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Figure 1. Global support factors of PCA lead to implausible body shapes, whereas the local support factors of our method give more

realistic results. See our accompanying video for animated results.

Abstract

Representing 3D shape deformations by high-

dimensional linear models has many applications in

computer vision and medical imaging. Commonly, using

Principal Components Analysis a low-dimensional sub-

space of the high-dimensional shape space is determined.

However, the resulting factors (the most dominant eigen-

vectors of the covariance matrix) have global support,

i.e. changing the coefficient of a single factor deforms the

entire shape. Based on matrix factorisation with sparsity

and graph-based regularisation terms, we present a method

to obtain deformation factors with local support. The

benefits include better flexibility and interpretability as

well as the possibility of interactively deforming shapes

locally. We demonstrate that for brain shapes our method

outperforms the state of the art in local support models

with respect to generalisation and sparse reconstruction,

whereas for body shapes our method gives more realistic

deformations.

1. Introduction

Due to their simplicity, linear models in high-

dimensional space are frequently used for modelling non-

linear deformations of shapes in 2D or 3D space. For ex-

ample, Active Shape Models (ASM) [11], based on a sta-

tistical shape model, are popular for image segmentation.

Usually, surface meshes, comprising faces and vertices, are

employed for representing the surfaces of shapes in 3D. Di-

mensionality reduction techniques are used to learn a low-

dimensional representation of the vertex coordinates from

training data. Frequently, an affine subspace close to the

training shapes is used. To be more specific, mesh defor-

mations are modelled by expressing the vertex coordinates

as the sum of a mean shape x̄ and a linear combination of

M modes of variation Φ = [Φ1, . . . ,ΦM ], i.e. the vertices

deformed by the weight or coefficient vector α are given by

y(α) = x̄+Φα, see Fig. 1. Commonly, by using Principal

Components Analysis (PCA), the modes of variation are set

to the most dominant eigenvectors of the sample covariance

matrix. PCA-based models are computationally convenient

due to the orthogonality of the eigenvectors of the (real and

symmetric) covariance matrix. Due to the diagonalisation

of the covariance matrix, an axis-aligned Gaussian distribu-

tion of the weight vectors of the training data is obtained.

A problem of PCA-based models is that eigenvectors have

global support, i.e. adjusting the weight of a single factor

affects all vertices of the shape (Fig. 1).

Thus, in this work, instead of eigenvectors, we con-

sider more general factors as modes of variation that have

local support, i.e. adjusting the weight of a single factor

leads only to a spatially localised deformation of the shape

(Fig. 1). The set of all factors can be seen as a dictionary for

representing shapes by a linear combination of the factors.
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Benefits of factors with local support include more realistic

deformations (cf. Fig. 1), better interpretability of the defor-

mations (e.g. clinical interpretability in a medical context

[29]), and the possibility of interactive local mesh deforma-

tions (e.g. editing animated mesh sequences in computer

graphics [24], or enhanced flexibility for interactive 3D seg-

mentation based on statistical shape models [2, 3]).

1.1. PCA Variants

PCA is a non-convex problem that admits the efficient

computation of the global optimum, e.g. by Singular Value

Decomposition (SVD). However, the downside is that the

incorporation of arbitrary (convex) regularisation terms is

not possible due to the SVD-based solution. Therefore,

incorporating regularisation terms into PCA is an active

field of research and several variants have been presented:

Graph-Laplacian PCA [18] obtains factors with smoothly

varying components according to a given graph. Robust

PCA [8] formulates PCA as a convex low-rank matrix fac-

torisation problem, where the nuclear norm is used as con-

vex relaxation of the matrix rank. A combination of both

Graph-Laplacian PCA and Robust PCA has been presented

in [28]. The Sparse PCA (SPCA) method [15, 39] obtains

sparse factors. Structured Sparse PCA (SSPCA) [17] ad-

ditionally imposes structure on the sparsity of the factors

using group sparsity norms, such as the mixed ℓ1/ℓ2 norm.

1.2. Deformation Model Variants

In [21], the flexibility of shape models has been in-

creased by using PCA-based factors in combination with

a per-vertex weight vector, in contrast to a single weight

vector that is used for all vertices. In [12, 35], it is shown

that additional elasticity in the PCA-based model can be

obtained by manipulation of the sample covariance matrix.

Whilst both approaches increase the flexibility of the shape

model, they result in global support factors.

