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Abstract

Discovering visual knowledge from weakly labeled data
is crucial to scale up computer vision recognition sys-
tems, since it is expensive to obtain fully labeled data for
a large number of concept categories. In this paper, we
propose ConceptLearner, which is a scalable approach to
discover visual concepts from weakly labeled image collec-
tions. Thousands of visual concept detectors are learned
automatically, without human in the loop for additional an-
notation. We show that these learned detectors could be
applied to recognize concepts at image-level and to detect
concepts at image region-level accurately. Under domain-
specific supervision, we further evaluate the learned con-
cepts for scene recognition on SUN database and for ob-
ject detection on Pascal VOC 2007. ConceptLearner shows
promising performance compared to fully supervised and
weakly supervised methods.

1. Introduction

Recent advances in mobile devices, cloud storage and so-

cial network have increased the amount of visual data along

with other auxiliary data such as text. Such big data is accu-

mulating at an exponential rate and is typically diverse with

a long tail. Detecting new concepts and trends automati-

cally is vital to exploit the full potential of this data deluge.

Scaling up visual recognition for such large data is an im-

portant topic in computer vision. One of the challenges in

scaling up visual recognition is to obtain fully labeled im-

ages for a large number of categories. The majority of data

is not fully annotated. Often, they are mislabeled or labels

are missing or annotations are not as precise as name-value

pairs. It is almost impossible to annotate all the data with

human in the loop. In computer vision research, there has

been great effort to build large-scale fully labeled datasets

by crowd sourcing, such as ImageNet [7], Pascal Visual Ob-

ject Classes [9], Places Database [38] from which the state-

of-the-art object/scene recognition and detection systems
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Figure 1. ConceptLearner: Thousands of visual concepts are

learned automatically from weakly labeled image collections.

Weak labels can be in the form of keywords or short description.

ConceptLearner can be used to recognize concepts at image level,

as well as detect concepts within an image. Here we show two

examples done by the learned detectors.

are trained [18, 12]. However, it is cumbersome and expen-

sive to obtain such fully labeled datasets. Recently, there

has been growing interest to harvest visual concepts from

internet search engines [2, 8]. These approaches re-rank the

search results and then learn concept detectors. The learned

detectors largely depend on the quality of image search re-

sults, while image search engines themselves have sophis-

ticated supervised training procedures. Alternatively, this

paper explores another scalable direction to discover visual

concepts from weakly labeled images.

Weakly labeled images could be collected cheaply and

massively. Images uploaded to photo sharing websites like

Facebook, Flickr, Instagram typically include tags or sen-

tence descriptions. These tags or descriptions, which might

be relevant to the image contents, can be treated as weak

labels for these images. Despite the noise in these weak

labels, there is still a lot of useful information to describe

the scene and objects in the image. Thus, discovering vi-

sual concepts from weakly labeled images is crucial and has

wide applications such as large scale visual recognition, im-

age retrieval, and scene understanding. Figure 1 shows our

concept recognition and detection results by detectors dis-

covered by the ConceptLearner from weakly labeled image

collections1.

1Project page is at http://conceptlearner.csail.mit.
edu/



The contributions of this paper are as follows:

• scalable max-margin algorithm to discover and learn

visual concepts from weakly labeled image collec-

tions.

• domain-selective supervision for application of

weakly-learned concept classifiers on novel datasets.

• application of learned visual concepts to the tasks of

concept recognition and detection, with quantitative

evaluation on scene recognition and object detection

under the domain-selected supervision.

The rest of the paper is organized as follows. Section 2

gives an overview of related work. Description of the model

for weakly labeled image collections is in Section 3. This

is followed by max-margin visual concept discovery from

weakly labeled image collections using hard instance learn-

ing in Section 4. Section 5 shows how we can use the dis-

covered concepts on a novel dataset using domain-selected

supervision. We show 3 applications of concept discovery

in Section 6. We conclude with Section 7 that gives a sum-

mary and a list of possible extensions.

2. Related Work
Discovering visual knowledge without human annota-

tion is a fascinating idea. This idea dates back to the early

90’s where a system PICTION [32] identifies human faces

in newspaper photographs using associated captions. A

real-time system ALIPR was proposed in [20] to recognize

hundreds of semantic concepts using example pictures from

each concept. Recently there have been a line of work on

learning visual concepts and knowledge from image search

engines. For example, NEIL [2] uses a semi-supervised

learning algorithm to jointly discover common sense rela-

tionships and labels instances of the given visual categories;

LEVAN [8] harvests keywords from Google Ngram and

uses them as structured queries to retrieve all the relevant

diverse instances about one concept; [21] proposes a mul-

tiple instance learning algorithm to learn mid-level visual

concepts from image query results.

