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Abstract

Recent work in salient object detection has considered

the incorporation of depth cues from RGB-D images. In

most cases, depth contrast is used as the main feature. How-

ever, areas of high contrast in background regions cause

false positives for such methods, as the background fre-

quently contains regions that are highly variable in depth.

Here, we propose a novel RGB-D saliency feature. Local

Background Enclosure (LBE) captures the spread of angu-

lar directions which are background with respect to the can-

didate region and the object that it is part of. We show that

our feature improves over state-of-the-art RGB-D saliency

approaches as well as RGB methods on the RGBD1000 and

NJUDS2000 datasets.

1. Introduction

Visual attention refers to the ability of the human visual

system to rapidly identify scene components that stand out,

or are salient, with respect to their surroundings. Early work

on computing saliency aimed to model and predict human

gaze on images [12]. Recently the field has expanded to in-

clude the detection of entire salient regions or objects [1,3].

These techniques have many computer vision applications,

including compression [10], visual tracking [19], and image

retargeting [18].

The saliency of a region is usually obtained by measuring

contrast at a local [12] and/or global scale [7]. The major-

ity of previous approaches compute contrast with respect to

appearance-based features such as colour, texture, and in-

tensity edges [6, 13]. However, recent advances in 3D data

acquisition techniques have motivated the adoption of struc-

tural features, improving discrimination between different

objects with similar appearance.

RGB-D saliency methods typically incorporate depth di-

rectly, or use depth in a contrast measurement framework

[11,15,22–24], where contrast is computed as the difference

between the means or distributions of foreground and back-

ground depth. Use of depth contrast in conjunction with

colour contrast, various priors, and refinement schemes pro-

(a) RGB (b) Depth (c) Ground Truth

(d) Our Method (e) GP [23]

(f) ACSD [15] (g) LMH [22]

Figure 1. Saliency output on a depth image where foreground

depth contrast is relatively low. Our method measures background

enclosure of the object to overcome this problem.

duces state-of-the-art results [23]. However, depth contrast

is prone to false positives from background regions with

large depth difference. Figure 1 shows an example in which

the foreground has relatively low contrast, making it chal-

lenging to detect using existing depth features. Contrast in

background regions is unavoidable, and in general contrast

in depth scenes can be dependent on random factors such as

object placement and viewpoint. Although Ju et al. [15] has

started to investigate depth contrast for whole object struc-

tures, false positives still appear due to nearby regions with

large depth difference as shown in Figure 1f.

Aiming to address this issue, we propose the Local Back-

ground Enclosure (LBE) feature, which directly measures

salient structure from depth. We note that salient objects

tend to be characterised by being locally in front of sur-

rounding regions, and the distance between an object and

the background is not as important as the fact that the back-

ground surrounds the object for a large proportion of its

boundary. The existence of background in a large spread of

angular directions around the object implies pop-out struc-

ture and thus high saliency. Conversely, background regions

are less likely to exhibit pop-out structure. Thus we pro-
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pose a depth saliency feature that incorporates two compo-

nents. The first, which is proportional to saliency, is the

angular density of background around a region, encoding

the idea that a salient object is in front of most of its sur-

roundings. The second feature component, which is in-

versely proportional to saliency, is the size of the largest

angular region containing only foreground, since a large

value implies significant foreground structure surrounding

the object. This is the first time angular distributions of

background directions have been explicitly incorporated for

depth saliency. This feature is shown to be more robust than

existing depth contrast-based measures. Further, we vali-

date the proposed depth feature in a saliency system. We

demonstrate that our depth feature out-performs state-of-

the-art methods when combined with a depth prior, spatial

prior, background prior, and Grabcut refinement.

2. Related Work

RGB-D saliency computation is a rapidly growing field,

offering object detection and attention prediction in a man-

ner that is robust to appearance. Early works use depth as

a prior to reweight 2D saliency maps [4, 18, 27]. These ap-

proaches do not consider relative depth, and work best when

the range of salient objects is closer than the background.

More recently, the effectiveness of global contrast for

RGB salient object detection [7] has inspired similar ap-

proaches for RGB-D saliency. Many existing methods mea-

sure global depth contrast, usually combined with colour

and other modalities, to compute saliency [11, 15, 21–24] .

