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Abstract

Mean-field variational inference is one of the most popu-
lar approaches to inference in discrete random fields. Stan-
dard mean-field optimization is based on coordinate descent
and in many situations can be impractical. Thus, in prac-
tice, various parallel techniques are used, which either rely
on ad hoc smoothing with heuristically set parameters, or
put strong constraints on the type of models.

In this paper, we propose a novel proximal gradient-
based approach to optimizing the variational objective. It
is naturally parallelizable and easy to implement.

We prove its convergence, and demonstrate that, in prac-
tice, it yields faster convergence and often finds better op-
tima than more traditional mean-field optimization tech-
niques. Moreover, our method is less sensitive to the choice
of parameters.

1. Introduction

Many Computer Vision problems, ranging from image
segmentation to depth estimation from stereo, can be nat-
urally formulated in terms of Conditional Random Fields
(CRFs). Solving these problems then requires either esti-
mating the most probable state of the CRF, or the marginal
distributions over the unobserved variables. Since there are
many such variables, it is usually impossible to get an exact
answer, and one must instead look for an approximation.

Mean-field variational inference [33] is one of the most
effective ways to do approximate inference and has become
increasingly popular in our field [29, 32, 24]. It involves
introducing a variational distribution that is a product of
terms, typically one per hidden variable. These terms are
then estimated by minimizing the Kullback-Leibler (KL)
divergence between the variational and the true posterior.
The standard scheme is to iteratively update each factor
of the distribution one-by-one. This is guaranteed to con-
verge [5, 21], but is not very scalable, because all variables
have to be updated sequentially. It becomes impractical for
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Figure 1. First two rows: VOC2012 images in which we out-
perform a baseline by adding simple co-ocurrence terms, which
our optimization scheme, unlike earlier ones, can handle. Bottom
row: Our scheme also allows us to improve upon a baseline for
the purpose of recovering a character from its corrupted version.

realistically-sized problems when there are substantial in-
teractions between the variables. This can be remedied by
replacing the sequential updates by parallel ones, often at
the cost of failing to converge.

It has nonetheless recently been shown that parallel up-
dates could be done in a provably convergent way for pair-
wise CRFs, provided that the potentials are concave [24].
When they are not, an ad hoc heuristic designed to achieve
convergence, which essentially smooths steps by averag-
ing between the next and current iterate, has been used
over the years. This heuristic is mentioned explicitly in
some works [30, 7, 14], or used implicitly in optimization
schemes [ 13, 32] by introducing an additional damping pa-
rameter.

However, a formal justification for such smoothing is
never provided, which we do in this paper. More specif-
ically, we show that, by damping in the natural parameter
space instead of the mean-parameter one, we can reformu-
late the optimization scheme as a specific form of prox-
imal gradient descent. This yields a theoretically sound
and practical way to chose the damping parameters, which
guarantees convergence, no matter the shape of the poten-
tials. When they are attractive, we show that our approach is
equivalent to that of [24]. However, even when they are re-
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pulsive and can cause the earlier methods to oscillate with-
out ever converging, our scheme still delivers convergence.
For example, as shown in Fig. 1, this allows us to add co-
occurrence terms to the model used by a state-of-the-art se-
mantic segmentation method [8] and improves its results.
Furthermore, we retain the simplicity of the closed-form
mean-field update rule, which is one of the key strengths
of the mean-field approach.
In short, our contribution is threefold:

e We introduce a principled, simple, and efficient ap-
proach to performing parallel inference in discrete ran-
dom fields. We formally prove that it converges and
demonstrate that it performs better than state-of-the-art
inference methods on realistic Computer Vision tasks
such as segmentation and people detection.

e We show that many of the earlier methods can be in-
terpreted as variants of ours. However, we offer a prin-
cipled way to set its metaparameters.

e We demonstrate how parallel mean-field inference in
random fields relates to the gradient descent. This al-
lows us to integrate advanced gradient descent tech-
niques, such as momentum and ADAM [20], which
makes mean-field inference even more powerful.

