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Abstract

In this paper, we propose a new unsupervised deep learn-

ing approach called DeepBit to learn compact binary de-

scriptor for efficient visual object matching. Unlike most

existing binary descriptors which were designed with ran-

dom projections or linear hash functions, we develop a deep

neural network to learn binary descriptors in an unsuper-

vised manner. We enforce three criterions on binary codes

which are learned at the top layer of our network: 1) min-

imal loss quantization, 2) evenly distributed codes and 3)

uncorrelated bits. Then, we learn the parameters of the net-

works with a back-propagation technique. Experimental re-

sults on three different visual analysis tasks including image

matching, image retrieval, and object recognition clearly

demonstrate the effectiveness of the proposed approach.

1. Introduction

Feature descriptor plays an important role in computer

vision [28], which has been widely used in numerous com-

puter vision tasks such as object recognition [10, 26, 42],

image classification [15, 52] and panorama stitching [5]. A

desirable feature descriptor should fulfill two essential prop-

erties: (1) high quality representations, and (2) low compu-

tational cost. A feature descriptor is desired to capture im-

portant and distinctive information in an image [26, 28] and

also to be robust to various image transformations [26, 27].

On the other hand, highly efficient descriptor enables ma-

chines to run in real-time, which is also important for re-

trieving image in a large corpus [37], or detecting objects

with mobile devices [43, 50].

Over the past decade, high quality descriptors such as the

rich features learned from the deep Convolutional Neural

Networks (CNN) [20, 32], and the representative SIFT de-

scriptor [26], have been widely explored. These descriptors

demonstrate superior discriminability, and bridge the gap

between low-level pixels and high-level semantic informa-
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Figure 1: The basic idea of our proposed method. We en-

force three criterions on the binary descriptors, and opti-

mize the parameters of the network with back-propagation.

Our approach dose not require labeled training data and is

more practical to real-world applications in comparison to

supervised binary descriptors.

tion [44]. However, they are high-dimensional real-valued

descriptors, and usually require high computational cost.

In order to reduce the computational complexity, sev-

eral lightweight binary descriptors have been recently pro-

posed such as BRIEF [6], ORB [33], BRISK [22], and

FREAK [1]. These binary descriptors are highly efficient

to storing and matching. Given compact binary descrip-

tors, one can rapidly measure the similarity of the images

by computing the Hamming distance between binary de-

scriptors via XOR bitwise operations. Since these early bi-

nary descriptors are computed by simple intensity compar-

isons, they are usually unstable and sensitive to scales, rota-

tions, and noises. Some previous works [9, 40, 48, 53, 54]

improved the binary descriptors by encoding the similarity

relationship during optimization. However, the success of
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these methods is mainly attributed to pair-wised similarity

labels. In other words, their methods is unfavourable in the

case when training data do not have label annotations.

In this work, we raise a question - can we learn binary

descriptor from data without labels? Inspiring from the re-

cent advancement of deep learning, we propose an effective

deep learning approach, dubbed DeepBit, to learn compact

binary descriptors. We enforce three important criterions

on the learned binary descriptor, and optimize the param-

eters of the network with back-propagation. We employ

our approach on three different visual analysis tasks includ-

ing image matching, image retrieval and object recognition.

Experimental results clearly demonstrate that our proposed

method outperforms state-of-the-arts.

2. Related Work

Binary Descriptors: Earlier works related to binary

descriptors can be traced back to BRIEF [6], ORB [33],

BRISK [22], and FREAK [1]. These binary descriptors

are built upon hand-crafted sampling patterns, and a set of

pairwise intensity comparisons. While these descriptors are

efficient, their performance is limited because pairwise in-

tensity comparison is sensitive to the scale and geometric

transformation. To address these limitations, several super-

vised approaches [3, 9, 38, 39, 41, 50, 53] have been pro-

posed to learn binary descriptors. D-BRIEF [41] encodes

the desired similarity relationships and learns a project ma-

trix to compute discriminative binary features. On the other

hand, Local Difference Binary (LDB) [50, 51] applies Ad-

aboost to select optimal sampling pairs. Linear Discrimi-

nat Analysis (LDA) is also applied to learn binary descrip-

tors [14, 38]. Recently proposed BinBoost [39, 40] learns

a set of projection matrix using the boosting algorithm, and

achieves state-of-the-art performance on patches matching.

