of point sources is blurred [18]. Since CLEAN as-

sumes a distribution of point sources, it often struggles with

reconstructing images of extended emissions [38].

For mm/sub-mm wavelength VLBI, reconstruction is

complicated by corruption of the visibility phases. CLEAN

is not inherently capable of handling this problem; however,

self-calibration methods have been developed to greedily

recover the phases during imaging. Self-calibration requires

manual input from a knowledgeable user and often fails

when the SNR is too low or the source is complex [38].

Optical Interferometry Interferometry at visible wave-

lengths faces the same phase-corruption challenges as

mm/sub-mm VLBI. Although historically the optical and

radio interferometry communities have been separate, fun-

damentally the resulting measurements and imaging pro-

cess are very similar [31]. We have selected two optical in-

terferometry reconstruction algorithms representative of the

field to discuss and compare to in this work [28]. Both al-

gorithms take a regularized maximum likelihood approach

and can use the bispectrum, rather than visibilities, for re-

construction [4, 11]. Recent methods based on compressed

sensing have been proposed, but have yet to demonstrate

superior results [25, 28].

BSMEM (BiSpectrum Maximum Entropy Method)

takes a Bayesian approach to image reconstruction [11].

Gradient descent optimization [37] using a maximum en-

tropy prior is used to find an optimal reconstruction of the

image. Under a flat image prior BSMEM is often able to

achieve impressive super-resolution results on simple celes-

tial images. However, in Section 6 we demonstrate how it

often struggles on complex, extended emissions.

SQUEEZE takes a Markov chain Monte Carlo (MCMC)

approach to sample images from a posterior distribution [4].

To obtain a sample image, SQUEEZE moves a set of point

sources around the field of view (FOV). The final image is

then calculated as the average of a number of sample im-

ages. Contrary to gradient descent methods, SQUEEZE is

not limited in its choice of regularizers or constraints [28].

However, this freedom comes at the cost of a large number

of parameter choices that may be hard for an unknowledge-

able user to select and tune.

3.1. Spectral Image Reconstruction

VLBI image reconstruction has similarities with other

spectral image reconstruction problems, such as Syn-

thetic Aperture Radar (SAR), Magnetic Resonance Imag-

ing (MRI), and Computed Tomography (CT) [8, 29, 33, 39].

However, VLBI faces a number of challenges that are typ-

ically not relevant in these other fields. For instance, SAR,

MRI, and CT are generally not plagued by large corruption

of the signal’s phase, as is the case due to atmospheric dif-

ferences in mm/sub-mm VLBI. In SAR the Fourier samples
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are all coherently related and the absolute phase can gener-

ally be recovered, even under atmospheric changes [19, 32].

However, although fully understanding the connection re-

mains an open problem, incorporating ideas of phase clo-

sure, as is done in this work, may open the potential to push

SAR techniques [21] past their current limits.

4. Method

Reconstructing an image using bispectrum measure-

ments is an ill-posed problem, and as such there are an infi-

nite number of possible images that explain the data [28].

The challenge is to find an explanation that respects our

prior assumptions about the “visual” universe while still sat-

isfying the observed data.

4.1. Continuous Image Representation

The image that we wish to recover, Iλ(ℓ,m), is de-

fined over the continuous space of angular coordinates l and

m. Many algorithms assume a discretized image of point

sources during reconstruction [38]. This discretization in-

troduces errors during the reconstruction optimization, es-

pecially in fitting the higher frequency visibilities. Instead,

we parameterize a continuous image using a discrete num-

ber of terms. This parameterization not only allows us to

model our emission with a continuous image, but it also re-

duces modeling errors during optimization.