While the majority of previous work computes depth con-

trast using absolute depth difference between regions, some

methods instead use signed depth difference, improving re-

sults for salient objects in front of background [8]. Ju et

al. [15] observe that while a salient object should be in front

of its surrounds, patches on that object may be at a similar

depth. However, as with other depth contrast methods, the

primary feature of [15] is the depth difference between the

foreground and background. Depth contrast methods are

unlikely to produce good results when a salient object has

low depth contrast compared to the rest of the scene (see

Figure 1).

While depth contrast measurement forms the founda-

tion of many approaches, it is common practice to enhance

the resulting saliency maps by applying various priors and

other refinement steps. The use of spatial and depth pri-

ors is widespread in existing work [5, 11, 15, 22, 24]. Ren

et al. [23] explore orientation and background priors for de-

tecting salient objects, and use PageRank and MRFs to opti-

mize their saliency map. Peng et al. [22] incorporate object

bias, and optimize their saliency map using a region grow-

ing approach. Ju et al. [15] apply Grabcut segmentation to

refine the boundaries of the generated saliency map.

Figure 2. Illustration of the local background sets (blue) for four

different candidate regions (green). In this example the neighbour-

hood radius is r = 200 pixels, and the depth cutoff is t = σ/2.

Note that patches lying on salient objects tend to be enclosed by

the local background set.

3. Local Background Enclosure

In this section we introduce the Local Background En-

closure feature, which quantifies the proportion of the ob-

ject boundary that is in front of the background. The

salient object detection system will be described in Section

4. Given an RGB-D image with pixel grid I(x, y), we aim

to segment the pixels into salient and non-salient pixels. For

computational efficiency and to reduce noise from the depth

image, instead of directly working on pixels, we overseg-

ment the the image into a set of patches according to their

RGB value. We denote the patches as P ⊂ I . We use

SLIC [2] to obtain the superpixel segmentation, although

our method is flexible to the type of segmentation method

used.

Salient objects tend to be locally in front of their sur-

roundings, and consequently will be mostly enclosed by a

region of greater depth, as shown in Figure 2. We pro-

pose the Local Background Enclosure feature denoted by

S based on depth. This feature employs an angular density

component, F , and an angular gap component, G, to mea-

sure the proportion of the object boundary in front of the

background.

3.1. Angular Density Component

We wish to measure the angular density of the regions

surrounding P with greater depth than P , referred to as the

local background. We consider a local neighbourhood NP

of P , consisting of all patches within radius r of P . That is,

NP = {Q | ‖cP − cQ‖2 < r}, where cP and cQ are patch

centroids.

We define the local background B (P, t) of P as the

union of all patches within a neighbourhood NP that have

a mean depth above a threshold t from P .

B (P, t) =
⋃

{P ′ ∈ NP |D (P ′) > D (P ) + t} , (1)

where D (P ) denotes the mean depth of pixels in P .

We define a function f (P,B (P, t)) that computes the

normalised ratio of the degree to which B (P, t) encloses
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Figure 3. Illustration of the background enclosure feature eval-

uated on the depth image from Figure 1. (a) The density func-

tions computed at image locations marked by the green points

with neighbourhood boundaries marked by dotted lines. The blue

fill denotes angular regions containing points with greater depth

than t = σ/2 from the center depth, with the maximum gap

between these regions marked in red. The values of the angular

density component f , the angular gap component g, and saliency

s = f · (1 − g) for t = σ/2 are marked. (b) The distribution

functions F , G, and final LBE saliency S = F ·G at each point.

P .

f (P,B (P, t)) =
1

2π

∫ 2π

0

I (θ, P,B (P, t)) dθ, (2)

where I (θ, P,B (P, t))) is an indicator function that equals

1 if the line passing through the centroid of patch P with

angle θ intersects B (P, t), and 0 otherwise. Note that we

assume that P has a high compactness [2]. A visualisation

of f is shown in Figure 3.