There are alternative approaches of discovering visual

patterns from weakly labeled data that do not depend

strongly on results from search engine. For example, [1]

uses multiple instance learning and boosting to discover at-

tributes from images and associated textual description col-

lected from the Internet. [24] learns object detectors from

weakly annotated videos. [36, 31] use weakly supervised

learning for object and attribute localization, where image-

level labels are given and the goal is to localize these tags on

image regions. [29] learns discriminative patches as mid-

level image descriptors without any text label associated

with the learned patch patterns. In our work, we take on

a more challenging task where both image and image-level

labels are noisy in the weakly labeled image collections.
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Figure 2. NUS-WIDE Dataset [3]: Images have multiple

tags/keywords. There are 1000 candidate tags in this dataset. Here

are three examples, with original true tags shown in black, original

noisy tags in green, and possible missing tags in red.

DET(forest-3, a-1)
AMOD(forest-3, tropical-2)
NSUB(!-8, forest-3)
DET(station-7, the-5)
NN(station-7, train-6)
PREP_IN(forest-3, station-7)
ADVMOD(that-12, how-9)
NSUB(that-12, cool-10)
COP(that-12, is-11)
CCOMP(!-8, that-12)

a tropical forest in the train station! how cool is 
that!

Cerviche I assume, a street scene in Manta taken 
from the bus window

ROOT(ROOT-0, Cerviche-1)
NSUBJ(assume-3, I-2)
CCOMP(Cerviche-1, assume-3)
DET(scene-7, a-5)
NN(scene-7, street-6)
NSUBJ(taken-10, scene-7)
PREP_IN(scene-7, Manta-9)
DEP(assume-3, taken-10)
DET(window-14, the-12)
NN(window-14, bus-13)
PREP_FROM(taken-10, window-14)

After sandboarding I needed to wash of the sand in 
the Indian Ocean with it's beautiful white sandy beach

ROOT(ROOT-0, After-1)
PCOMP(After-1, sandboarding-2)
NSUBJ(needed-4, I-3)
XSUBJ(wash-6, I-3)
CCOMP(sandboarding-2, needed-4)
AUX(wash-6, to-5)
XCOMP(needed-4, wash-6)
DET(sand-9, the-8)
PREP_OF(wash-6, sand-9)
DET(Ocean-13, the-11)
NN(Ocean-13, Indian-12)
PREP_IN(sand-9, Ocean-13)
POSS(beach-20, it-15)
AMOD(beach-20, beautiful-17)
AMOD(beach-20, white-18)
AMOD(beach-20, sandy-19)
PREP_WITH(wash-6, beach-20)

This is my friend taking a nap in my sleeping 
bag with our friend's dog for company.

NSUBJ(friend-4, This-1)
COP(friend-4, is-2)
POSS(friend-4, my-3)
ROOT(ROOT-0, friend-4)
VMOD(friend-4, taking-5)
DET(nap-7, a-6)
DOBJ(taking-5, nap-7)
POSS(bag-11, my-9)
AMOD(bag-11, sleeping-10)
PREP_IN(taking-5, bag-11)
POSS(friend-14, our-13)
POSS(dog-16, friend-14)
PREP_WITH(bag-11, dog-16)
PREP_FOR(dog-16, company-18)

Figure 3. SBU Dataset [23]: Each image has a short description.

Typically, this is a sentence, as shown below each image. We ex-

tract phrases from each sentence, as shown on the side of each

image. Each phrase represents a relationship between two ordered

words. The relationship is shown in capital letters. For example,

AMOD dependency is like attribute+object, PREP are preposition

phrases. Details of dependency types can be found in [6].

Other related work include [23, 19, 13, 17], which gen-

erate sentence description for images. They either generate

sentences by image retrieval [23], or learn conditional ran-

dom field among concepts [19], or utilize image-sentence

embedding [13] and image-fragment embedding [17] to

generate sentences. Our work focuses more on learning

general concept detectors from weakly labeled data. Note

that the predicted labels obtained from our method could

also be used to generate sentence description, but it is be-

yond the scope of this paper.

3. Modeling Weakly Labeled Images

Generally speaking, there are two categories of weakly

labeled image collections: (i) multiple tags for each image

as in NUS-WIDE dataset [3] and (ii) sentence description

for each image as in SBU dataset [23]. Here we analyze

the representative weakly labeled image collections NUS-

WIDE and SBU dataset respectively.