In [29], SPCA is used to model the anatomical shape

variation of the 2D outlines of the corpus callosum. In [33],

2D images of the cardiac ventricle were used to train an Ac-

tive Appearance Model based on Independent Component

Analysis (ICA) [16]. Other applications of ICA for statisti-

cal shape models are presented in [31, 38]. The Orthomax

method, where the PCA basis is determined first and then

rotated such that it has a “simple” structure, is used in [30].

The major drawback of SPCA, ICA and Orthomax is that

the spatial relation between vertices is completely ignored.

The Key Point Subspace Acceleration method based on

Varimax, where a statistical subspace and key points are au-

tomatically identified from training data, is introduced in

[22]. For mesh animation, in [32] the clusters of spatially

close vertices are determined first by spectral clustering, and

then PCA is applied for each vertex cluster, resulting in one

sub-PCA model per cluster. This two-stage procedure has

the problem, that, due to the independence of both stages, it

is unclear whether the clustering is optimal with respect to

the deformation model. Also, a blending procedure for the

individual sub-PCA models is required. A similar approach

of first manually segmenting body regions and then learning

a PCA-based model has been presented in [37].

The Sparse Localised Deformation Components method

(SPLOCS) obtains localised deformation modes from ani-

mated mesh sequences by using a matrix factorisation for-

mulation with a weighted ℓ1/ℓ2 norm regulariser [24]. Lo-

cal support factors are obtained by explicitly modelling lo-

cal support regions, which are in turn used to update the

weights of the ℓ1/ℓ2 norm in each iteration. This makes

the non-convex optimisation problem even harder to solve

and dismisses convergence guarantees. With that, a subop-

timal initialisation of the support regions, as presented in

the work, affects the quality of the found solution.

The compressed manifold modes method [20, 23] has the

objective to obtain local support basis functions of the (dis-

cretised) Laplace-Beltrami operator of a single input mesh.

In [19], the authors obtain smooth functional correspon-

dences between shapes that are spatially localised by us-

ing an ℓ1 norm regulariser in combination with the row and

column Dirichlet energy. The method proposed in [27] is

able to localise shape differences based on functional maps

between two shapes. Recently, the Shape-from-Operator

approach has been presented [6], where shapes are recon-

structed from more general intrinsic operators.

1.3. Aims and Main Contributions

The work presented in this paper has the objective of

learning local support deformation factors from training

data. The main application of the resulting shape model

is recognition, segmentation and shape interpolation [2, 3].

Whilst our work remedies several of the mentioned short-

comings of existing methods, it can also be seen as comple-

mentary to SPLOCS, which is more tailored towards artistic

editing and mesh animation. The most significant difference

to SPLOCS is that we aim at letting the training shapes au-

tomatically determine the location and size of each local

support region. This is achieved by formulating a matrix

factorisation problem that incorporates regularisation terms

which simultaneously account for sparsity and smoothness

of the factors, where a graph-based smoothness regulariser

accounts for smoothly varying neighbour vertices. In con-

trast to SPLOCS or sub-PCA, this results in an implicit clus-

tering that is part of the optimisation and does not require

an initialisation of local support regions, which in turn sim-

plifies the optimisation procedure. Moreover, by integrat-

ing a smoothness prior into our framework we can han-

dle small training datasets, even if the desired number of

factors exceeds the number of training shapes. Our opti-

misation problem is formulated in terms of the Structured
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Low-Rank Matrix Factorisation framework [13], which has

appealing theoretical properties.

2. Methods

First, we introduce our notation and linear shape defor-

mation models. Then, we state the objective and its formu-

lation as optimisation problem, followed by the theoretical

motivation. Finally, the block coordinate descent algorithm

and the factor splitting method are presented.

2.1. Notation

Ip denotes the p×p identity matrix, 1p the p-dimensional

vector containing ones, 0p×q the p × q zero matrix, and

S
+
p the set of p × p positive semi-definite matrices. Let

A ∈ R
p×q . We use the notation AA,B to denote the subma-

trix of A with the rows indexed by the (ordered) index set

A and columns indexed by the (ordered) index set B. The

colon denotes the full (ordered) index set, e.g. AA,: is the

matrix containing all rows of A indexed by A. For brevity,

we write Ar to denote the p-dimensional vector formed by

the r-th column of A. The operator vec(A) creates a pq-

dimensional column vector from A by stacking its columns,

and ⊗ denotes the Kronecker product.