Thus f (P,B (P, t)) computes the angular density of the

background directions. Note that the threshold t for back-

ground is an undetermined function. In order to address

this, as frequently used in probability theory, we employ the

distribution function, denoted as F (P ), instead of the den-

sity function f , to give a more robust measure. We define

F (P ) as:

F (P ) =

∫ σ

0

f (P,B (P, t)) dt, (3)

where σ is the standard deviation of the mean patch depths

within the local neighbourhood of P . This is given by

σ2 = 1
|B(P,0)|

∑

Q∈B(P,0)

(

D(Q)−D
)2

, where D =
1

|B(P,0)|

∑

Q∈B(P,0) D(Q). This implicitly incorporates in-

formation about the distribution of depth differences be-

tween P and its local background.

3.2. Angular Gap Component

In addition to the angular density F (P ), we introduce

the angular gap statistic G(P ). As shown in Figure 3, even

though P2 and P3 have similar angular densities, we would

expect P2 to have a significantly higher saliency since the

background directions are more spread out. To capture this

structure, we define the function g (P,Q) to find the largest

angular gap of Q around P and incorporate this into the

saliency score.

g (P,Q) =
1

2π
· max
(θ1,θ2)∈Θ

{|θ1 − θ2|} , (4)

where Θ denotes the set of boundaries (θ1, θ2) of angular

regions that do not contain background:

Θ = {(θ1, θ2) | I (θ, P,Q) = 0 ∀θ ∈ [θ1, θ2]}. (5)

A visualisation of g is shown in Figure 3.

We define the angular gap statistic as the distribution

function of 1− g:

G(P ) =

∫ σ

0

1− g (P,B (P, t)) dt. (6)

The final Local Background Enclosure value is given by:

S(P ) = F (P ) ·G(P ). (7)

Figure 8 shows the generated saliency map on some ex-

ample images. Note that the pop-out structure correspond-

ing to salient objects is correctly identified. Depth contrast

features fail to detect the objects, or exhibit high false posi-

tives.

4. Saliency Detection System

We construct a system for salient object detection us-

ing the proposed feature. Specifically, we reweight the Lo-

cal Background Enclosure feature saliency using depth and

spatial priors, and then refine the result using Grabcut seg-

mentation. An overview of our system is given in Figure 4.

4.1. Depth, Spatial, and Background Prior

Studies report that absolute depth is an important com-

ponent of pre-attentive visual attention, with closer objects

more likely to appear salient to the human visual system

[16]. Accordingly, scaling saliency by depth is a common

refinement step in previous work [4,5,9,11,15,15,21–23,25,
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Figure 4. Overview of our saliency detection system. Given an

RGB-D image and superpixel segmentation, we first compute our

Local Background Enclosure feature, then apply depth, spatial,

and background priors, and finally refine the result using Grabcut

segmentation.

27]. We perform absolute depth reweighting using a depth

prior D(x, y) to modulate the saliency of pixels with depth

greater than the median depth of the image [15].

Another widely used prior is spatial bias, based on the

tendency of the human visual system to fixate on objects

near the center of an image [26]. Existing saliency methods

commonly incorporate a center bias term to model this ef-

fect [5, 11, 15, 22, 24]. We incorporate this idea into our

system, applying a Gaussian G(x, y) to re-weight patch

saliency based on the distance between the pixel (x, y) and

the image center.

Recent works also incorporate a background prior based

on some measure of boundary connectedness to improve de-

tector precision [22, 23]. We use the background prior map

B(x, y) described in [28] to reweight saliency.

The low-level saliency map with priors applied is thus

given by:

Sb = S · D · G · B (8)

4.2. Grabcut Segmentation

The saliency map Sb may contain inaccurate foreground

boundaries for parts of the object that do not exhibit strong

pop-out structure. Boundary refinement is a common post-

processing step employed in existing salient object detec-

tion systems (e.g. [5, 11, 20, 22, 23]). Similar to [20], we

use Grabcut based boundary refinement to improve object

boundaries using appearance information. The foreground

model is initialized with a binary mask obtained by apply-

ing a threshold α0 to Sb. The output Grabcut segmentation

mask A is used to prune non-foreground areas from Sb. The

refined saliency map is thus given by

Sg = A · Sb. (9)