Since each measured complex visibility is approximated

as the Fourier transform of Iλ(ℓ,m), a convenient param-

eterization of the image is to represent it as a discrete

number of scaled and shifted continuous pulse functions,

such as triangular pulses. For a scene defined in the range

ℓ ∈ [−Fℓ

2 , Fℓ

2 ] and m ∈ [−Fm

2 , Fm

2 ], we parameterize our

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
10Frequency (1/radians)

M
a

g
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u
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Figure 3. Accurately modeling the frequencies of an image is crucial for

fitting VLBI measurements during image reconstruction. Here we show,

that with the same number of parameters, we can much more accurately

model the true frequency distribution. A slice of frequencies for the true

image is shown in red. Overlayed we show the effect of using the tra-

ditional discretized imaging model (green), and our improved model for

rectangle (cyan) and triangle (blue) pulses. The dotted lines denote the

frequency range sampled in Fig 1b. Representing an image in this way re-

duces modeling errors for higher frequencies during image reconstruction.

space into Nℓ × Nm scaled pulse functions, h(l,m), cen-

tered around

l = i∆ℓ +
∆ℓ

2
− Fℓ

2
for i = 0, ..., Nℓ − 1 (7)

m = j∆m +
∆m

2
− Fm

2
for j = 0, ..., Nm − 1 (8)

for ∆ℓ = Fℓ

Nℓ
and ∆m = Fm

Nm
. Using Eq. 7 and 8 we can

represent a continuous image as a discrete sum of shifted

pulse functions scaled by x[i, j]. We refer to this image as

Îλ(x) for vectorized coefficients x.

Due to the shift theorem [34], plugging this image rep-

resentation into the van Cittert-Zernike theorem (Eq. 1) re-

sults in a closed-form solution to the visibilities in terms of

H(u, v), the Fourier transform of h(l,m), as seen in Eq. 6.

Note that performing a continuous integration has been re-

duced to a linear matrix operation similar to a Discrete Time

Fourier Transform (DTFT).

In Figure 3 we show that this representation allows us

to approximates the true frequency components more ac-

curately than a discretized set of point sources, especially

for high frequencies. Any pulse with a continuous closed-

form Fourier transform can be used in this representation

(e.g. rectangle, triangle, sinc, Gaussian). The chosen pulse

places an implicit prior on the reconstruction. For instance,

a sinc pulse with frequency and spacing ∆ can reconstruct

any signal with a bandwidth less than ∆
2 [34]. In this work

we choose to use a triangle pulse with width (2∆ℓ, 2∆m)
since this is equivalent to linearly interpolating between

pulse centers and also simplifies non-negativity constraints.

Although we developed this image model for VLBI image

reconstruction, it has potential applicability to a much more

general class of imaging problems that rely on frequency

constraints.

4.2. Model Energy

We seek a maximum a posteriori (MAP) estimate of the

image coefficients, x, given M complex bispectrum mea-

surements, y. Following recent success in image restoration

using patch priors [43, 44], we choose to use an expected

patch log likelihood (EPLL) and minimize the energy:

fr(x|y) = −D(y|x)− EPLLr(x) (9)

Eq. 9 appears similar to the familiar form using a

Bayesian posterior probability; however, since bispectrum

measurements are not independent, the data term D is not

a log-likelihood. Additionally, EPLLr is the expected log

likelihood of a randomly chosen patch in the image Îλ(x),
not the log-likelihood of the image itself [43]. Details of the

data and prior term are discussed below.

4.2.1 Data Term −D(y|x)
As discussed in Section 2, bispectrum measurements are
invariant to atmospheric inhomogeneity. Therefore, we
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Γ(u, v) ≈

∫

∞

−∞

∫

∞

−∞

e
−i2π(uℓ+vm)

Nℓ−1
∑

i=0

Nm−1
∑

j=0

x[i, j]h

(

ℓ−

(

∆ℓi+
∆ℓ

2
−

FOVℓ

2

)

,m−

(

∆mj +
∆m

2
−

FOVm

2

))

dℓdm

=

Nℓ−1
∑

i=0

Nm−1
∑

j=0

x[i, j]e
−i2π

(

u
(

∆ℓi+
∆ℓ
2

+aℓ

)

+v(∆mj+∆m
2

+am)
)

H(u, v) = Ax =
(

A
ℜ + iA

ℑ

)

x (6)

choose to express an image’s “likelihood” in terms of the
bispectrum, rather than visibility, measurements. Let yk be
a noisy, complex bispectrum measurement corresponding
to visibilities k1,2, k2,3, and k3,1 for telescopes 1, 2 and 3.