To validate our approach, we first evaluate its performance
on a set of standardized benchmarks, which include a range
of inference problems and have recently been used to as-
sess inference methods [14]. We then demonstrate that
the performance improvements we observed carry over to
three realistic Compute Vision problems, namely Charac-
ters Inpainting, People Detection and Semantic Segmenta-
tion. In each case, we show that modifying the optimization
scheme while retaining the objective function of state-of-
the-art models [13, 27, 8] yields improved performance and
addresses the convergence issues that sometimes arise [32].

2. Background and Related Work

In this section, we briefly review basic Conditional Ran-
dom Field (CRF) theory and the use of mean-field infer-
ence to solve the resulting optimization problems. We also
give a short introduction into proximal gradient descent al-
gorithms, on which our method is based. Note, in this work,
we focus on models involving discrete random variables.

2.1. Conditional Random Fields

Let X = (X1,...,Xn) represent hidden variables and
I represent observed variables. For example, for semantic
segmentation, the X;s are taken to be variables representing
semantic classes of IV pixels, and I represents the observed
image evidence.

A Conditional Random Field (CRF) models the relation-

ship between X and I in terms of the posterior distribution

PX|D)=exp| > ¢e(Xc|D)—logZ(T) |,

cC{1,...,N}
)

where ¢.(.) are non-negative functions known as potentials
and log Z(I) is the log-partition function. It is a constant
that we will omit for simplicity since we are mostly con-
cerned by estimating values of X that maximize P(X | I).

This model is often further simplified by only consider-
ing unary and pairwise terms:

P(X |I) o exp Z@ Xi 1)+ Y i (X3, X;)
(4,5)
(2)
2.2. Mean-Field Inference

Typically, one wants either to estimate the posterior
P(X|I) or to find the vector X that maximizes P(X|I),
which is known as the MAP assignment. Unfortunately,
even for the simplified formulation of Eq. 2, both are in-
tractable for realistic sizes of X. As a result, many ap-
proaches settle for approximate solutions. These include
sampling methods, such as Gibbs sampling [15], and deter-
ministic ones such as mean-field variational inference [34],
belief propagation [26, 25, 22], and others [6, 16]. A
comprehensive comparison of inference methods in discrete
models is provided in [18].

Note that, mean-field methods have been shown to com-
bine the advantages of good convergence guarantees [5],
flexibility with respect to the potential functions that can
be handled [29], and potential for parallelization [24]. As a
result, they have become very popular in our field. Further-
more, they have recently been shown to yield state-of-the-
art performance for several Computer Vision tasks [29, 32,

» 35].

Mean-field involves introducing a distribution () of the

factorized form

N

QX =(z1,...,2n);q) = HQi(Xz =zi5q;), ()
i=1

where Q;( .;q;) is a categorical distribution with mean pa-

rameters q;. That is,

VI, Qi(Xs = lds) = ¢iy, )

with q in the space M such that Vi € {1,...,N}, [ €
{1,...,L}, 0 < ¢y < landVi,) ¢ = 1, where N
is often the number of pixels, and L is the number of labels.

@ is then used to approximate P(X | I) by minimizing
the KL-divergence:

L(Q|IP) = ZQ

Q(X =x; q)
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In some cases, this approximation is the desired final re-
sult. In others, one seeks a MAP assignment. To this end, a
standard method is to select the assignment that maximizes
the approximate posterior Q(X; q), which is equivalent to
rounding when the X;s are Bernoulli variables. An alterna-
tive approach is to draw samples from Q(X; q).

When minimizing the KL-divergence of Eq. 5, Q(X; q)
can be reparameterized in terms of its natural parameters
defined as follows. For each variable X; and label [, we
take the natural parameter 0; ; to be such that

Q(X; = 1;q;) = ¢, o< exp[—0;]. (6)

As we will see below, this parameterization often yields
simpler notations and implementations.

2.2.1 Sweep Mean-Field Inference

Minimizing the expression of Eq. 5 is equivalent [5] to min-
imizing

F(a) = —Eq(x;q)[log P(X | I)] + Eq(x;q)[log Q(X; q)],

E(a) —H(a)

(7
with respect to q € M. F(.) is sometimes called the vari-
ational free energy. Its first term is the expectation of the
energy under Q(X; q), and its second term is the negative
entropy, which acts as a regularizer.