4.3. Implementation Details

The discrete version of the angular density function f is

implemented using a histogram-based approximation, de-

noted as f̃ . Let h (i, P,B (P, t)) be an n bin polar occu-

pancy histogram, where bin i is 1 if the corresponding an-

gular range contains an angle between the centroids of P
and a patch in B (P, t), and 0 otherwise. We set f̃ to be

equal to the fill ratio of h.

f̃ =
1

n

n
∑

i=1

h (i, P,B (P, t)) . (10)

The distribution function F is computed numerically us-

ing F̃ by sampling f̃ at m equally spaced points across the

integration range such that:

F (P ) =
1

m

m
∑

i=1

f̃

(

P,B

(

P,
i · σ

m

))

. (11)

Similarly, we define G̃ to evaluate G:

G̃(P ) =
1

m

m
∑

i=1

1−
1

2π
· g

(

P,
i · σ

m

)

. (12)

5. Experiments

The performance of our saliency system is evalu-

ated on two datasets for RGB-D salient object detection.

RGBD1000 [22] contains 1000 RGB and structured light

depth images. NJUDS2000 [15] contains 2000 RGB and

disparity images computed from stereo image pairs.

The proposed Local Background Enclosure feature is

compared against the following state-of-the art contrast-

based depth features: multi-scale depth-contrast (LMH-

D) [22]; global depth contrast (GP-D) [23]; and ACSD [13].

We also include versions of LMH-D and GP-D with signed

depth, denoted LMH-SD and GP-SD respectively, where

neighbouring patches with a lower average depth do not

contribute to the contrast measure of a patch. Additionally,

in order to verify the contribution of using the distribution

functions, we compute the product of the density functions

f(P, t) · g(P, t) with fixed threshold t = σ/2.

We then evaluate the contribution of prior application

and Grabcut refinement on our salient object detection sys-

tem on both datasets. Finally, we compare our salient object

detection system with three state-of-the-art RGB-D salient

object detection systems: LMH [22], ACSD [15], and a re-

cently proposed method that exploits global priors, which

we refer to as GP [23]. We also include comparisons with
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Figure 5. PR curves showing performance of LBE feature against contrast-based depth features on (a) RGBD1000 and (b) NJUDS2000.

PR curves showing the effect of each component of the saliency system on (c) RGBD1000 and (d) NJUDS2000. P and GC refer to prior

application and Grabcut refinement respectively.
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Figure 6. Quantitative comparisons of performance over NJUDS2000 dataset. PR curve of our saliency system against state-of-the-

art RGB-D saliency systems on (a) RGBD1000 and (b) NJUDS2000. F-measure of the different systems on (c) RGBD1000 and (d)

NJUDS2000.

the state-of-the-art 2D saliency algorithms DRFI [14] and

DSR [17], which were found to be top ranking methods by

a recent study [3].

5.1. Evaluation Metrics

We present the precision-recall curve and mean F-score

to evaluate algorithm performance. The F-score is com-

puted from the saliency output using an adaptive threshold

equal to twice the mean of the image [1]. Note that the F-

score is calculated as:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(13)

where β = 0.3 to weigh precision more than recall [1].

5.2. Experimental Setup

We set n = 32 histogram bins and m = 10 evaluation

steps in our implementation of F and G respectively. These

two values were found to provide a good trade-off between

accuracy and efficiency for general use. The radius of the

neighbourhood NP should be set to equal the expected ra-

dius of the largest object to detect, thus we set it to half the

image diagonal for general use. We use SLIC [2] on the

colour image to generate the set of patches, with the num-

ber of patches set to the length of the diagonal of the image

in pixels.

Our saliency method has one parameter - the threshold

α0 used to generate the foreground mask for Grabcut ini-

tialisation. We empirically set this to α0 = 0.8 in the exper-

iments.

5.3. Results

The LBE feature outperforms the contrast-based depth

features used in state-of-the-art systems (Figures 5a and 5b).

The performance of the depth features of GP and LMH is

significantly improved when excluding patches with lower

depth than the candidate patch during contrast computation.