Ideal bispectrum values, ξ, can be extracted from Îλ(x) us-
ing the following polynomial equation:

ξk(x) = Ak1,2xAk2,3xAk3,1x = ξ
ℜ

k (x) + iξ
ℑ

k (x) (10)

where complex, row vector Akm,n
extracts the 2D fre-

quency, (u, v), corresponding to the baseline between tele-

scopes m and n from Îλ(x). By assuming Gaussian noise

(Σk) on the complex bispectrum measurements, we evalu-

ate −D(y|x) as:

γ
M
∑

i=1

[

αk

2

(

ξℜk (x)− y
ℜ

k

ξℑk (x)− y
ℑ

k

)T

Σ−1
k

(

ξℜk (x)− y
ℜ

k

ξℑk (x)− y
ℑ

k

)

]

(11)

To account for the independence of each constraint, we set

αk = (Tk−1)(Tk−2)

2(Tk
3 )

= 3
Tk

for Tk telescopes observing at

the time corresponding to the k-th bispectrum value. If

necessary, effects due to the primary beam and interstellar

scattering [15] can be accounted for in Eq. 11 by weight-

ing each bispectrum term appropriately. Refer to the supp.

material [7] for further details. The polynomial structure

of our “likelihood” formulation is simpler than previously

proposed formulations using the bispectrum [5, 40].

Noise Although the error due to atmospheric inhomo-

geneity cancels when using the bispectrum, residual error

exists due to thermal noise and gain fluctuations [41]. This

introduces Gaussian noise on each complex visibility mea-

surement. Since the bispectrum is the product of three vis-

ibilities, its noise distribution is not Gaussian; nonetheless,

its noise is dominated by a Gaussian bounding its first-order

noise terms. In the supp. material we show evidence that

this is a reasonable approximation [7].

4.2.2 Regularizer −EPLLr(x)

We use a Gaussian mixture model (GMM) patch prior to

regularize our solution of Îλ(x). Although this is not an

explicit prior on Îλ(x), patch priors have been shown to

work well in the past [43, 44]. Building on ideas from [43],

we maximize the EPLL by maximizing the probability of

each of the N overlapping pulse patches in Îλ(x):

EPLLr(x) =
∑N

n=1 log p(Pnx). (12)

Pn is a matrix that extracts the n-th patch from x and

p(Pnx) is the probability of that patch learned through the

GMM’s optimization. We use a patch size of 8x8.

4.3. Optimization

To optimize Eq. 9 we use “Half Quadratic Splitting” [43].

This method introduces a set of auxiliary patches {zi}N1 ,

one for each overlapping patch Pix in the image. We can

then solve this problem using an iterative framework:

(1) Solve for {zn} given x: In order to complete this step

we set {zn} to the most likely patch under the prior, given

the corrupted measurements PnX and weighting parameter

β (described further in [43]).

(2) Solve for x given {zn}: If we were able to work with

visibilities our problem would be quadratic in x, and we

could solve then for x in closed-form. However, since we

use bispectrum measurements rather than visibilities, our

energy is a 6th order polynomial that cannot be solved in

closed-form. One possibility is to solve for the gradient

and then use gradient descent to solve for a local minimum.

However, this method is slow. Alternatively, we perform a

2nd order Taylor expansion around our current solution, x0,

to obtain an approximation of the local minimum in closed-

form. A detailed derivation of the gradient and local closed-

form solution can be found in the supp. material [7].

As suggested in [43] we iterate between these two steps

for increasing β values of 1, 4, 8, 16, 32, 64, 128, 256, 512.