One can minimize F(q) by iteratively updating each ¢; ;
in sequence while keeping the others fixed [5]. Each update
involves setting g; ; to

a7y < exp [Eqx/x,q) [log PX | D]] . (8)

This coordinate descent procedure, which we will call
SWEEP, is guaranteed to converge to a local minimum of
F [5]. However, it tends to be very slow for realistic im-
age sizes and impractical for many Computer Vision prob-
lems [32, 24]. Namely, in the case of dense random fields, it
involves re-computing a large number of expectations (one
per factor adjacent to the variable) after each sequential up-
date. Filter-based mean-field inference [23] attempts to re-
duce the complexity of these updates, but it effectively per-
forms parallel updates, which we will describe below.

2.2.2 Parallel Mean-Field Inference

To obtain reasonable efficiency in practice, Computer Vi-
sion practitioners often perform the updates of Eq. 8 in par-
allel as opposed to sequentially. Not only does it avoid hav-
ing to reevaluate a large number of factors after each update,
it also allows the use of vectorized instructions and GPUs,
both of which can have a dramatic impact on the computa-
tion speed.

Unfortunately, these parallel updates invalidate the con-
vergence guarantees and in practice often lead to undesir-
able oscillations in the objective. Several approaches to

remedying this problem have been proposed, which we re-
view below.

Damping A natural way to improve convergence is to re-
place the updates of Eq. 8 by a damped version, expressed
as

Q;J{l:( —U)'Qf,l‘*‘??'qi*,lv ©)
where ¢ denotes the current iteration, g7, is the result of
solving the optimization problem of Eq. 8,7 and 7 is a heuris-
tically chosen damping parameter. This damping is explic-
itly mentioned in papers such as [7, 30, 14]. In [32], con-
vergence issues are mentioned and a damping parameter is
provided in the publicly available code. Similarly, in [13],
the algorithm relies on mean-field optimization with repul-
sive terms. The need for damping is not explicitly discussed
in the paper, but the publicly available code also includes a
damping.

Damping delivers satisfactory results in many cases, but
does not formally guarantee convergence. It may fail if the
parameter 7) is not carefully chosen, and sometimes changed
at different stages of the optimization. In all the approaches
that we are aware of, this is done heuristically. We will refer
to this type of methods as ADHOC.

Concave potentials A principled way to address the con-
vergence issue for the pairwise random fields is offered
in [24], and we refer to the corresponding algorithm as
FULL-PARALLEL. However, authors restrict their poten-
tials ¢;; of Eq. 2 to be concave, which in some cases is
reasonable, but as we will show in Section 4, many Com-
puter Vision models violate this requirement. By contrast,
our approach is similarly principled but without additional
constraints. In practice it works for higher-order, or, equiv-
alently, non-pairwise potentials.

2.3. Proximal Gradient Descent

Let F' be a generic objective function of the form
F(x) = f(x) + g(x), where g is a regularizer, and x; is
the value of the optimized variable at iteration ¢ of a mini-
mization procedure on a constraint set X'. Proximal gradient
descent, also known as composite mirror-descent [1 1], is an
iterative method that relies on the update rule

x'T = argmin{(x, Vf(x")) +g(x) +A\¥(x,x")} , (10)
xXeEX

where W is a non-negative proximal function that satisfies
U(x,x") = 0if and only if x = x’, and A > 0 is a scalar
parameter. ¢ contains the terms of the objective function
that do not need to be approximated to the first order, while
still allowing efficient computation of update of Eq. 10. ¥
can be understood as a distance function that accounts for
the geometry of X [31] while also making it possible to
compute the update of Eq. 10 efficiently. A can then be
thought of as the inverse of the step size.
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As shown in Section 3.1, our algorithm is a version of
proximal gradient descent in which ¥ is based on the KL-
divergence and allows automated step-size adaptation as the
optimization progresses. Recently, a variational approach
that also relies on the KL-divergence as the proximal func-
tion has been proposed [19]. This paper explores the con-
nection between the KL-proximal method and the Stochas-
tic Variational Inference [1, 17]. However, the method
presented there is not directly applicable to discrete ran-
dom fields, especially for the Vision problems we consider.
Moreover, it does not allow for step size adaptation, which
often yields better performance, as we demonstrate in our
experiments.