Figures 2 and 3 illustrate samples from NUS-WIDE

dataset [3] and SBU dataset [23]. Note that tags in Figure 2

can be incorrect or missing. In Figure 3 sentences associ-

ated with images in [23] are also noisy, as they were written

by the image owners when the images were uploaded. Im-



Table 1. Summary of notations used in this paper

Variable1 Meaning
D Collection of weakly labeled images with associ-

ated tags (which are used as weak labels)

(i.e.) D = {(Ii, Ti)|Ii ∈ I, Ti ∈ T }Ni=1

I Set of all images in D
T Set of unique tags in D (i.e.)

⋃N
i=1 Ti

N Number of images in I (i.e.) |I|
T Number of tags in T (i.e.) |T |
Ii An image in I
Ti The set of tags associated with Ii. For collec-

tions with sentence description for each image (as

opposed to set of tags/keywords), the extracted

phrases using [6] are the weak labels

τt A tag in T (i.e.) T = {τt}Tt=1

Pt Set of images associated with tag τt (i.e.) Pt =
{Ii|τt ∈ Ti}Ni=1

Nt Set of images not associated with tag τt (i.e.)

Nt = {Ii|τt �∈ Ti}Ni=1

V Dimensionality of visual feature vector of an im-

age

V Stacked visual features for D. Row i is a visual

feature vector for image Ii. V ∈ �N×V

T Stacked indicator vectors for D. Row t is an in-

dicator vector for image Ii. Entry (i, t) of T is 1

when tag τt is associated with image Ii. It is 0

otherwise. T ∈ [0, 1]N×T

wc SVM weight vector, including the bias term for

classifying concept c

fhard
wc,η (·) Operator that takes a set of images and maps to

hard subset, based on SVM concept classifier wc

such that ywc·x < η, where x is the visual feature

vector and y ∈ {−1, 1} label for concept c

feasy
wc,η (·) Operator, similar to fhard

wc,η (·), that takes a set of

images and maps to easy subset, such that ywc ·
x > η

Randk(·) Operator that takes a set of images and ran-

domly pick k images without replacement. (i.e.)

Randk(Is) = {Ir(j)|Ir(j) ∈ Is, Is ⊂ I}kj=1,

where r(j) picks a unique random integer from

{i|Ii ∈ Is}
1 Sets are denoted by scripts, matrices by bold upper case, vec-

tors by bold lower case, scalars by normal faced lower or upper

case.

age owners usually selectively describe the image content

with personal feelings, beyond the image content itself.

There is another category of image collection with sen-

tence description such as Pascal Sentence dataset [25] and

Pascal30K dataset [14]. These sentence descriptions are

generated by the paid Amazon Mechanical Turk workers

rather than the image owners, and are more objective and

accurate to the image contents. However the labeling is ex-

Algorithm 1: ConceptLearner

Data: See Table 1 for notations.

(i) V, matrix of visual feature vectors

(ii) T, matrix of tag indicator vectors

Parameters:
(i) α, ratio of cardinalities of negative and positive

instance sets

(ii) Mt, number of image clusters for tag τt

(iii) η, threshold to determine hard and easy instances

(iv) K, the top number of tags based on tf-idf for each

concept cluster.

Result: (i) Matrix W of SVM weight vectors, where

cth row is concept detector wT
c (ii) name set

for each concept c
for label t = 1 : T do

c = 0; /* Initialize concept count */
Construct Pt, Nt;

Use V,T to cluster images Pt into Mt clusters.

Each such cluster is a concept;

for cluster m = 1 : Mt do
c = c+ 1;

Construct the positive training set

Ptrain
t := {Ii|Ii ∈ Pt, Ii ∈ cluster m};

Np :=
∣
∣Ptrain

t

∣
∣, size of positive training set;

Nn := �αNp�, size of negative training set;

Initialize the negative training set

N train
t ← RandNn

(Nt);
/* Fix Ptrain

t and mine hard negative
instances */
while N train

t is updated do
Train SVM on Ptrain

t and N train
t to get

weight vector wc;

Easy positives Peasy
t := feasy

wc,η (Ptrain
t );

Hard negatives N hard
t := fhard

wc,η (N train
t );

Easy negatives N easy
t := feasy

wc,η (N train
t );

Update N train
t ←

N hard
t

⋃
RandNn−|N easy

t | (Nt \ N easy
t );

/* Cache tag frequency for the positive set */
Calculate tag frequency vector fm ∈ Z

T
≥0

based on images in Peasy
t ;

/* Name each concept using tf-idf across the label
frequencies, w.r.t. Mt clusters */
Compute tf-idf based on {f1, f2, ..., fMt

};
Create a name set for each concept m ∈ [1,Mt],
by taking the top K labels based on tf-idf;

pensive and not scalable to millions of images. Our ap-

proach could work on all of the three categories of weakly

labeled image collections, but we focus on the first two



more challenging categories.