2.2. Linear Shape Deformation Models

Let Xk∈R
N×3 be the matrix representation of a shape

comprising N points (or vertices) in 3 dimensions, and let

{Xk : 1 ≤ k ≤ K} be the set of K training shapes. We

assume that the rows in each Xk correspond to homologous

points. Using the vectorisation xk=vec(Xk)∈R
3N , all xk

are arranged in the matrix X=[x1, . . . ,xK ]∈R3N×K . We

assume that all shapes have the same pose, are centred at the

mean shape X̄, i.e.
∑

k Xk=0N×3, and that the standard

deviation of vec(X) is one.

Pairwise relations between vertices are modelled by a

weighted undirected graph G=(V, E ,ω) that is shared by all

shapes. The node set V={1, . . . , N} enumerates all N ver-

tices, the edge set E⊆{1, . . . , N}2 represents the connec-

tivity of the vertices, and ω∈R
|E|
+ is the weight vector. The

(scalar) weight ωe of edge e=(i, j) ∈ E denotes the affinity

between vertex i and j, where “close” vertices have high

value ωe. We assume there are no self-edges, i.e. (i, i)/∈E .

The graph can either encode pairwise spatial connectivity,

or affinities that are not of spatial nature (e.g. symmetries,

or prior anatomical knowledge in medical applications).

For the standard PCA-based method [11], the modes

of variation in the M columns of the matrix Φ∈R3N×M

are defined as the M most dominant eigenvectors of the

sample covariance matrix C= 1
K−1XXT . However, we

consider the generalisation where Φ contains general 3N -

dimensional vectors, the factors, in its M columns. In both

cases, the (linear) deformation model (modulo the mean

shape) is given by

y(α) = Φα , (1)

with weight vector α ∈ R
M . Due to vectorisation,

the rows with indices {1, . . . , N}, {N+1, . . . , 2N} and

{2N+1, . . . , 3N} of y (or Φ), correspond to the x, y and z
components of the N vertices of the shape, respectively.

2.3. Objective and Optimisation Problem

The objective is to find Φ = [Φ1, . . . ,ΦM ] and

A = [α1, . . . ,αK ] ∈ R
M×K for a given M < 3N such

that, according to eq. (1), we can write

X ≈ ΦA , (2)

where the factors Φm have local support. Local support

means that Φm is sparse and that all active vertices, i.e. ver-

tices that correspond to the non-zero elements of Φm, are

connected by (sequences of) edges in the graph G.

Now we state our problem formally as an optimisation

problem. The theoretical motivation thereof is based on [1,

7, 13] and is recapitulated in section 2.4, where it will also

become clear that our chosen regularisation term is related

to the Projective Tensor Norm [1, 13].

A general matrix factorisation problem with squared

Frobenius norm loss is given by

min
Φ,A

‖X−ΦA‖2F +Ω(Φ,A) , (3)

where the regulariser Ω imposes certain properties upon Φ

and A. The optimisation is performed over some compact

set (which we assume implicitly from here on). An obvious

property of local support factors is sparsity. Moreover, it is

desirable that neighbour vertices vary smoothly. Both prop-

erties together seem to be promising candidates to obtain

local support factors, which we reflect in our regulariser.

Our optimisation problem is given by

min
Φ∈R3N×M

A∈RM×K

‖X−ΦA‖2F + λ

M
∑

m=1

‖Φm‖Φ‖(Am,:)
T ‖A , (4)

where ‖ · ‖Φ and ‖ · ‖A denote vector norms. For z′ ∈
R

K , z ∈ R
3N , we define

‖z′‖A = λA‖z
′‖2 , and (5)

‖z‖Φ = λ
1
‖z‖1+λ2

‖z‖2 + λ∞‖z‖H1,∞ + λG‖Ez‖2 . (6)

Both ℓ2 norm terms will be discussed in section 2.4. The ℓ1
norm is used to obtain sparsity in the factors. The (mixed)

ℓ1/ℓ∞ norm is defined by

‖z‖H1,∞ =
∑

g∈H

‖zg‖∞ , (7)

where zg denotes a subvector of z indexed by g ∈ H. By us-

ing the collection H = {{i, i+N, i+ 2N} : 1 ≤ i ≤ N},

a grouping of the x, y and z components per vertex is

achieved, i.e. within a group g only the component with
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largest magnitude is penalised and no extra cost is to be

paid for the other components being non-zero.