It can also be seen that using the distribution function gives

improved results compared to using the density functions

evaluated at a fixed threshold t. Figures 5c and 5d show the

increase in performance from applying priors and Grabcut

segmentation to the LBE feature.

Compared to contrast-based depth features, the LBE fea-

ture reduces false negatives when the foreground has rela-

tively low depth contrast (Figure 7 rows 1-2), and decreases

false positives from high background contrast (Figure 7

rows 3-5).

Figure 6 shows that our saliency system outperforms all
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(a) Colour (b) Depth (c) Ground Truth (d) LBE (Ours) (e) ACSD [15] (f) GP-D [23] (g) GP-SD [23] (h) LMH-D [22] (i) LMH-SD [22]

Figure 7. Comparison of the raw LBE feature with depth contrast-based features ACSD [15], GP-D and GP-SD [23], and LMH-D and

LMH-SD [22]. The last row displays a failure case.

other state-of-the-art RGB-D salient object detection sys-

tems. Our saliency system achieves the highest F-score

on both datasets, with GP obtaining the second best per-

formance. In addition to the highest F-score, our method

exhibits the highest recall among the depth based methods

on both datasets, reflecting the fact that our depth feature

correctly identifies a greater portion of the foreground com-

pared to contrast-based methods. From Figure 6a we see

that our method has the highest PR curve on RGBD1000.

Figure 6b shows that our system has high precision up to

around 0.65 recall, with superior performance in the re-

gion of high precision. This demonstrates that our feature is

able to identify salient structure from depth more effectively

than existing contrast-based methods. With the exception

of DRFI on RGBD1000, the RGB methods perform worse

than most depth-aware methods.

Figure 8 shows the output of our salient detection sys-

tem compared with state-of-the-art methods. Note that the

other methods tend to have a high number of false posi-

tives due to depth contrast in background regions, for exam-

ple depth change across a flat table is registered as salient

by ACSD in the second row. The angular statistics em-

ployed by our depth feature provide a more robust measure

of salient structure.

Failure Cases Since our method measures pop-out struc-

ture, it does not produce good results when the salient object

is surrounded in all directions by background with lower

depth. An example is shown in Figure 7 row 6. This is a

rare occurrence, and the other depth saliency methods with

the exception of GP-D also produce poor results in this case.

In these situations, it is questionable whether the object can

be considered to be salient. Note that GP-D produces the

best results in this image because it does not assume that

salient objects are in front of the background, however this

leads to poor performance on the datasets.

6. Conclusion

In this paper, we have proposed a novel depth feature

that exploits depth background enclosure to detect salient

objects in RGB-D images. We incorporate this feature into

a salient object detection system using depth prior, spatial

prior, and Grabcut refinement. Our approach out-performs

existing methods on two publicly available RGB-D salient

object detection datasets.
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(a) RGB (b) Depth (c) G. T. (d) Ours (e) GP [23] (f) ACSD [15] (g) LMH [22]

Figure 8. Comparison of output saliency maps produced by our salient object detection system against the output of GP [23], ACSD [15],

and LMH [22]. Our LBE depth feature allows for a more accurate final saliency map compared to methods using contrast-based depth

features. Note that G. T. denotes Ground Truth.

2349



References

[1] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.

Frequency-tuned salient region detection. In CVPR, pages

1597–1604, 2009.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. SLIC superpixels compared to state-of-the-art

superpixel methods. PAMI, 34(11):2274–2282, 2012.

[3] A. Borji, M.-M. Cheng, H. Jiang, and J. Li. Salient object

detection: A benchmark. TIP, 24(12):5706–5722, 2015.

[4] C. Chamaret, S. Godeffroy, P. Lopez, and O. Le Meur. Adap-

tive 3d rendering based on region-of-interest. In IS&T/SPIE

Electronic Imaging, pages 75240V–75240V. International

Society for Optics and Photonics, 2010.

[5] F. Chen, C. Lang, S. Feng, and Z. Song. Depth informa-

tion fused salient object detection. In ICIMCS, pages 66:66–

66:70. ACM, 2014.