For image collections with multiple tags, we just take

the sparse tag count vector as the weak label feature of each

image. For image collections with sentence description, we

extract phrases, which are semantic fragments of sentence,

as weak label feature for each image. A sentence contains

not only several entities such as multiple weak tags for the

image, but also contains relationships between the entities.

These relationships between entities, composed as phrases,

could be easily interpreted and effectively used by human.

The phrase representation is more descriptive than a sin-

gle keyword to describe the image content. Figure 3 shows

some examples of extracted phrases from sentences. For

simplicity, we adopt the Stanford typed dependencies sys-

tem [6] as the standard for sentence parsing. All sentences

are parsed into short phrases and only those that occur more

than 50 times are kept. Note that in [27], 17 visual phrases

are manually defined and labeled, corresponding to chunks

of meaning bigger than objects and smaller than scenes

as intermediate descriptor of the image. In contrast, our

approach is data-driven and extracts thousands of phrases

from image sentence descriptions automatically. We use

these extracted phrases as weak labels for images and learn

visual concepts automatically at scale. Notations used in

this paper are summarized in Table 1.

4. Max Margin Visual Concept Discovery
Learning visual patterns from weakly labeled image col-

lection is challenging because the labels for training images

are noisy. Existing learning methods for this task include

semi-supervised learning as in [2] and multiple instance

learning as in [1, 21]. In this paper, we formulate this prob-

lem as max-margin hard instance learning of visual con-

cepts using SVM.

Since the labels for every image are noisy and there are

a lot of missing labels, there is no clear separation of pos-

itive set and negative set. If images with a specific label

are considered as positive images for that label and images

without that label as negative images, there would be a lot

of false positives (image with some concept label but has

no noticeable image content related to that concept) in the

positive set and false negatives (image with some visible

concept inside but without that concept labeled) in the neg-

ative set. Inspired by the idea of hard instance mining used

in face detection and object detection [4, 11], we consider

false positives and false negatives as hard instances in the

learning of visual concepts. The algorithm will iteratively

seek the max-margin decision boundary that separates hard

instances.

The detailed steps of our algorithm for concept discov-

ery are listed in Algorithm 1. Our algorithm starts with an

initial cache of instances, where the positive set includes all

the examples with label t and the negative set is a random

sample of images without that label t. In each iteration, we

remove easy instances from the cache and add additional

randomly selected negative images. The SVM is then re-

trained on the new cache of positive and negative sets. Here

we keep the positive set fixed and only do hard negative in-

stance sampling.

α is the ratio of the number of negatives over the num-

ber of positives. Since the number of hard negative instance

might be high, we keep a relatively large ratio α = 5 ∼
10. On the other hand, as there are various views or sub-

categories related to the same concept, it is better to learn

several sub-category detectors for the same concept than to

learn a single detector using all the positive set. Hence we

cluster images in each positive set, based on visual features,

before learning concept detectors. The cluster number Mt

for the tth tag controls the diversity of the learned detec-

tors. Tf-idf [22], short for term frequency inverse document

frequency, is used to find the important contextual labels in

the label frequency for each sub-categories so that we could

better name each learned sub-category detectors.

5. Selecting Domain-Specific Detectors

After the concept detectors are learned, we could directly

apply all of them for concept recognition at image-level.

But in some applications, we need to apply one concept

detector or subset of detectors from the pool of detectors

learned from source dataset (say, SBU) to some specific

tasks on target dataset (say, Pascal VOC 2007). Here we

simply use a winner-take-all selection protocol for the de-

tector selection. We define a selection set, which contains

some labeled instances from the target dataset. Then the rel-

evant concept detector with the highest accuracy/precision

on the target dataset is selected. Note that the selection set

should be separated from the test set of the target dataset. In

the following experiments on scene recognition and object

detection, we follow this selection protocol to automatically

select the most relevant detectors for evaluation on test set.