While these approaches have achieved impressive perfor-

mance, their success is mainly attributed to pair-wise learn-

ing with similarity labels, and is unfavorable for the case

when transferring the binary descriptor to a new task.

Unsupervised hashing algorithms learn compact binary

descriptors whose distance is correlated to the similarity re-

lationship of the original input data [2, 14, 34, 46]. Lo-

cality Sensitive Hashing (LSH) [2] applies random projec-

tions to map original data into a low-dimensional feature

space, and then performs a binarization. Semantic hashing

(SH) [34] builds a multi-layers Restricted Boltzmann Ma-

chines (RBM) to learn compact binary codes for text and

documents. Spectral hashing (SpeH) [46] generates effi-

cient binary codes by spectral graph partitioning. Iterative

qauntization (ITQ) [14] uses iterative optimization strategy

to find projections with minimal binarization loss. Even

if these approaches have been proved effective, the binary

codes are still not as accurate as the real-valued equivalents.

Deep Learning: Deep Learning has drawn increasing

attention in visual analysis since Krizhevsky et al. [20]

demonstrated the outstanding performance of the deep

CNN on the 1, 000 class image classification. Their suc-

cess is attributed to training a deep CNN to learn rich mid-

level image representations on millions of images. Oquab et

al. [31] showed that transferring the mid-level image rep-

resentations to a new domain can be achieved with a few

amount of training data. Chatfield et al. [7] showed that the

fine-tuned domain-specific deep features yield better perfor-

mance than the non-finetuned ones. Several visual analysis

tasks have been greatly improved via pre-trained deep CNN

and deep transfer learning, such as object detection [12],

image segmentation [25], and image search [23]. Among

the recent studies of deep learning and binary codes learn-

ing, Xia et al. [47] and Lai et al. [21] take deep CNN to

learn a set of hash functions, but they require pair-wised

similarity labels or triplets training data. SSDH [49] con-

structs hash functions as a latent layer in the deep CNN and

achieves state-of-the-art image retrieval performance, but

their method belongs to supervised learning. Deep Hashing

(DH) [24] builds three layers hierarchical neural networks

to learn discriminative projection matrix, but their method

does not take the advantage of deep transfer learning, thus

makes the binary codes less effective.

In contrast, the proposed DeepBit not only transfers the

mid-level image representations pre-trained from ImageNet

to the target domain, but also learns compact yet discrimi-

native binary descriptor without label information. We will

show that our method achieves better or comparable per-

formance than state-of-the-art descriptors on three public

datasets.

3. Approach

Figure 2 shows the learning framework of our proposed

method. We introduce an unsupervised deep learning ap-

proach, dubbed DeepBit, to learn compact yet discrimina-

tive binary descriptors. Unlike previous works [9, 39–41]

that optimize the projection matrix with hand-crafted fea-

tures and pair-wised similarity information, DeepBit learns

a set of non-linear projection functions to compute compact

binary descriptors. We enforce three important objectives

on the binary descriptors, and optimize the parameters of

the proposed network with the stochastic gradient descent

technique. Note that our method does not require labeled

training data, and is more practical than the supervised ap-

proaches. In this section, we first give an overview of our

approach, and then describe the proposed learning objec-

tives in the following sections.