[6] M.-M. Cheng, J. Warrell, W.-Y. Lin, S. Zheng, V. Vineet, and

N. Crook. Efficient salient region detection with soft image

abstraction. In ICCV, pages 1529–1536, 2013.

[7] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and S.-

M. Hu. Global contrast based salient region detection. In

CVPR, pages 409–416, 2011.

[8] Y. Cheng, H. Fu, X. Wei, J. Xiao, and X. Cao. Depth en-

hanced saliency detection method. In ICIMCS, pages 23:23–

23:27, 2014.

[9] K. Desingh, K. M. Krishna, D. Rajan, and C. Jawahar. Depth

really matters: Improving visual salient region detection with

depth. In BMVC, 2013.

[10] C. Guo and L. Zhang. A novel multiresolution spatiotem-

poral saliency detection model and its applications in image

and video compression. TIP, 19(1):185–198, 2010.

[11] J. Guo, T. Ren, J. Bei, and Y. Zhu. Salient object detection

in RGB-D image based on saliency fusion and propagation.

In ICIMCS, pages 59:1–59:5, 2015.

[12] L. Itti, C. Koch, and E. Niebur. A model of saliency-based vi-

sual attention for rapid scene analysis. PAMI, 20(11):1254–

1259, 1998.

[13] B. Jiang, L. Zhang, H. Lu, C. Yang, and M.-H. Yang.

Saliency detection via absorbing markov chain. In ICCV,

pages 1665–1672, 2013.

[14] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li.

Salient object detection: A discriminative regional feature

integration approach. In CVPR, pages 2083–2090, 2013.

[15] R. Ju, L. Ge, W. Geng, T. Ren, and G. Wu. Depth saliency

based on anisotropic center-surround difference. ICIP, 2014.

[16] C. Lang, T. V. Nguyen, H. Katti, K. Yadati, M. Kankanhalli,

and S. Yan. Depth matters: Influence of depth cues on visual

saliency. In ECCV, pages 101–115. 2012.

[17] X. Li, H. Lu, L. Zhang, X. Ruan, and M.-H. Yang. Saliency

detection via dense and sparse reconstruction. In ICCV,

2013.

[18] W.-Y. Lin, P.-C. Wu, and B.-R. Chen. Image retargeting us-

ing depth enhanced saliency. 3DSA2013, 7:1, 2013.

[19] V. Mahadevan and N. Vasconcelos. Saliency-based discrim-

inant tracking. In CVPR, pages 1007–1013, 2009.

[20] P. Mehrani and O. Veksler. Saliency segmentation based on

learning and graph cut refinement. In BMVC, pages 1–12,

2010.

[21] Y. Niu, Y. Geng, X. Li, and F. Liu. Leveraging stereopsis for

saliency analysis. In Computer Vision and Pattern Recog-

nition (CVPR), 2012 IEEE Conference on, pages 454–461,

2012.

[22] H. Peng, B. Li, W. Xiong, W. Hu, and R. Ji. Rgbd salient

object detection: a benchmark and algorithms. In ECCV,

pages 92–109. 2014.

[23] J. Ren, X. Gong, L. Yu, W. Zhou, and M. Yang. Exploit-

ing global priors for RGB-D saliency detection. In CVPRW,

pages 25–32, 2015.

[24] H. Song, Z. Liu, H. Du, G. Sun, and C. Bai. Saliency detec-

tion for rgbd images. In ICIMCS, page 72, 2015.

[25] Y. Tang, R. Tong, M. Tang, and Y. Zhang. Depth incorporat-

ing with color improves salient object detection. The Visual

Computer, pages 1–11, 2015.

[26] P.-H. Tseng, R. Carmi, I. G. Cameron, D. P. Munoz, and

L. Itti. Quantifying center bias of observers in free viewing

of dynamic natural scenes. Journal of Vision, 9(7):4, 2009.

[27] Y. Zhang, G. Jiang, M. Yu, and K. Chen. Stereoscopic visual

attention model for 3d video. In Advances in Multimedia

Modeling, pages 314–324. Springer, 2010.

[28] W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency optimization

from robust background detection. In CVPR, pages 2814–

2821, 2014.

2350