We call this as domain selected supervision. This is related

to the topic of domain adaptation [28, 33], but we do not use

the instances in the target domain to fine-tune the learned

detectors. Instead, we only use a small subset of the target

domain to select the most relevant concept detectors from a

large pool of pre-trained concept detectors. It is also related

to the issue of dataset bias [34] existing in current recogni-

tion datasets. Domain-selected supervision provides a nice

way to generalize the learned detectors to novel datasets.

6. Experiments

We evaluate the learning of visual concepts on two

weakly labeled image collections: NUS-WIDE [3] and

SBU [23] datasets. NUS-WIDE has 226,484 images (the

original set has 269,649 URLs but some of them are invalid



now) with 1000 tags (which were used as weak labels) and

81 ground-truth labels. As shown in [3], the average preci-

sion and recall of tags with the corresponding ground-truth

labels are both about 0.5, which indicates that about half of

the tags are incorrect and half of the true labels are missing.

We acquired 934,987 images (the original set has 1M URLs

but some of them are invalid now) from SBU dataset. Each

image has a text description written by the image owner.

Examples from these two datasets are shown in Figures 2

and 3.

The 4096 dimensional feature vector from the FC7 layer

of Caffe reference network [16] was used as the visual fea-

ture for each image, since deep features from pre-trained

Convolutional Neural Network on ImageNet [7] has shown

state-of-the-art performance on various visual recognition

tasks [26]. Each description was converted to phrases using

the Stanford English Parser [5]. Phrases with count smaller

than 50 were not used. We used 7437 phrases. Figure 3

shows some sample phrases. These phrases contain rich

information such as relationships attribute-object, object-

scene, and object-object. We use linear SVM from liblin-

ear [10] in the concept discovery algorithm.

Concepts were learned independently from these

datasets using Algorithm 1. Once concepts were learned,

we consider 3 different applications: (i) concept detection

and recognition, (ii) scene recognition and (iii) object de-

tection. For concept detection and recognition, we chose

Mt = 1 and Mt = 4 for learning concepts from SBU

and NUS-WIDE datasets respectively. NUS-WIDE dataset

has multiple tags and diverse images for each tag. Tag tu-

ples are assigned to each cluster to capture diversity. Con-

cepts in SBU dataset are grouped by compound relation-

ships of multiple words from dependency parser. Hence we

use more clusters when learning concepts from NUS-WIDE

dataset. For scene recognition and object detection, we var-

ied Mt = 1 ∼ 10 to learn the selected concepts and then

pooled together all possible concept detectors. Note that

Mt was determined empirically, a larger Mt might generate

near-duplicate or redundant concept detectors, but it might

make the concept pool more diverse. Determining Mt au-

tomatically for each label t is part of future work. η ∈ [0, 1]
is set empirically at 0.5. For small η, the pool of negatives

is small and consists of very hard examples. Due to noisy

tags, there is a risk that these are actually true positives. For

large η, it takes longer to converge and the richness of easy

positives is decreased. The illustration of some learned con-

cept detectors along with the top ranked positive images is

shown in Figure 4.

For the concepts learned from NUS-WIDE dataset in

Figure 4(a), we show the central concept (cat, boat) in each

row along with their variations. The titles show 3 tags of

which the first one is the central concept. The other two tags

are more contextual words ranked from tf-idf scores associ-

cat-tree:PREP_INcat-basket:PREP_IN sitting-beach:PREP_ON riding-horse:DOBJ

bridge-wooden:AMOD car-rusty:AMOD clouds-trees:CONJ_AND bird-flying:VMOD

car,racing,race car,automobile,truck car,automobile,vehicle car,road,light

boat,sail,sailboat boat,blue,beach boat,clouds,sunset boat,river,boats

(a)

(b)

Figure 4. Discovered Concepts: Illustration of learned concepts

from NUS-WIDE and SBU datasets. Each montage contains the

top 15 positive images for each concept, followed by a single row

of 5 negative images. 4 sub-category concept detectors for car and

boat respectively are illustrated in (a), based on concepts learned

from NUS-WIDE. The title shows the name set for each concept

from NUS-WIDE. Phrases for SBU dataset are shown in titles as

in (b). We use each tag/phrase (see Figures 2 and 3) to repre-

sent a concept and group the associated images together. Within

each such group (say, cat, boat), we group images based on vi-

sual features only, as we want to have visually similar cluster for

one concept. Label vectors (say, car-racing-race, car-automobile-

truck, car-automobile-vehicle, car-road-light) are further used to

name these clusters after hard instance learning using Algorithm 1.