Multi-scale Framework Since our convexification of the

energy is only approximate, we slowly build up Îλ(x) us-

ing a multi scale framework. This framework also helps

to avoid local minima in the final solution. We initialize

the image x0 with small random noise centered around the

mean flux density (average image intensity), and iterate be-

tween solving for {zn} and x. Then, using our discretized

formulation of the image, we increase the number of pulses

used to describe the image. This framework allows us to

find the best low-resolution solution before optimizing the

higher frequency detail in the image. In this paper, we ini-

tialize our optimization using a set of 20 × 20 pulses and

slowly increase to 64× 64 pulses over 10 scales.

5. Dataset

We introduce a dataset and website (vlbiimaging.

csail.mit.edu) for evaluating the performance of

VLBI image reconstruction algorithms. By supplying a

large set of easy-to-understand training and testing data, we

hope to make the problem more accessible to those less fa-

miliar with the VLBI field. The website contains a:

• Standardized data set of real and synthetic data for train-

ing and blind testing of VLBI imaging algorithms
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• Automatic quantitative evaluation of algorithm perfor-

mance on realistic synthetic test data

• Qualitative comparison of algorithm performance

• Online form to easily simulate realistic data using user-

specified image and telescope parameters

Current interferometry dataset challenges are both small

and assume noise characteristics unsuitable for radio wave-

lengths [3, 26]. The introduction of this new radio VLBI

dataset will help to reveal shortcomings of current methods

as well as encourage the development of new algorithms.

Synthetic Measurements We provide a standardized for-

mat [35] dataset of over 5000 synthetic VLBI measurements

corresponding to a variety of array configuration, source im-

ages, and noise levels. Measurements are simulated using

the MIT Array Performance Simulator (MAPS) software

package [28]. This software has been developed to accu-

rately model the visibilities and noise expected from a user-

specified array and source. Visibilities from the MAPS are

not generated in the same manner as our forward model.

We generate data using a collection of black hole [9],

celestial [1, 2], and natural images. We have deliberately

included a diversity of images in the imaging database,

since imaging algorithms for black holes must be suf-

ficiently non-committal that they can identify departures

from canonical expectations. Natural images test robust-

ness to complex scenes with varied image statistics.

Real Measurements We provide 33 sets of measure-

ments from the VLBA-BU-BLAZAR Program [23] in the

same standardized format [35]. This program has been col-

lecting data on a number of gamma-ray blazars every month

since 2007. Measurements are taken using the Very Long

Baseline Array (VLBA) at 43 GHz. Although both the an-

gular resolution and wavelength of these measurements are

very different from those taken by the EHT (which collects

at ≈ 230 GHz) [15], they provide a means to test algorithms

on measured, experimental data.

Test Set and Error Metrics We introduce a blind test

set of challenging synthetic data. Measurements with re-

alistic errors are generated using a variety of target sources

and telescope parameters and provided in the OIFITS for-

mat [35]. This test set introduces a means for fair quan-

titative comparisons between competing algorithms. Re-

searchers are encouraged to run their algorithms on this data

and submit results to the website for evaluation.

Traditional point-by-point error metrics, such as MSE

and PSNR, are sometimes uninformative in the context of

highly degraded VLBI reconstructions. Therefore, we sup-

plement the MSE metric with the perceptually motivated

structural similarity (SSIM) index [42]. Since the abso-

lute position of the emission is lost when using the bispec-

trum, we first align the reconstruction to the ground truth

image using cross-correlation. We then evaluate the MSE

and SSIM on the normalized, aligned images. Although we

consider MSE and SSIM a good first step towards quanti-

tative analysis, we believe a better metric of evaluation is

subject for future research.

6. Results and Discussion

Measurements from the EHT have yet to become avail-

able. Therefore, we demonstrate the success of our algo-

rithm, CHIRP, on a sample of synthetic examples obtained

from our online dataset and real VLBI measurements col-

lected by the VLBA-BU-BLAZAR Program.