3.1. Overall Learning Objectives

The proposed DeepBit computes the binary descriptor

by applying the projections to the input image and then bi-
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Figure 2: We enforce three objectives on the neurons at the top layer of the network to learn compact yet discriminative

binary descriptor. The training procedure includes two alternative stages. The top row shows the first stage; We optimize

the parameters of the network by minimizing the quantization error and enforcing binary codes to be evenly distributed. The

bottom row shows the second stage; We augment the training data with different rotations, and update the parameters of the

network by minimizing the distance between binary descriptors that describe the reference image and the rotated one. The

alternative stages will be repeated until the stopping criterion is satisfied.

narizes the results:

b = 0.5× (sign(F(x;W)) + 1), (1)

where x represents the input image, and b is the resulting

binary descriptor in the vector form. sign(k) = 1 if k > 0
and −1 otherwise. F(x;W) is a composition of number of

non-linear projection functions which can be written as:

F(x;W) = fk(· · · f2(f1(x;w1);w2) · · · ;wk), (2)

where fi takes the data xi and parameter wi as inputs, and

produces the projection result xi+1.

The proposed approach aims to learn a set of non-linear

projection parameters W = (w1, w2, ..., wk) that quantizes

the input image x into a compact binary vector b while pre-

serving the information from the input. In order to learn

compact yet discriminative binary descriptor, we enforce

three important criterions to learn W . First, the learned

compact binary descriptor should preserve the local data

structure of the activations of the last layer. The quanti-

zation loss should be as less as possible after projection.

Second, we encourage the binary descriptor to be evenly

distributed, so that the binary string will convey more dis-

criminative messages. The third is to make the descriptor

invariant to rotations and noises, and thus the binary de-

scriptor will tend to capture more uncorrelated information

from the input image. To achieve these objectives, we for-

mulate the following optimization problem to learn a set

of non-linear projection parameters W using the proposed

deep neural networks:

min
W

L(W) = αL1(W) + βL2(W) + γL3(W)

= α

N
∑

n=1

||(bn − 0.5)−F(xn;W)||2

+ β

M
∑

m=1

||(µm − 0.5)||2

+ γ

N
∑

n=1

R
∑

θ=−R

C(θ)||bn,θ − bn||
2,

(3)

where N is the number of training data for each mini-batch,

M is the bit length of the binary codes, and R represents the

image rotation angle. bn,θ is the binary descriptor projected

from image xn with rotation angle θ, and C(θ) is the cost

function which penalizes the training data according to its
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rotation degree. Moreover, α, β, and γ are three parameters

to balance different objectives.

To give a better understanding of the proposed objec-

tives, we describe the physical meaning of (3) as below.

First, L1 minimizes the quantization loss between the bi-

nary descriptor and the original input image. Then, L2 en-

courages the binary descriptor to be evenly distributed to

maximize the information capacity of the binary descriptor.

Finally, L3 tolerates the rotation transformations by mini-

mizing the Hamming distance between the descriptors that

describe the reference image and the rotated ones. We elab-

orate the details of each proposed objective as follows.

3.2. Learning Discriminative Binary Descriptors

The proposed DeepBit seeks to learn the projections that

maps the input image into a binary string while preserving

the discriminative information of the original input. The

soul idea to keep the binary descriptors informative is to

minimize the quantization loss by rewriting (1) as follows:

(b− 0.5) = F(x;W), (4)

the smaller the quantization loss is, the better the binary

descriptor will preserve the original data information. Dif-

ferent from the previous work [13] that addresses this prob-

lem by iteratively updating W and b with two alternating

steps, we formulate this optimization problem as the neu-

ral networks training objective. Since then, the goal of the

proposed network becomes learning the W that minimizes

the quantization loss between the binary descriptor and the

original input image. To this end, we optimize the parame-

ters W of the proposed network through back-propagation

and stochastic gradient descent (SGD) using the following

loss function:

min
W

L(W) =
N
∑

n=1

||(bn − 0.5)−F(xn;W)||2. (5)

3.3. Learning Efficient Binary Descriptors

To increase the information capacity of the binary de-

scriptors, we maximize the usage of each bin in the binary

string. Considering the variance for each bin, the higher the

entropy is, the more information the binary codes express.