This refined collection of groups is then used to learn concept clas-

sifiers and detectors. Examples of positive and negative samples

for few such concept classifiers are shown in this figure.

ated with the central concept name as the sub-category con-

cept name. We can see that there are indeed sub-categories

representing different views of the same concepts, the con-

textual words ranked using tf-idf well describe the diver-

sity of the same concept. For the concepts learned from

SBU dataset, we show 8 learned phrase detectors in Fig-

ure 4(b). We can see that the visual concepts well match

the associated phrases. For example, cat-in-basket and cat-

in-tree describe the cat in different scene contexts; sitting-

on-beach and riding-horse describe the specific actions;

wooden-bridge and rusty-car describe the attributes of ob-

jects. Besides, the top ranked hard negatives are also shown

below the ranked positive images. We can see that these

hard negatives are visually similar to the images in the pos-

itive set.

To evaluate the learned concept detectors, we use images

from the SUN database [37] and Pascal VOC 2007 object

detection dataset [9]. These are independent from the NUS-



WIDE and SBU datasets where we discover the concept de-

tectors. We first show some qualitative results of concept

recognition and detection done by the learned detectors.

Then we perform quantitative experiments to evaluate the

learned concept detectors on specific vision tasks through

domain-selected supervision (Section 5), for scene recog-

nition and object detection respectively. Compared to the

fully supervised methods and weakly supervised methods,

our domain-selected detectors show very promising perfor-

mance3.

(a)

(b)

bicycle,track,art:1.18

bike,track,vintage:1.12

bike,motorcycle,race:1.84motorcycle race:1 84
square door,windows,house:1.43

lawn,park,girl:1.02
windows,house,green:0.98

House,architecture,historic:1.70

House,building,historic:1.69

0 98
Cottage,garden,architecture:1.23

root-bowls:ROOT:0.94

bag-plastic:AMOD:0.87

bowl-a:DET:1.27

mirror-the:DET:0.85

chicken-pot:PREP_IN:0.89ot:PREP_IN:0.89_IN:0.89
sugar-brown:AMOD:1.16sugar b

sauce-a:DET:1.13

bag-the:DET:0.92

market-fish:NN:0.94
water-ice:NN:0.95plate-a:DET:0.90

sky-night:NN:0.88

table-chairs:CONJ_AND:2.76

green,forest,trees:0.89

table chairs:
root-chairs:ROOT:2.20

sink-kitchen:PREP_IN:1.34

chairs-the:DET:2.13chairs-the:DET:2 13
table-chairs:CONJ_AND:1.63

cabinets-the:DET:1.299
style-door:NN:1.51or:NN:1.51root-cabinet:ROOT:1.64

circle,color,pattern:1.29circle,color,p
navy,airforce,airplane:0.79

public,car,classic:0.85

formula,classic,sport:0.84

antique,car,truck:1.17

f l l i t 0 84
motorcycle,netherlands,nederland:1.06

men,male,army,iraq,kuwait:0.85, y, q,
military,soldiers,war:0.95military,soldiers,war:0.95y, ,

airforce,vietnam,navy:1.06
truck:1.17

airforce,viet
vintage,car,classic:1.10

Figure 5. Concept Detection: Results of concepts discovered

from (a) NUS-WIDE and (b) SBU. Top 20 bounding boxes with

high detector responses are shown. Note that for legibility we

manually overlaid the text labels with large fonts.

6.1. Concept Recognition and Detection

We apply the learned concept detectors for concept

recognition at image level and concept detection at image

regions. After the deep feature xq for a novel query im-

age Iq is extracted, we multiply the learned detector matrix

with the feature vector to get the response vector r = Wxq ,

where each element of the vector is the response value of

one concept. Then we pick the most likely concepts of that

image by simply sorting the response values on r.

We randomly take the images from SUN database [37]

and Pascal VOC 2007 as query images, the recognition re-

sults by concept detectors learned from NUS-WIDE and

SBU datasets are shown in Figure 6. We can see that the

predicted concepts well describe the image contents, from

various aspects of description, such as attributes, objects

and scenes, and activities in the image.

Furthermore, we could apply the learned concept detec-

tors for concept detection at the level of image regions.

Specifically, we mount the learned concept detectors on

a detection system similar to the front-end of Region-

CNN [12]: Selective search [35] is first used to extract re-

3More experimental results are included in supplementary materials.