3. Method

As discussed in the previous section, the goal of mean-
field inference is to

mlglle%ze F(q) (11)
where F is the variational free energy of Eq. 7. Performing
sequential updates of the g; ; is guaranteed to converge, but
can be slow. Parallel updates are usually much faster, but
the optimization procedure may fail to converge.

In this section, we introduce our approach to guarantee-
ing convergence whatever the shape of the pairwise poten-
tials. To this end, we rely on proximal gradient descent as
described in Section 3.1 and formulate the proximal func-
tion ¥ in terms of the KL-divergence. This is motivated by
the fact that it is more adapted to measuring the distance
between probability distributions than the usual L2 norm,
while being independent of how the distribution is parame-
terized.

We will show that this both guarantees convergence and
yields a principled way to obtain a closed form damped up-
date equation equivalent to Eq. 9.

3.1. Proximal Gradient for Mean-Field Inference

In our approach to minimizing the variational free energy
of Eq. 7, we treat £ as the function f of Eq. 10 and the
negative entropy —H as the regularizer g. This choice stems
from the fact that —7# is separable, and therefore, can be
minimized in parallel in Eq. 10, without using a first order
approximation. Also, —# being the regularizer g means
that we do not need to look at its derivatives with respect
to the mean-parameters, which are not well behaved when
they approach zero. We then define

l
=D'©KL(q/lq"),
l

t 4,
U(q,a") =) > digiilog i
il i,

(12)

where KL is the non-negative KL-divergence, which is a
natural choice for a distance between distributions. D?

is a diagonal matrix with positive diagonal elements d’; iS5
which we introduce to allow for anisotropic scaling of the
proximal KL-divergence term. As will be discussed below,
different choices of the d‘;’ ;8 yield different variants of our
algorithms. Note however that, ¥ is a valid proximal func-
tion.

The update of Eq. 10 then becomes

q'" = argmin{(q, VE(q")) —H(q)+ D' ©KL(qllq")} .

qeM
(13)
This computation can be performed independently for each
index ¢ € {1,..., N}. Furthermore, we prove in the sup-

plementary material that it can be done in closed form and
can be written as

g7t ocexpl i, Eqx/x,—uq) [log P(X|T)] (14)
+(1 —nj,) - log qf’l} )

where n! , = . Eq 14 can be rewritten as

1+df,
‘95{1 =i 05+ (L —n,) 07, , (15)

where 07, = —Eq(x/x,;q [ log P(X|T)] now is a natural
parameter, like those of Eq. 6. In other words, we have re-
placed the heuristic update rule of Eq. 9 in the space of mean
parameters by a principled one in the space of natural ones.
As we will see, this yields performance and convergence
improvements in most cases. As for the stopping criteria,
one can define one based on the value of the objective, or,
in practice, run inference for a fixed number of iterations.

3.2. Fixed Step Size

The simplest way to instantiate our algorithm is to fix all
the d! ;s of Eq. 12 to the same value d and to write

Vi, D' =D =dl = Vil = (16)

1
1+d’
where nf)l plays the same role as the damping factor of
Eq. 9. We now show that this is guaranteed to converge
when the proximal term is given enough weight.

In our mean-field settings, £(q) is a polynomial func-
tion of the mean-parameters vector q. Therefore, one can
always find some positive real number L such that the gra-
dient of & is L-Lipschitz continuous. In the supplementary
material, we prove that this property implies that our prox-
imal gradient descent scheme is guaranteed to converge for
any fixed matrix D = dl such thatd > L.

Intuitively, when updating the value of q* to q‘**, the
magnitude of the gradient change controlled and thus the
coordinate-wise optimum 67, = —VE(q");; will also be
changing smoothly across iterations. As a result, L is the
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key value to understand oscillations. In practice, our goal is
to find its smallest possible value to allow steps as large as
possible while guaranteeing convergence.

In the pairwise case, the Hessian of the objective func-
tion is a constant matrix, which we call potential matrix.
Therefore, the highest eigenvalue of the potential matrix is
a valid Lipschitz constant and efficient methods allow to
compute it for moderately sized problems.

In fact, the convergence result presented in [24] is
strongly related to this. Namely, assuming that the potential
matrix is negative semi-definite, is equivalent to assuming
that L < 0 in our formulation. This directly corresponds to
the concavity assumptions on the potentials in [24]. There-
fore, under the assumptions of [24], our algorithm leads to
n = 1, corresponding to the fully-parallel update proce-
dure. In that sense, our procedure is a generalization of the
one proposed by [24].