Accordingly, we enhance the binary descriptor by making

each bit has 50% probability of being one or zero. In other

words, there is no preference for each bit to be one or zero,

and the resulting binary string will convey the information

as much as possible. To achieve this goal, we keep the bi-

nary descriptors to be evenly distributed by formulating the

following objective, and minimizing the loss computed by

the forward pass of the network:

min
W

L(W) =

M
∑

m=1

||(µm − 0.5)||2, (6)

where M represents the bit length of the binary string. For

each bin we compute the average response µm using:

∀m∈1,...,M µm =
1

N

N
∑

n=1

bn(m), (7)

where N is the number of training data, and function b(m)
produces the binary value at m-th bin.

3.4. Learning Rotation Invariant Binary Descrip
tors

Since rotation invariant is essential for a local descriptor,

we hope to enhance this property during optimization. We

address this issue by minimizing the difference between bi-

nary descriptors that describe the reference image and the

rotated one. Considering the estimation error between im-

ages, the estimation error may become larger when increas-

ing the rotation degree. Hence, we mitigate the estimation

error by penalizing the training loss of the network accord-

ing to the rotation degree. We formulate the proposed ob-

jective as a cost-sensitive optimization problem as follow:

min
W

L(W) =

N
∑

n=1

R
∑

θ=−R

C(θ)||bn,θ − bn||
2, (8)

where θ ∈ (−R,R) is the rotation angle. bn,θ denotes the

descriptor mapping from input xn with rotation θ. C(θ) pro-

vides the cost information to reflect the relationship of bi-

nary descriptors between different rotation transformations.

In this paper, we mitigate the estimation error by setting:

C(θ) = exp

(

−
(θ − µ)2

2σ2

)

, (9)

where C(θ) is the Gaussian distribution, and µ = 0, σ = 1
in our experiments.

We implement our approach using the open source

Caffe [18], and Algorithm 1 summarizes the detail pro-

cedure of the proposed DeepBit. The proposed approach

includes two main components. The first is network ini-

tialization. Second is the optimization step. We initialize

our network with the pre-trained weights from the 16 lay-

ers VGGNet [36], which is trained on the ImageNet large

scale dataset. Then, we replace the classification layer of the

VGGNet with a new fully connected layer, and enforce the

neurons in this layer to learn binary descriptor. To this end,

we use stochastic gradient descent (SGD) method and back-

propagation to train our network, and optimize W using the

proposed objectives (see (3)). Other settings are listed be-

low. α = 1.0, β = 1.0, γ = 0.01. We rotate the image by

10, 5, 0, −5, −10 degrees, respectively. Mini-batch size is

32, and the bit-length of our binary descriptor is 256. Im-

ages are normalized to 256 × 256 and then center-cropped

to 224× 224 as the network input.
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Algorithm 1: DeepBit

Input: Training set X = [x1, x2, ..., xn]
Output: A set of non-linear projection parameters W

Step 1 (Initialization):

Initialize W with pre-trained weights from ImageNet;

Step 2 (Optimization):

while iter < max iter do

Fix W update bn using (1);

while iter1 < max iter1 do

Fix bn update W by minimizing the sum of (5)

and (6);

Fix W update bn using (1);

while iter2 < max iter2 do

Fix bn update W using (8);

return W;

Figure 3: Sample images from the Brown dataset, CIFAR10

dataset, and Oxford flower dataset, respectively. We test our

approach on a wide range of image types, including gray-

scale local patches, color category images, and flowers in

the wild.

4. Experimental Results

We conduct experiments on three challenging datasets,

the Brown gray-scale patches [4], the CIFAR-10 color im-

ages [19], and the Oxford 17 category flowers [29]. We

provide extensive evaluations of the proposed binary de-

scriptor, and demonstrate its performance on various tasks,

including image matching, image retrieval, and image clas-

sification. We start with introducing the datasets and then

present our experimental results as well as the comparative

evaluations with other state-of-the-arts.