The last term in eq. (6), the graph-based ℓ2 (semi-)norm,

imposes smoothness upon each factor, such that neighbour

elements according to the graph G vary smoothly. Based on

the incidence matrix of G, we choose E such that

‖Ez‖2=

√

∑

d∈{0,N,2N}

∑

(i,j)=ep∈E

ωep(zd+i − zd+j)2 . (8)

As such, E is a discrete (weighted) gradient operator and

‖E · ‖22 corresponds to Graph-Laplacian regularisation [18].

E is specified in the supplementary material.

The structure of our problem formulation in eqs. (4),

(5), (6) allows for various degrees-of-freedom in the form

of the parameters. They allow to weigh the data term ver-

sus the regulariser (λ), control the rank of the solution (λA
and λ2 together, cf. last paragraph in section 2.4), control

the sparsity (λ1), control the amount of grouping of the x,

y and z components (λ∞) and control the smoothness λG .

The number of factors M has an impact on the size of the

support regions (for small M the regions tend to be larger,

whereas for large M they tend to be smaller).

2.4. Theoretical Motivation

For a matrix X ∈ R
3N×K and vector norms ‖ · ‖Φ and

‖ · ‖A, let us define the function

ψM (X) = min
{(Φ∈R3N×M ,

A∈RM×K):
ΦA=X}

M
∑

m=1

‖Φm‖Φ‖(Am,:)
T ‖A . (9)

The function ψ(·)= limM→∞ ψM (·) defines a norm known

as Projective Tensor Norm or Decomposition Norm [1, 13].

Lemma 1. For any ǫ > 0 there exists an M(ǫ) ∈ N such

that ‖ψ(X)− ψM(ǫ)(X)‖ < ǫ.

Proof. For ψ(X) there are sequences {Φi}
∞
i=1 and

{AT
i }
∞
i=1 such that ψ(X) =

∑∞
i=1 ‖Φi‖Φ‖A

T
i ‖A. Let

lm =
∑m

i=1 ‖Φi‖Φ‖A
T
i ‖A. The sequence lm is monotone,

bounded from above and convergent. Let l∞ = ψ(X) de-

note its limit. Since the sequence is convergent, there is

M(ǫ) such that ‖l∞ − lj‖ < ǫ for j ≥M(ǫ).

We now proceed by introducing the optimisation problem

min
Z

‖X− Z‖2F + λψM (Z) . (10)

Next, we establish a connection between problem (10) and

our problem (4). First, we assume that we are given a so-

lution pair (Φ,A) minimising problem (4). By defining

Z = ΦA, Z is a solution to problem (10). Secondly, as-

sume we are given a solution Z minimising problem (10).

To find a solution solution pair (Φ,A) minimising prob-

lem (4), one needs to compute the (Φ,A) that achieves the

minimum of the right-hand side of (9) for a given Z.

This shows that given a solution to one of the problems,

one can infer a solution to the other problem. Next we re-

formulate problem (10). Following [13], we define the ma-

trices Q ∈ R
3N+K×M , Y ∈ R

3N+K×3N+K as

Q =

[

Φ

AT

]

, Y = QQT =

(

ΦΦT ΦA

ATΦT ATA

)

, (11)

and the function F : S+3N+K → R as

F (Y) = F (QQT ) = ‖X−ΦA‖2F + λψM (ΦA) . (12)

Let Y∗ = argmin
Y∈S+3N+K

F (Y) . (13)

For a given Y∗, problem (10) is minimised by the upper-

right block matrix of Y∗. The difference between (10) and

(13) is that the latter is over the set of positive semi-definite

matrices, which, at first sight, does not present any gain.

However, under certain conditions, the global solution for

Q, rather than the product Y = QQT , can be obtained di-

rectly [7]. In [1] it is shown that if Q is a rank deficient local

minimum of F (QQT ), then it is also a global minimum.

Whilst these results only hold for twice differentiable func-

tions F , Haeffele et al. have presented analogous results for

the case of F being a sum of a twice-differentiable term and

a non-differentiable term [13], such as ours above.

As such, any (rank deficient) local optimum of problem

(4) is also a global optimum. If in ψ(·), both ‖ · ‖Φ and

‖ · ‖A are the ℓ2 norm, ψ(·) is equivalent to the nuclear

norm, commonly used as convex relaxation of the matrix

rank [13, 26]. In order to steer the solution towards being

rank deficient, we include ℓ2 norm terms in ‖ · ‖Φ and ‖ · ‖A
(see (5) and (6)). With that, part of the regularisation term in

(4) is the nuclear norm that accounts for low-rank solutions.