In the non-pairwise case, the Hessian is not constant, and
the calculation of the Lipschitz constant is not trivial. For
each specific problem, bounds should be derived using the
particular shape of the CRF at hand.

3.3. Adaptive Step Size

Note that the Hessian of the KL-proximal term is diago-
nal with

043, g

Therefore, when some of the ¢; ;s get close to 0, the el-
ements of the Hessian may become very large, especially
when using a constant value for the d} ; as suggested above.
When that happens, the local KL-approximation remains a
valid upper bound of the objective function, but not a tight
enough one, which results in step sizes that are too small for
fast convergence.

This can be reduced by choosing a matrix D? that com-
pensates for this. A simple way to do this would be to scale
the d;l proportionally to max(g;o,...,¢i ,—1) to start
compensating for diagonal terms. However, this method is
still sub-optimal because it ignores the fact that all our vari-
ables lie inside the simplex M. A better alternative is to
bound from below the proximal term by a quadratic func-
tion, but on M rather than on R".

In this paper, we only apply this method to the binary
case, for which we set

diog=di, =dqlogl,-d, (18)

were d is an additional parameter that should be set close to
L. Extending this approach to the multi-label case will be a
topic for future work. In Section 3.4, we provide a different
alternative to performing adaptive anisotropic updates in all
settings.

Intuitively, when the current parameters are close to the
borders of the simplex, the mean parameters are less sensi-
tive to natural parameters, which, therefore, need less damp-
ing. We demonstrate in our experiments that it provides a
way to choose the step size without tuning.

3.4. Momentum

Our approach can easily be extended to incorporate tech-
niques that are known to speed-up gradient descent and
help to avoid local minima, such as the classic momentum
method [28] or the more recent ADAM technique [20]. The
momentum method involves averaging the gradients of the
objective f(x) over the iterations in a momentum vector m
and use it as the direction for the update instead of sim-
ply following the current gradient. To integrate it into our
framework, we replace the gradient V& in Eq. 13 by its
rolling exponentially weighted average m computed as

m't' = ym'+ (1-7%)VEW), (19

with the exponential decay parameter y; € [0; 1]. This sub-
stitution brings the following update rule

07 = nemi +(1—m) -0, (20)
We will refer to this approach as OURS-MOMENTUM.

3.5. ADAM

The ADAM method [20] has become very popular in
deep learning. Our framework makes it easy to use for
mean-field inference as well by appropriately choosing the
matrix D¢ at each step and combining it with the momen-
tum technique.

We define the averaged second moment vector v of the
natural gradient as

vttt = yelfl, 4 VEW@ )i + (1= y2)vl, 2D

where v is initialized to a strictly positive value and 5 €
[0; 1] is an exponential memory parameter for v.

Then, the D? matrix is defined through each of its diag-

onal entries as

iy = \Jviitd+e—1, (22)
where ¢ is a fixed parameters and d controls the damping.
We will refer to this method as OURS—ADAM.

Intuitively it is good at exploring parameter space thanks
to a form of auto-annealing of the gradient. The natural
gradient 0; + VE(q") is zero at a local minimum of the ob-
jective function [17]. Therefore, close to a minimum, the
proximal term D? becomes small, thus allowing more ex-
ploration of the space. On the other hand, after a long period
of exploration with large natural gradients, more damping
will tend to make the algorithm converge.
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4. Experimental Evaluation

In this section, we evaluate our method on a variety of
inference problems and demonstrate that in most cases it
yields faster convergence and better minima. All the code,
including our efficient GPU mean-field inference frame-
work, will be made publicly available.

4.1. Baselines and Variants

We compare several variants of our approach to some of
the baselines we introduced in the related work section. The
baselines we consider are as follows:

e SWEEP. As discussed in Section 2.2.1, it involves se-
quential coordinate descent [5] and is not always com-
putationally tractable for large problems.

e ADHOC. As discussed in Section 2.2.2, it performs par-
allel updates with the ad hoc damping parameter 7 of
Eq. 9 chosen manually.

e FULL-PARALLEL. As also discussed in Sec-
tion 2.2.2, it relies on the inference described in [24].
For example, the popular densecrf framework [23]
uses this approach.