Table 2. Accuracy and mean average precision (mAP) of baseline,

NUS-WIDE concepts and SBU concepts. Mean ± std is computed

from 5 random splits of training and testing (Section 6.2)

Method Supervision Accuracy mAP

Baseline (strong) Full 69.0±0.6 59.6±0.8

NUS concepts (weak) Selected 55.5±1.8 47.0±0.4

SBU concepts (weak) Selected 60.0±1.2 50.6±0.7

gion proposals from the test image. Then CNN features of

region proposals are extracted. Finally the deep features of

every region proposal are pre-multiplied with the detector

matrix and non-maximum suppression is used to merge the

responses of the overlapped region proposals. The concept

detection results are shown in Figure 5. We can see that

this simple detection system mounted with learned concept

detectors interprets the images in great detail.

6.2. Scene Recognition on SUN database

Here we evaluate the learned concept detectors for scene

recognition on the SUN database [37] which has 397 scene

categories. We firstly use the scene name to select the rel-

evant concept detectors from the pool of learned concepts

i.e. the scene name appears in the name of some concept

detector. There are 37 matched scene categories among the

concept pool of SBU and the concept pool of NUS-WIDE.

We take all the images of these 37 scene categories from

SUN database and randomly split them into train and test

sets. The size of the training set is 50 images per category.

We train a linear SVM on the train set as the fully super-

vised baseline. Note that this baseline is quite strong, since

linear SVM plus deep feature is currently the state-of-the-

art single feature classifier on the SUN database [38].

To evaluate the learned concepts, we use the domain-

selected supervision introduced in Section 5. The train set is

used as the selection set. 37 best scene detectors are selected

out from the concept pool of SBU and NUS-WIDE based

on their top mAP on the selection set, then they are evalu-

ated on the test set. A test image is classified into the scene

category which has the highest detector response. Without

calibration of detector responses, the classification result is

already reasonably good.

The accuracy and mean average precision (mAP) of the

fully supervised baseline and our domain-selected super-

vised methods are listed in Table 2. The AP per category

for the three methods are plotted in Figure 7(a). We can

see that the SBU concept detectors perform better than the

NUS-WIDE concept detectors because of larger amount of

data. Both of the learned concept detectors have good per-

formance, compared to the fully supervised baseline with

strong labels. SBU concept detectors even outperform the

baseline for mountain, castle, marsh, and valley categories

shown in Figure 7(a). The concept detectors perform worse

on some scene categories like village, hospital, and wave,



    'view-rock:PREP_OF'
    'root-formation:ROOT'
    'cliff-the:DET'
    'rocks-red:AMOD'
    'root-formations:ROOT'
    'cliffs-the:DET'
    'face-rock:NSUBJ'
    'walls-canyon:NN'
    'formation-rock:NN'
    'cliff-a:DET'

    'market-fruit:NN'
    'market-local:AMOD'
    'market-a:DET'
    'market-vegetable:NN'
    'market-farmers:NN'
    'fruit-market:PREP_IN'
    'fruit-veg:CONJ_AND'
    'planter-a:DET'
    'root-woman:ROOT'
    'one-beds:PREP_OF'
    

    'books-the:DET'
    'chairs-the:DET'
    'shelves-the:DET'
    'books-library:PREP_IN'
    'shopping-window:NN'
    'room-main:AMOD'
    'room-new:AMOD'
    'tables-chairs:CONJ_AND'
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    'root-books:ROOT'
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'boats-the:DET'
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'root-boats:ROOT'
'root-ships:ROOT'
'root-sailboat:ROOT'
'boat-sail:AMOD'

    'dog-grass:PREP_IN'
    'one-black:AMOD'
    'sitting-sun:PREP_IN'
    'root-puppies:ROOT'
    'playing-grass:PREP_IN'
    'sitting-grass:PREP_IN'
    'grass-long:AMOD'
    'dog-house:PREP_IN'
    'grass-the:DET'
    'running-field:PREP_IN'

    'winter-the:DET'
    'covered-ice:PREP_IN'
    'snow-the:DET'
    'snow-a:DET'
    'storm-snow:NN'
    'tree-front:PREP_IN'
    'snow-fresh:AMOD'
    'root-snow:ROOT'
    'trees-bare:AMOD'
    'snow-white:AMOD'

      
    
      
   
   
   

    
   

(b)

'church,sky,building'
'temple,heritage,thailand'
'architecture,buildings,night'
'religion,islam,sky'
'chapel,buildings,design'

'path,forest,trail'
'trail,forest,trees'
'gate,landscape,trees'
'trees,leaves,autumn'
'woods,leaves,path'

'youth,people,young'
'kids,boy,hope'
'cake,groom,party'
'human,school,photo'
'sitting,clothing,girl'

'vintage,car,classic'
'antique,car,truck'
'car,automobile,truck'
'auto,truck,canada'
'jeep,cars,automobile'

    'chair,room,office'
    'interior,furniture,house'
    'modern,interior,furniture'
    'office,apple,mac'
    'design,interior,furniture'

(a)

Figure 6. Concept Recognition: Illustration of concept recognition using concepts discovered from (a) NUS-WIDE and (b) SBU datasets.