2.5. Block Coordinate Descent

A solution to problem (4) is found by block coordinate

descent (BCD) [36] (algorithm 1). It employs alternating

proximal steps, which can be seen as generalisation of gra-

dient steps for non-differentiable functions. Since com-
repeat

// update Φ

Φ
′ ← Φ− ǫΦ∇Φ‖X−ΦA‖2F // gradient step (loss)

for m = 1, . . . ,M do // proximal step Φ (penalty)

Φm ← prox
λ‖·‖Φ‖(Am,:)T ‖A

(Φ′
m)

// update A

A
′ ← A− ǫA∇A‖X−ΦA‖2F // gradient step (loss)

for m = 1, . . . ,M do // proximal step A (penalty)

Am,: ← proxλ‖Φm‖Φ‖·‖A
((A

′

m,:)
T )T

until convergence

Algorithm 1: Simplified view of block coordinate de-

scent. For details see [13, 36].

puting the proximal mapping is repeated in each iteration,

an efficient computation is essential. The proximal map-

ping of ‖ · ‖A in eq. (5) has a closed-form solution by block

soft thresholding [25]. The proximal mapping of ‖ · ‖Φ in

eq. (6) is solved by dual forward-backward splitting [9, 10]
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(see supplementary material). The benefit of BCD is that

it scales well to large problems (cf. complexity analysis in

the supplementary material). However, a downside is that

by using the alternating updates one has only guaranteed

convergence to a Nash equilibrium point [13, 36].

2.6. Factor Splitting

Whilst solving problem (4) leads to smooth and sparse

factors, there is no guarantee that the factors have only a sin-

gle local support region. In fact, as motivated in section 2.4,

the solution of eq. (4) is steered towards being low-rank.

However, the price to pay for a low-rank solution is that cap-

turing multiple support regions in a single factor is preferred

over having each support region in an individual factor (e.g.

for M = 2 and any a 6= 0, b 6= 0, the matrix Φ = [Φ1Φ2]
has a lower rank when Φ1 = [aT bT ]T and Φ2 = 0, com-

pared to Φ1 = [aT 0T ]T and Φ2 = [0T bT ]T ).

A simple yet effective way to deal with this issue is to

split factors with multiple disconnected support regions into

multiple (new) factors (see supplementary material). Since

this is performed after the optimisation problem has been

solved, it is preferable over pre- or intra-processing proce-

dures [32, 24] since the optimisation remains unaffected and

the data term in eq. (4) does not change due to the splitting.

3. Experimental Results

We compared the proposed method with PCA [11], ker-

nel PCA (kPCA, cf. 3.2.2), Varimax [14], ICA [16], SPCA

[17], SSPCA [17], and SPLOCS [24] on two real datasets,

brain structures and human body shapes. Only our method

and the SPLOCS method explicitly aim to obtain local sup-

port factors, whereas the SPCA and SSPCA methods obtain

sparse factors (for the latter the ℓ1/ℓ2 norm with groups de-

fined by H, cf. eq. (7), is used). The methods kPCA, SPCA,

SSPCA, SPLOCS and ours require to set various parame-

ters, which we address by random sampling (see supple-

mentary material).

For all evaluated methods a factorisation ΦA is ob-

tained. W.l.o.g. we normalise the rows of A to have stan-

dard deviation one (since ΦA = ( 1
s
Φ)(sA) for s 6= 0).

Then, the factors in Φ are ordered descendingly according

to their ℓ2 norms.

In our method, the number of factors may be changed

due to factor splitting, thus, in order to allow a fair com-

parison, we only retain the first M factors. Initially, the

columns of Φ are chosen to M (unique) columns selected

randomly from I3N . This is in accordance with [13], where

empirically good results are obtained using trivial initialisa-

tions. Convergence plots for different initialisations can be

found in the supplementary material.

3.1. Quantitative Measures

For x = vec(X) and x̃ = vec(X̃), the average error

eavg(x, x̃) =
1

N

N
∑

i=1

‖Xi,:−X̃i,:‖2 (14)

and the maximum error

emax(x, x̃) = max
i=1,...,N

‖Xi,: − X̃i,:‖2 (15)

measure the agreement between shape X and shape X̃.