We compare to these the following variants of our approach:

e OURS-FIXED. Damping occurs in the space of nat-
ural parameters instead of mean ones as described in
Section 3.2.

e OURS-ADAPTIVE. Adaptive and anisotropic damp-
ing in the space of natural parameters as described in
Section 3.3.

e OURS-MOMENTUM. Similar to OURS-ADAPTIVE,
but using the momentum method instead of ordinary
gradient descent, as described in Section 3.4. We use
the same parameter value y; = 0.95 for all datasets.

e OURS-ADAM. Similar to OURS—-ADAPTIVE but using
the ADAM method instead of ordinary gradient as de-
scribed in Section 3.5. We use the same parameters as
in the original publication [20], y; = 0.99, 75 = 0.999
and e =1E-8 for all datasets.

All four methods involve a parameter = ﬁ, defined in
Eq. 16 for OURS-FIXED, Eq. 18 for OURS-ADAPTIVE,
Eq. 20 for OURS-MOMENTUM and Eq. 22 for OURS—-ADAM.
Additionally, in Section 4.3 and Fig. 2 we demonstrate that
our method is less sensitive to the choice of this parameter
than its competitors.

4.2. Experimental Setup

We evaluated all the methods first on a set of standard-
ized benchmarks [14]: DBN, containing 108 instances of
deep belief networks (on average 920 variables), GRID,
containing 21 instances of two-dimensional grids (1600

variables), and SEG, containing 100 instances of segmen-
tation problems (230 variables), where each instance is rep-
resented as a binary pairwise random field.

We then consider three realistic Computer Vision tasks
that all involve minimizing a functional of the form given in
Eq. 7. We describe them below.

Characters Inpainting 'We consider character inpainting,
formulated as a binary pairwise random field, Decision Tree
Fields (DTF, [27]). The dataset contains 100 test instances
of occluded characters, and the goal is to restore the oc-
cluded part, as shown in the last row of Fig. 1. We use pre-
computed potentials provided by the authors of [27]. Note,
that this model consists of data-driven potentials, and in-
cludes both short and long-range interactions, which makes
it particularly interesting from the optimization perspective.

People Detection We consider detecting upright people in
a multi-camera settings, using the Probabilistic Occupancy
Map approach (POM, [13]), that relies on a random field
with high-order repulsive potentials, which models back-
ground subtraction signal given the presences of people in
the environment. We evaluate it on the ISSIA [9] dataset,
which contains 3000 frames of a football game, captured
by 6 cameras located on two sides of the field. The origi-
nal work [ 3] does not explicitly mention it, but the publicly
available implementation uses the ADHOC damping method.
We implement all our methods and remaining baselines di-
rectly in this code of [13].

Semantic Segmentation We consider semantic segmen-
tation on PASCAL VOC 2012 dataset [12], which de-
fines 20 object classes and 1 background class. We based
our evaluation on DeepLab-CRF model [8], which is cur-
rently one of the best-performing methods. This model
uses CNNs to obtain unary potentials, and then employs
densecrf of [24] with dense pairwise potentials. How-
ever, this basic CRF model does not contain any strong re-
pulsive terms, and thus we expect densecrf’s standard
inference, FULL-PARALLEL, to work well. To improve
performance, we additionally introduced co-occurrence po-
tentials [32], which, as we will show, violate the conditions
assumed in densecrf, but can still be successfully han-
dled by our method. Intuitively, these co-occurrence terms
put priors on the sets of classes that can appear together. We
made minor modifications of densecrf to support both
our inference and co-occurrence potentials.

We performed all the experiments on Intel(R) Xeon(R)
CPU E5-2680 2.50GHz, and a GPU GeForce GTX TITAN
X (12GB GRAM).