Synthetic Measurements For image results presented in

the paper we generated synthetic data using realistic param-

eters for the EHT array pointed towards the black hole in

M87. Corresponding (u, v) frequency coverage is shown

in Figure 1b. The geometry of an array imposes an intrinsic

maximum resolution on the image you can reconstruct from

its measurements. Figure 4 shows the effect of filtering out

spatial frequencies higher than the minimum fringe spac-

ing. These images set expectations on what is possible to

reliably reconstruct from the measurements. Additional re-

sults and details about the telescopes, noise properties, and

parameter settings can be found in the supp. material [7].

Method Comparison We compare results from our algo-

rithm, CHIRP, with the three state-of-the-art algorithms de-

scribed in Section 3: CLEAN, SQUEEZE, and BSMEM.

Images were obtained by asking authors of the compet-

ing algorithms or knowledgeable users for a suggested set

of reconstruction parameter (provided in the supp. mate-

rial [7]). The website submission system allows the results

from other parameter settings and algorithms to be com-

pared, both qualitatively and quantitatively.

As with our algorithm, SQUEEZE [4] and BSMEM [11]

use the bispectrum as input. CLEAN cannot automatically

handle large phase errors, so CLEAN results were obtained

using calibrated (eg. no atmospheric phase error) visibil-

ities in CASA [20]. In reality, these ideal calibrated visi-

bilities would not be available, and the phase would need to

be recovered through highly user-dependent self-calibration
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R
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Figure 4. Intrinsic Maximum Resolution: The geometry of a telescope

array imposes an intrinsic maximum resolution on the image you can re-

construct from the measurements. Recovering spatial frequencies higher

than this resolution is equivalent to superresolution. For results presented,

the minimum recoverable fringe spacing (corresponding to the maximum

frequency) is 24.72 µ-arcseconds. The original ‘Source’ images (183.82

µ-arcsecond FOV) are used to synthetically generate realistic VLBI mea-

surements. We show the effect of filtering out spatial frequencies higher

than the minimum fringe spacing for these source images in ‘Max Res’.
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Figure 5. Method Comparison: Comparison of our algorithm, ‘CHIRP’ to three state-of-the-art methods: ‘CLEAN’, ‘SQUEEZE’, and ‘BSMEM’.

We show the normalized reconstruction of a variety of black hole (a-b), celestial (c-f), and natural (g) source images with a total flux density (sum of pixel

intensities) of 1 jansky and a 183.82 µ-arcsecond FOV. Since absolute position is lost when using the bispectrum, shifts in the reconstructed source location

are expected. The ‘TARGET’ image shows the ground truth emission filtered to the maximum resolution intrinsic to this telescope array.
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Figure 6. Noise Sensitivity: The effect of varying total flux density (in janskys), and thus noise, on each method’s recovered reconstructions. Decreasing

flux results in higher noise. Notice how our method is fairly robust to the noise, while the results from other methods often vary substantially across the

noise levels. The ground truth target images along with the results for a total flux density of 1 jansky can been seen in column A and C of Figure 5.

methods. However, in the interest of a fair comparison, we

show the results of CLEAN in a “best-case” scenario.

Figure 5 shows a sample of results comparing our recon-

structions to those of the current state-of-the-art methods.

Our algorithm is able to handle a wide variety of sources,

ranging from very simple celestial to complex natural im-

ages, without any additional parameter tuning. CLEAN

produces consistently blurrier results. Both SQUEEZE and

BSMEM tend towards sparser images. This strategy works

well for superresolution. However, it comes at the cost of

often making extended sources overly sparse and introduc-

ing spurious detail. Although algorithms such as BSMEM

and SQUEEZE may perform better on these images with

specific hand-tuned parameters, these tests demonstrate that

the performance of CHIRP requires less user expertise and

provides images that may be less sensitive to user bias.
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Figure 7. Quantitative Analysis on Blind Test Set: Box plots of MSE

and SSIM for reconstruction methods on the blind dataset presented in

Section 5. In SSIM a score of 1 implies perceptual indistinguishability

between the ground truth and recovered image. Scores are calculated using

the original ‘Source’ image (Refer to Fig. 4).