The reconstruction error for shape xk is measured by

solving the overdetermined system Φαk = xk for αk in

the least-squares sense, and then computing eavg(xk,Φαk)
and emax(xk,Φαk), respectively.

To measure the specificity error, ns shape samples

are drawn randomly (ns=1000 for the brain shapes and

ns=100 for the body shapes). For each drawn shape, the

average and maximum errors between the closest shape in

the training set are denoted by savg and smax, respectively.

For simplicity, we assumed that the parameter vector α fol-

lows a zero mean Gaussian distribution, where the covari-

ance matrix Cα is estimated from the parameter vectors αk

of the K training shapes. With that, a random shape sample

xr is generated by drawing a sample of the vector αr from

its distribution and setting xr = Φαr. The specificity can

be interpreted as a score for assessing how realistic synthe-

sized shapes are on a coarse level of detail (the contribution

of errors on fine details to the specificity score is marginal

due to the dominance of the errors on coarse scales).

For evaluating the generalisation error, a collection of

index sets I ⊂ 2{1,...,K} is used, where each set J ∈ I de-

notes the set of indices of the test shapes for one run and |I|
is the number of runs. We used five-fold cross-validation,

i.e. |I| = 5 and each set J contains round(K5 ) random

integers from {1, . . . ,K}. In each run, the deformation

factors ΦJ̄ are computed using only the shapes with in-

dices J̄ = {1, . . . ,K} \ J . For all test shapes xj , where

j ∈ J , the parameter vector αj is determined by solving

ΦJ̄αj = xj in the least-squares sense. Eventually, the

average reconstruction error eavg(xj ,Φ
J̄
αj) and the max-

imum reconstruction error emax(xj ,Φ
J̄
αj) are computed

for each test shape, which we denote as gavg and gmax, re-

spectively. Moreover, the sparse reconstruction errors g0.05avg

and g0.05max are computed in a similar manner, with the differ-

ence that αj is now determined by using only 5% of the

rows (selected randomly) of ΦJ̄ and xj , denoted by Φ̃J̄

and x̃j . For that, we minimise ‖Φ̃J̄αj − x̃j‖
2
2 + ‖Γαj‖

2
2

with respect to αj , which is a least-squares problem with

Tikhonov regularisation, where Γ is obtained by Cholesky

factorisation of Cα = ΓTΓ. The purpose of this measure

is to evaluate how well a deformation model interpolates an

unseen shape from a small subset of its points, which is rel-

evant for shape model-based surface reconstruction [2, 3].
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3.2. Brain Structures

The first evaluated dataset comprises 8 brain structure

meshes of K=17 subjects [4]. All 8 meshes together have

a total number of N=1792 vertices that are in correspon-

dence among all subjects. Moreover, all meshes have the

same topology, i.e. seen as graphs they are isomorphic. A

single deformation model is used to model the deformation

of all 8 meshes in order to capture the interrelation between

the brain structures. We fix the number of desired factors to

M=96 to account for a sufficient amount of local details in

the factors. Whilst the meshes are smooth and comparably

simple in shape (cf. Fig. 3), a particular challenge is that the

training dataset comprises only K=17 shapes.

3.2.1 Second-order Terms

Based on anatomical knowledge, we use the brain structure

interrelation graph Gbs = (Vbs, Ebs) shown in Fig. 2, where

an edge between two structures denotes that a deformation

of one structure may have a direct effect on the deforma-

tion of the other structure. Using Gbs, we now build a

SN+STN_L SN+STN_R

NR_L

Th_L

Put+GP_L Put+GP_R

NR_R

Th_R

SN+STN: substantia nigra and 

        subthalamic nucleus

NR:     nucleus ruber

Th:     thalamus

Put+GP: putamen and globus 

        pallidus

Figure 2. Brain structure interrelation graph.

distance matrix that is then used in the SPLOCS method

and our method. For o ∈ Vbs, let go ⊂ {1, . . . , N} de-

note the (ordered) indices of the vertices of brain structure

o. Let Deuc ∈ R
N×N be the Euclidean distance matrix,

where (Deuc)ij = ‖X̄i,: − X̄j,:‖2 is the Euclidean distance

between vertex i and j of the mean shape X̄. Moreover, let

Dgeo ∈ R
N×N be the geodesic graph distance matrix of the

mean shape X̄ using the graph induced by the (shared) mesh

topology. By Do

euc ∈ R
|go|×|go| and Do

geo ∈ R
|go|×|go| we

denote the Euclidean distance matrix and the geodesic dis-

tance matrix of brain structure o, which are submatrices of

Deuc and Dgeo, respectively. Let d̄o denote the average ver-

tex distance between neighbour vertices of brain structure

o. We define the normalised geodesic graph distance ma-

trix of brain structure o by D̃o

geo = 1
d̄o
Do

geo and the matrix

D̃geo ∈ R
N×N is composed by the individual blocks D̃o

geo.