4.3. Comparative Results

In order to understand how the methods behave in prac-
tical settings, when the available computational time is lim-
ited, we evaluate all methods for several computational bud-
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DBN GRID SEG
method 0.05s 0.30s 1.00s 0.05s 0.30s 1.00s 0.05s 0.30s 1.00s
SWEEP -112.94  -2088.07 -2138.13 -5540.59  -16675.55 -18592.26 | 78.81 75.50 75.50
FULL-PARALLEL | -1952.52 -1951.54 -1942.86 | -2564.39 -2777.33 -2439.08 75.66 75.66 75.66
ADHOC -2047.31  -2047.31 -2047.31 | -18345.42 -18348.80 -18349.03 | 76.10 75.66 75.66
OURS-FIXED -2081.91 -2081.91 -2081.91 | -18213.81 -18219.42 -18219.45 | 77.17 75.61 75.61
OURS-ADAPTIVE | -2125.48 -2130.61 -2130.61 | -18245.93 -18252.48 -18252.48 | 77.68 75.64 75.61
OURS-MOMENTUM | -2260.98 -2362.14 -2374.51 | -18143.48 -19074.45 -19184.37 | 7435 73.75 173.75
OURS-ADAM -2107.98 -2107.93 -2107.93 | -18617.06 -18732.59 -18740.36 | 72.37 7232 72.32

Table 1. Results for KL minimization for three benchmark datasets [

]: DBN (deep belief networks), GRID (two-dimensional grids), SEG

(binary segmentation). All the numbers are KL divergence (lower is better) averaged over the instances.

~

DBN (0.05s) DBN (0.3s) GRID (0.05s)

Figure 2. Sensitivity of OURS-FIXED (red) and OURS—-ADAPTIVE (dashed red) vs ADHOC (blue) to the damping parameter n =

GRID (0.3s) SEG(0.05s) SEG(0.3s)

1

14+d*

We report KL-divergence (lower is better) vs the value of the parameter, both in log-space.
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Figure 3. Convergence results. (a) OURS—ADAM and OURS-MOMENTUM converge very fast to a much better minima. (b) OURS-FIXED
outperforms ADHOC both in terms of speed of convergence and the value of the objective. (c) OURS—ADAM and OURS-FIXED show the
best performance. The former converges a bit slower, but in the end provide slightly better minima. ADHOC for this dataset converges

rather fast, but fails to find a better optima.

gets. The shortest budget corresponds to the early-stopping
scenario after few iterations, the longest one roughly mod-
els the time until convergence, and the middle one is around
20-30% of the longest.

Benchmarks Quantitative results are given in Table 1.
Our methods systematically outperform the ADHOC damp-
ing method. The SWEEP method usually provides good per-
formance, but is generally slow due to its sequential nature.

Fig. 2 shows that our methods are less sensitive to damp-
ing parameter changes than ADHOC. In Fig. 2, the verti-
cal orange lines corresponds to the choice of the damping
parameter according to d = L, which can be computed
directly by the power-method. Interstingly, for the GRID
dataset, which includes strong repulsive potentials, algo-
rithms do not produce reasonable results when no damping
is applied. On the other hand, for the segmentation task,
SEG, all the algorithms work well even without damping,
in accordance with the results of [24] or Section 3.2.

Characters Inpainting Quantitative results in terms of
average pixel accuracy and KL-divergence are given in Ta-
ble 2 and Fig. 3 (a). Our method, especially when used with
more advanced gradient descent schemes, outperforms all
the baselines. SWEEP shows relatively good performance,
but does not scale as well in terms of the running time. See
the bottom row of Fig. 1 for an example of a result.

People Detection Quantitative results, presented in Ta-
ble 3 and Fig. 3 (b), demonstrate that our method with a
fixed step size, OURS-FIXED, brings both faster conver-
gence and better performance. Thanks to our optimization
scheme, the time required to get a Multiple Object Detec-
tion Accuracy (MODA, [4]) within 3% of the value at con-
vergence is reduced by a factor of two. This can be of big
practical importance for surveillance applications of the al-
gorithm [3, 2], in which it is required to run in real-time.
SWEEP exhibits much worse performance than our parallel
method because of its greedy behavior.
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0.05s 0.3s 3s

method KL PA KL PA KL PA

SWEEP -6342.56 54.57 -25233.54  58.38 -49519.33  62.50
FULL-PARALLEL | -49516.98 60.99 -49519.27 62.00 -49519.33 62.05
ADHOC -49514.27  61.46 -49520.09  62.15 -49520.20  62.17
OURS-FIXED -49505.59  60.99 -49520.33  62.26 -49521.71 62.35
OURS-ADAPTIVE | -49503.43  60.93 -49520.14  62.32 -49522.49  62.60
OURS-MOMENTUM | -49513.57  63.69 -49536.67  65.26 -49540.76  65.95
OURS-ADAM -49516.02  65.36 -49538.84  67.03 -49544.58  67.12

Table 2. Results for characters inpainting problem [

] based on DTFs. PA is the pixel accuracy for the occluded region (bigger is better).