4.1. Datasets

• Brown Dataset [4] consists of three datasets, namely

Liberty, Notredame, Yosemite dataset. Each of them

includes more than 400, 000 gray-scale patches, result-

ing in a total of 1, 200, 000 patches. Each dataset is

split into training and test sets, with 20, 000 training

pairs (10, 000 matched and 10, 000 non-matched pairs)

Correctly Matched Mismatched

L
ib

.
N

o
r.

Y
o

s.

Figure 5: Correctly matched patches and mismatched ones

from the Brown dataset. Top row shows the patches from

Liberty classified as matched pairs; the first three are cor-

rectly classified, but the fourth is mismatched, which de-

scribes different architectures. Middle row shows the image

pairs from Notredame classified as the matched pairs; the

fourth is mismatched although both of them share similar

pattern. Bottom row shows the patches from Yosemite clas-

sified as matched pairs; the last one is mismatched, which

are visually similar but belong to different locations.

and 10, 000 test pairs (5, 000 matched, and 5, 000 non-

matched pairs), respectively.

• CIFAR-10 Dataset [19] contains 10 object categories

and each class consists of 6, 000 images, resulting in a

total of 60, 000 images. The dataset is split into train-

ing and test sets, with 50, 000 and 10, 000 images re-

spectively.

• The Oxford 17 Category Flower Dataset [29] con-

tains 17 categories and each class consists of 80 im-

ages, resulting in a total of 1, 360 images. The dataset

is split into the training (40 images per class), vali-

dation (20 images per class), and test (20 images per

class) sets.

4.2. Results on Image Matching

To evaluate the performance of local descriptors, we

compare the proposed DeepBit with several state-of-the-

art binary descriptors, including unsupervised (BRIEF [6],

ORB [33], BRISK [22], and Boosted SSC [35]), and super-

vised methods (D-BRIEF [41], LDAHash [38]).

Following the settings in [40], Figure 4 shows the

ROC curves for DeepBit and the compared methods, and

Table 1 summarizes the 95 percent error rates for the

Brown dataset. As can be seen, the overall perfor-

mance of the proposed method achieves 40.67% error rate

when recall rate is 95%, which outperforms BRIEF, ORB,

BRISK, Boosted SSC with 15.56%(= 56.23%− 40.67%),
15.56%(= 56.23% − 40.67%), 35.14%(= 75.81% −
40.67%), 32.84%(= 73.51% − 40.67%) lower error rate

over the different training and testing configurations of the

Brown dataset, respectively. It is important to point out that

unlike several previous works [3, 9, 38–41, 50, 53] that em-
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Figure 4: ROC curves of the proposed DeepBit descriptors and the compared binary descriptors, across all the splits of

training and testing configurations on the Brown datasets. In parentheses: the bit length of the binary descriptor (b), and the

95% error rates.

Table 1: Comparison of the proposed binary descriptor to the state-of-the-art binary descriptors, in terms of 95% error rates

(ERR) across all the splits of training and testing configurations. For reference, we also provide the results of real-valued

descriptor SIFT [26]. The proposed method achieves better performance than the unsupervised binary descriptors in most

cases, while remaining competitive to supervised approaches (D-BRIEF and LDAHash).