The normalised distance matrix between structure o and

õ is given by D̃
o,õ
bs = 2

d̄o+d̄õ
[(Deuc)go,gõ−1|go|1

T
|gõ|

do,õmin] ∈

R
|go|×|gõ|, where do,õmin is the smallest element of

(Deuc)go,gõ . The (symmetric) distance matrix D̃bs ∈
R

N×N between all structures is constructed by

(D̃bs)go,gõ =

{

D̃
o,õ
bs if (o, õ) ∈ Ebs

0|go|×|gõ| else
. (16)

For the SPLOCS method we used the distance matrix D =
αDD̃geo + (1− αD)D̃bs. For our method, we construct the

graph G = (V, E ,ω) (cf. section 2.2) by having an edge

e = (i, j) in E for each ωe = αD exp(−(D̃geo)
2
i,j) + (1 −

αD) exp(−(D̃bs)
2
ij) that is larger than the threshold θ =

0.1. In both cases we set αD = 0.5.

3.2.2 Dealing with the Small Training Set

For PCA, Varimax and ICA the number of factors cannot

exceed the rank of X, which is at most K−1 for K<3N .

For the used matrix factorisation framework, setting M to

a value larger than the expected rank of the solution but

smaller than full rank has empirically led to good results

[13]. However, since our expected rank is M = 96 and the

full rank is at most K−1 = 16, this is not possible.

We compensate the insufficient amount of training data

by assuming smoothness of the deformations. Based on

concepts introduced in [12, 34, 35], instead of the data

matrix X, we factorise the kernelised covariance matrix

K. The standard PCA method finds the M most domi-

nant eigenvectors of the covariance matrix C by the (ex-

act) factorisation C = Φ diag(λ1, . . . , λK−1)Φ
T . The ker-

nelised covariance K allows to incorporate additional elas-

ticity into the resulting deformation model. For example,

K=I3N results in independent vertex movements [35]. A

more interesting approach is to combine the (scaled) covari-

ance matrix with a smooth vertex deformation. We define

K = 1
‖ vec(XXT )‖∞

XXT +Keuc, with Keuc = I3⊗K′euc ∈

R
3N×3N . Using the bandwidth β, K′euc is given by

(K′euc)ij = exp(−(
(Deuc)ij

2β‖ vec(Deuc)‖∞
)2) . (17)

Setting Φ to theM most dominant eigenvectors of the sym-

metric and positive semi-definite matrix K gives the solu-

tion of kPCA [5]. In terms of our proposed matrix factori-

sation problem in eq. (4), we find a factorisation ΦÃ of K,

instead of factorising the data X. Since the regularisation

term remains unchanged, the factor matrix Φ∈R3N×M is

still sparse and smooth (due to ‖ · ‖Φ). Moreover, due to the

nuclear norm term being contained in the product ‖·‖Φ‖·‖A
(cf. section 2.4), the resulting factorisation ΦÃ is steered

towards being low-rank, in favour of the elaborations in sec-

tion 2.4. However, the resulting matrix Ã∈RM×3N now

contains the weights for approximating K by a linear com-

bination of the columns of Φ, rather than approximating

the data matrix X by a linear combination of the columns

of Φ. For the known Φ, the weights that best approximate

the data matrix X are found by solving the linear system

ΦA=X in the least-squares sense for A∈RM×K .

3.2.3 Results

The magnitude of the deformation of the first three factors

are shown in Fig. 3, where it can be seen that only SPCA,

SSPCA, SPLOCS and our method obtain sparse deforma-

tion factors. The SPCA and SSPCA methods do not incor-
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Figure 3. The colour-coded magnitude (blue corresponds to zero, yellow to the maximum deformation in each plot) for the three deforma-

tion factors with largest ℓ2 norm is shown in the rows. The factors obtained by SPCA and SSPCA are sparse but not spatially localised (see

red arrows). Our method is the only one that obtains local support factors.
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Figure 4. Boxplots of the quantitative measures for the brain shapes dataset. In each plot, the horizontal axis shows the individual methods

and the vertical axis the error scores described in section 3.1. Compared to SPLOCS, which is the only other method explicitly striving

for local support deformation factors, our method has a smaller generalisation error and sparse reconstruction error. The sparse but not

spatially localised factors obtained by SPCA and SSPCA (cf. Fig. 3) result in a large maximum sparse reconstruction error (bottom right).

porate the spatial relation between vertices and as such the

deformations are not spatially localised (see red arrows in

Fig. 3, where more than a single region is active). The fac-

tors obtained by SPLOCS are non-smooth and do not ex-

hibit local support, in contrast to our method, where smooth

deformation factors with local support are obtained.