Our methods outperform the baselines by a margin of 3-5%. Since FULL-PARALLEL is not damped, it gets to low KL-divergence value

quickly, however the actual solution is significantly worse.

0.5s 1.3s 5s
method KL MODA KL MODA KL MODA
SWEEP 1865.43 0.630 1795.66 0.656 1795.60 0.656
FULL-PARALLEL 2573.79 0.000 2573.79 0.000 8500.90 0.030
ADHOC 2573.79 0.308 1760.02 0.781 1753.71 0.829
OURS-FIXED 1783.63 0.626 1754.55 0.802 1753.63 0.829
OURS-MOMENTUM 1931.36 0.040 1797.19 0.650 1753.83 0.826
OURS-ADAM 2008.52 0.021 1813.66 0.501 1754.52 0.824

Table 3. Results for people detection task [9] based on POM [

]. OURS-FIXED outperforms the baselines and adaptive methods. This

means that this problem does not require more sophisticated parameter exploration techniques.

5s 15s 50s

method KL /U KL /U KL I/U

FULL-PARALLEL [o] — 67.18 — 67.70 — 68.00
OURS-ADAM [0] — 66.45 — 67.50 — 68.07
FULL-PARALLEL -3129799 67.21 -3134437 67.72 -3133010 68.01
ADHOC -3129469 67.19 -3134557 67.73 -3136865 68.04
OURS-FIXED -3100079 67.76 -3135225 68.18 -3138206 68.44
OURS-MOMENTUM -3060405 66.20 -3128121 67.39 -3136543 68.18
OURS-ADAM -3091787 67.08 -3131624 68.02 -3138335 68.47

Table 4. Results for semantic segmentation problem [

] based on DeepLab-CRF [&]. For all the budgets, our method obtains better

segmentation accuracy. Again, FULL-PARALLEL obtains lower KL faster, with a price of reduced performance. On the top, we provide
results for the original DeepLab-CRF model without co-occurrence potentials (denoted by [0]), for which the KL divergence has therefore

a different meaning and is not shown.

Semantic Segmentation Quantitative results are pre-
sented in Table 4 and Fig. 3 (c). We observe that a simi-
lar oscillation issue as noted by [32] starts happening when
the FULL-PARALLEL method is used in conjunction with
co-occurrence potentials, producing even worse results than
without those. Using our convergent inference method fixes
oscillations and provides an improvement of 0.5% in the
average Intersection over Union measure (I/U) compared
to the basic method without co-occurrence. This is a sig-
nificant improvement that would be sufficient to increase
the position of an algorithm by 2 or 3 places in the official
ranking [12]. What it represents is a big improvement in
performance, as the ones shown in Fig 1, for at least 30-40
images out of total 1449. Note also, that we obtain this im-
provement with minimal changes in the original code. By
contrast, authors [8] get similar or smaller improvements
by significantly augmenting the training set or by exploit-
ing multi-scale features, which leads to additional compu-
tational burden.

5. Discussion and Future Work

We have presented a principled and efficient way to do
parallel mean-field inference in discrete random fields. We
have demonstrated that proximal gradient descent is a pow-
erful theoretical framework for mean-field inference, which
unifies and sheds light on existing approaches. Moreover,
it naturally allows to incorporate existing adaptive gradient
descent techniques, such as ADAM, to mean-field methods.
As shown in our experiments, it often brings dramatic im-
provements in performance. Additionally, we have demon-
strated, that our approach is less sensitive to the choice of
parameters.

Our method makes it possible to use mean-field infer-
ence with a wider range of potential functions, which was
previously unachievable due to the lack of convergent opti-
mization. Thus, there is a large amount of possible future
applications of our approach, especially in the tasks where
higher-order and repulsive potentials can be useful, not only
in segmentation, but also in object localization.
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