Real-valued Binary

Train Test SIFT [26] Boosted SSC [35] BRISK [22] ORB [33] BRIEF [6] LDAHash [38] D-BRIEF [41] DeepBit

128 bytes 16 bytes 64 bytes 32 bytes 32 bytes 16 bytes 4 bytes 32 bytes

Yosemite Notredame 28.09 72.20 74.88 54.57 54.57 51.58 43.96 29.60

Yosemite Liberty 36.27 71.59 79.36 59.15 59.15 49.66 53.39 34.41

Notredame Yosemite 29.15 76.00 73.21 54.96 54.96 52.95 46.22 63.68

Notredame Liberty 36.27 70.35 79.36 59.15 59.15 49.66 51.30 32.06

Liberty Notredame 28.09 72.95 74.88 54.57 54.57 51.58 43.10 26.66

Liberty Yosemite 29.15 77.99 73.21 54.96 54.96 52.95 47.29 57.61

Average 95% ERR 31.17 73.51 75.81 56.23 56.23 51.40 47.54 40.67

ploy similarity information (matched and non-matched la-

bels) to optimize the projection matrix, our learning process

does not require the training labels and still performs more

favorably against the supervised ones such as D-BRIEF and

LDAHash. We further visualize the image matching results

on the Brown dataset in Figure 5. As can be seen, the pro-

posed method successfully matches pairs of patches when

they are visually similar, as shown in the first three columns

of Figure 5. Our method could also mismatch some patches

as shown in the fourth column of Figure 5. It is worth

noting that the mismatched patches are still visually sim-

ilar although they are from different scenes or locations.

More specifically, the patches from Liberty and Notredame

describe the local structure of the statue and architecture,

where the visual similarity between different patches is usu-

ally weak. Our approach achieves more favorable perfor-

mance in these two datasets. However, the patches from

Yosemite depict the surface of a mountain. Different local

patches (such as snow and forest) could generate visually

similar patterns, making them difficult to be distinguished.
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Query Retrieved

Figure 7: Top 20 retrieved images from CIFAR10 dataset

by DeepBit with 32 bit length.

This could be the reason why our approach, which tends to

match patterns that are visually similar, performs less favor-

able than some methods for the Yosemite dataset.

4.3. Results on Image Retrieval

To evaluate the discriminability of the proposed binary

descriptor, we further test our method on the task of im-

age retrieval. We compare DeepBit with several unsu-

pervised hashing methods, including LSH [2], ITQ [14],

PCAH [45], Semantic Hashing (SH) [34], Spectral hashing

(SpeH) [46]), Spherical hashing (SphH) [17], KMH [16],

and Deep Hashing (DH) [24] on the CIFAR-10 dataset.

Among these eight unsupervised approaches, Deep Hash-

ing (DH), like our approach, takes advantage of deep neural

networks for learning compact binary codes.

Following the settings in [24], Table 2 shows the CIFAR-

10 retrieval results based on the mean Average Precision

(mAP) of the top 1, 000 returned images with respect to dif-

ferent bit lengths. DeepBit improves previous best retrieval

performance by 3.26%, 8.24%, and 10.77% mAP with re-

spect to 16, 32, and 64 hash bits, respectively. According

to the results, we found that the longer the hash bits, the

better performance DeepBit achieves. Moreover, Figure 6

shows the Precision/Recall curves of different unsupervised

hashing methods with 16, 32, 64 hash bits, respectively. As

can be seen, DeepBit constantly outperforms previous un-

supervised methods. This indicates the proposed method

is effective to learn binary descriptors. It is worth to note

that DH [24] takes three layers hierarchical neural networks

to learn binary hash codes; however, DH dose not take ad-

vantage of the deep transfer learning during training. In

contrast, the proposed DeepBit not only transfers the mid-

level image representations pre-trained from ImageNet to

the target domain, but also learns binary descriptor with de-

sirable criterions. The experiments reveal that deep transfer

learning with the proposed objectives can improve the un-

supervised hashing performance.

Table 2: Performance comparison (mAP, %) of different

unsupervised hashing algorithms on the CIFAR-10 dataset.

This table shows the mean Average Precision (mAP) of top

1, 000 returned images with respect to different number of

hash bits.