Figure 7 shows a quantitative comparison of our method

to SQUEEZE and BSMEM for the challenging, blind test

set presented in Section 5. Since CLEAN cannot automat-

ically handle large phase errors, we were unable to fairly

compare its results on this test set.

Noise Sensitivity The standard deviation of thermal noise

introduced in each measured visibility is fixed based on

measurement choices and the corresponding telescopes’

properties. Specifically, σ = 1
0.88

√

ρ1ρ2/νT for band-

width ν, integration time T , and each telescope’s System

Equivalent Flux Density (ρ). Consequently, an emission

with a lower total flux will result in a lower SNR signal.

Previous measurements predict that the total flux densi-

ties of the black holes M87 and SgA* will be in the range

0.5 to 3.0 janskys [12, 13]. Figure 6 shows the effect of

varying total flux density, and thus noise, on each method’s

recovered reconstructions. Notice how our method is fairly

robust to the noise, while the results from other methods

often vary substantially across noise levels.

Effect of Patch Prior Flexibility of the patch prior frame-

work allows us to easily incorporate a variety of differ-

ent “visual” assumptions in our reconstructed image. For

instance, in the case of the EHT, simulations of a black

hole for different inclinations and spins can be used to train

a patch model that can be subsequently used for recon-

struction. In Figure 8 we show results using a patch prior

trained on natural [30], celestial, and synthetic black hole

images [9]. Only small variations can be observed among

the resulting images. Given our selected parameters, this

Natural Celestial Black Hole ℓ2 Norm ℓ0.8 Norm

Figure 8. Effect of Patch Prior: Reconstructions using patch priors

trained on natural, celestial, and synthetic black hole images as well as

ℓ2 and ℓ0.8 norm priors on the residuals. The ground truth target image

are shown in Figure 5 column B and E. The patch priors outperform results

obtained using simpler ℓ-norm priors. Since absolute position is lost during

imaging, shifts in the reconstructed source location are expected.

3C279 OJ287 BL Lacertae

B
U

R
e

s
u

lt
s

C
H

IR
P

Figure 9. Real Measurements: A comparison of our reconstructed im-

ages to [23]’s results using CLEAN self-calibration. Note that we are able

to reconstruct less blurry images, and are even able to resolve 2 separate,

previously unresolved, bright emissions in blazar OJ287. Measurements

were taken using the VLBA telescope array. The FOV for each image is

1.5, 1, and 1 milli-arcsecond respectively.

suggests that the prior guides optimization, but does not im-

pose strong assumptions that may greatly bias results.

Real Measurements We demonstrate the performance

of our algorithm on the reconstruction of three different

sources using real VLBI data from [23] in Figure 9. Al-

though we do not have ground truth images corresponding

to these measurements, we compare our reconstructions to

those generated by the BU group, reconstructed using an

interactive calibration procedure described in [23]. Alterna-

tively, we are able to use bispectrum measurements to auto-

matically produce image reconstructions with minimal user

input. Notice that we are able to recover sharper images,

and even resolve two potentially distinct sources that were

previously unresolved in blazar OJ287.

7. Conclusion
Astronomical imaging will benefit from the cross-

fertilization of ideas with the computer vision community.

In this paper, we have presented an algorithm, CHIRP, for

reconstructing an image using a very sparse number of

VLBI frequency constraints. We have demonstrated im-

proved performance compared to current state-of-the-art

methods on both synthetic and real data. Furthermore, we

have introduced a new dataset for the testing and develop-

ment of new reconstruction algorithms. With this paper,

the dataset, and algorithm comparison website, we hope to

make this problem accessible to researchers in computer vi-

sion, and push the limits of celestial imaging.
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