The quantitative results presented in Fig. 4 reveal that

our method has a larger reconstruction error. This can be

explained by the fact that due to the sparsity and smooth-

ness of the deformation factors a very large number of basis

vectors is required in order to exactly span the subspace of

the training data. Instead, our method finds a simple (sparse

and smooth) representation that explains the data approxi-

mately, in favour of Occam’s razor. The average reconstruc-

tion error is around 1mm, which is low considering that the

brain structures span approximately 6cm from left to right.

Considering specificity, all methods are comparable. PCA,

Varimax and ICA, which have the lowest reconstruction er-

rors, have the highest generalisation errors, which under-

lines that these methods overfit the training data. The kPCA

method is able to overcome this issue due to the smooth-

ness assumption. SPCA and SSPCA have good generali-

sation scores but at the same time a very high maximum

reconstruction error. Our method and SPLOCS are the only

ones that explicitly strive for local support factors. Since

our method outperforms SPLOCS with respect to general-

isation and sparse reconstruction error, we claim that our

method outperforms the state of the art.

3.3. Human Body Shapes

Our second experiment is based on 1531 female human

body shapes [37], where each shape comprises 12500 ver-

tices that are in correspondence among the training set. Due

to the large number of training data and the high level of

details in the meshes, we directly factorise the data matrix

X. The edge set E now contains the edges of the triangle

mesh topology and the weights for edge e = (i, j) ∈ E

are given by ωe = exp(−(
(Deuc)ij

d̄
)2), where d̄ denotes the

average vertex distance between neighbour vertices. Edges

with weights lower than θ=0.1 are ignored.

3.3.1 Results

Quantitatively the evaluated methods have comparable per-

formance, with the exception that ICA has worse overall

performance (Fig. 5). The most noticeable difference be-

tween the methods is the specificity error, where SPCA,

SSPCA and our method perform best. Fig. 6 reveals that
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Figure 5. Boxplots of the quantitative measures in each column for the body shapes dataset. Quantitatively all methods have comparable

performance, apart from ICA which performs worse.

Figure 6. The deformation magnitudes reveal that SPCA, SSPCA,

SPLOCS and our method obtain local support factors (in the sec-

ond factor of our method the connection is at the back). The bot-

tom row depicts randomly drawn shapes, where only the methods

with local support deformation factors result in plausible shapes.

SPCA, SSPCA, SPLOCS and our method obtain factors

with local support. Apparently, for large datasets, sparsity

alone, as used in SPCA and SSPCA, is sufficient to obtain

local support factors. However, our method is the only one

that explicitly aims for smoothness of the factors, which

leads to more realistic deformations, as shown in Fig. 7.

4. Conclusion

We presented a novel approach for learning a linear de-

formation model from training shapes, where the resulting

factors exhibit local support. By embedding sparsity and

Figure 7. Shapes x̄−1.5Φm for SPCA (m=1), SSPCA (m=3),

SPLOCS (m=1) and our (m=1) method (cf. Fig. 6). Our method

delivers the most realistic per-factor deformations.

smoothness regularisers into a theoretically well-grounded

matrix factorisation framework, we model local support re-

gions implicitly, and thus get rid of the initialisation of the

size and location of local support regions, which so far has

been necessary in existing methods. On the small brain

shapes dataset that contains relatively simple shapes, our

method improves the state of the art with respect to gen-

eralisation and sparse reconstruction. For the large body

shapes dataset containing more complex shapes, quantita-

tively our method is on par with existing methods, whilst

it delivers more realistic per-factor deformations. Since ar-

ticulated motions violate our smoothness assumption, our

method cannot handle them. However, when smooth de-

formations are a reasonable assumption, our method offers

a higher flexibility and better interpretability compared to

existing methods, whilst at the same time delivering more

realistic deformations.
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