Method 16 bit 32 bit 64 bit

KMH [16] 13.59 13.93 14.46

SphH [17] 13.98 14.58 15.38

SpeH [46] 12.55 12.42 12.56

SH [34] 12.95 14.09 13.89

PCAH [45] 12.91 12.60 12.10

LSH [2] 12.55 13.76 15.07

PCA-ITQ [13] 15.67 16.20 16.64

DH [24] 16.17 16.62 16.96

DeepBit 19.43 24.86 27.73

Table 3: The categorization accuracy (mean±std%) for

different features on the Oxford 17 Category Flower

Dataset [11].

Descriptors Accuracy Training Time (sec)

Colour [29] 60.9 ± 2.1% 3

Shape [29] 70.2 ± 1.3% 4

Texture [29] 63.7 ± 2.7% 3

HOG [8] 58.5 ± 4.5% 4

HSV [30] 61.3 ± 0.7% 3

SIFT-Boundary [30] 59.4 ± 3.3% 5

SIFT-Internal [30] 70.6 ± 1.6% 4

DeepBit 75.1 ± 2.5% 0.07

4.4. Results on Object Recognition

Unlike previous binary descriptors that require

matched/non-matched labels during training, the pro-

posed DeepBit learns compact binary descriptors in an

unsupervised manner; thus, DeepBit is practical and flexi-

ble for various applications. In this section, we extend the

evaluation to object recognition and show that the proposed

binary descriptor performs more favorably against several

real-valued descriptors such as HOG [8], and SIFT [26].

Flower classification is a classic visual analysis task, and

it is challenging due to the variation of shapes, color dis-

tributions, and pose deformations. Besides, the computa-

tion cost becomes demanding while one wants to recog-

nize the flowers in the wild using mobile devices. We test

our binary descriptors on the flower recognition. Follow-

ing the setting in [29], we train the multi-class SVM clas-

sifier with the proposed binary descriptor. Table 3 com-

pares the classification accuracy of the 17 categories flow-

ers using different descriptors proposed in [29, 30], in-
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Figure 6: Precision/Recall curves of different unsupervised hashing methods on the CIFAR-10 dataset with respect to 16, 32

and 64 bits, respectively.

Correctly Classified Misclassified

Figure 8: Correctly classified test images and misclassified

ones. The top row shows images classified as Cowslip; the

first two are correctly classified but the correct category of

the third is Buttercup. The bottom row shows images clas-

sified as Pansy; the third is misclassified, which belongs to

Crocus.

cluding low-level (Colour, Shape, Texture), and high level

(SIFT, and HOG) features. The proposed binary descrip-

tor improves previous best recognition accuracy by around

4.5% (75.1% vs. 70.6%). In addition, DeepBit greatly re-

duces the computational complexity during SVM classifier

training. Our training process is 71.42x faster than the

one trained with SIFT because the dimension of DeepBit is

lower than that of SIFT. Figure 8 and Figure 9 shows some

visualization results. DeepBit demonstrates its efficiency

and efficacy, and performs more favourably against various

existing descriptors including Colour [29], Shape [29], Tex-

ture [29], HOG [8], HSV [30], and SIFT [26, 30]. This

indicates the proposed method is effective to learn discrim-

inative and compact binary codes.

5. Conclusions

In this paper, we have presented an unsupervised deep

learning framework to learn compact binary descriptor.

Confusion Matrix of Flower 17 Category Classification
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Figure 9: Confusion matrix of Oxford 17 flower classifica-

tion using the proposed DeepBit. Classification results indi-

cate that the proposed learning method is effective to learn

compact but informative binary descriptor.

We employ three criterions to learn the binary codes and

estimate the parameters of the deep neural network to

obtain binary descriptor. Our approach does not require

labeled data during learning, and is more practical to

real-world applications compared to supervised binary

descriptors. Experiments on three benchmark databases

include gray-scale local patches, color images, and flowers

in the wild demonstrate that our method achieves better

performance than the state-of-the-art feature descriptors in

most cases.
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