Top 5 and 15 ranked concepts are shown respectively. These predicted concepts well describe the objects, the scene contexts, and the

activities in these images.
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Figure 7. Scene Recognition on SUN: (a) AP per category for three methods, ranked by the gap between learned concepts and fully

supervised baseline. SBU concept detectors from weak labels outperform the baseline for mountain, castle, marsh, and valley. Concept

detectors perform worse for village, hospital, and wave, due to lack of sufficient positive examples in the weakly labeled image collections

(b) Recognition accuracy over the size of selection set. Domain-specific detectors work well when there are only a few samples in the

selection set.

because there are not so many good positive examples in

the weakly labeled image collections.

In Figure 7(b), we further analyze the influence of selec-

tion set on the performance of our method. We randomly

select the subset of images from the train set as the selec-

tion set for our method, we can see that the SBU concepts

still achieve 52.5% accuracy when there are only 5 instances

per category as the selection set to pick the most relevant

concept detectors. It shows that the domain-selected super-

vision works well even with few samples from the target

domain.

6.3. Object Detection on Pascal VOC 2007

We further evaluate the concept detectors on Pascal VOC

2007 object detection dataset. We follow the pipeline of

region proposal and deep feature extraction in [12] for the



Table 3. Comparison of methods with various kinds of supervision on Pascal VOC 2007. NUS-WIDE has missing entries since some object

classes don’t appear in the original tags. See Section 5 for details on “selected” supervision. If we pool the concept detectors learned from

SBU dataset and concept detectors learned from NUS-WIDE dataset together as initial concept pool, the final mAP is 23.2.
Method Supervision aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv mAP

SBU Selected 34.5 39.0 18.2 14.8 8.4 31.0 39.1 20.4 15.5 13.1 14.5 3.6 20.6 33.9 9.4 17.0 14.7 22.6 27.9 19.0 20.9
NUS-WIDE Selected 34.6 38.5 16.5 18.7 - 27.0 43.6 24.6 10.9 9.3 - 20.4 30.3 36.6 3.0 4.7 13.6 - 36.1 - -

CVPR’14 [8] Webly 14.0 36.2 12.5 10.3 9.2 35.0 35.9 8.4 10.0 17.5 6.5 12.9 30.6 27.5 6.0 1.5 18.8 10.3 23.5 16.4 17.2

ECCV’12 [24] Video 17.4 - 9.3 9.2 - - 35.7 9.4 - 9.7 - 3.3 16.2 27.3 - - - - 15.0 - -

ICCV’11 [30] Weakly 13.4 44.0 3.1 3.1 0.0 31.2 43.9 7.1 0.1 9.3 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0.0 13.9

ICML’14 [31] Weakly 7.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7

CVPR’14 [12] Full 57.6 57.9 38.5 31.8 23.7 51.2 58.9 51.4 20.0 50.5 40.9 46.0 51.6 55.9 43.3 23.3 48.1 35.3 51.0 57.4 44.7

validation and test sets of Pascal VOC 2007. Under domain-

selected supervision (Section 5), we first select the learned

concept detectors which have the object name inside their

name and compute the AP for each of them on the valida-

tion set (thus the validation set of Pascal VOC 2007 is our

selection set). Then we evaluate the selected 20 best con-

cept detectors for all 20 objects in VOC 2007 respectively.

Table 3 displays the results obtained using our concept

discovery algorithm on NUS-WIDE and SBU datasets and

compares the state-of-the-art baselines with various kinds

of supervision. CVPR’14 [12] is the R-CNN detection

framework, a fully supervised state-of-the-art method on

Pascal VOC 2007. It uses the training set and validation

set with bounding boxes to train the object detectors with

deep features, then generates region proposal and deep fea-

ture for testing (we use the scores without fine-tuning).

ICML’14 [31] is the state-of-the-art method method for

weakly supervised approaches on Pascal VOC 2007. It as-

sumes that there are just image level labeling on the train set

and validation set without bounding boxes to train the object

detectors. It uses R-CNN framework to compute features on

image windows to train the detectors and to generate region

proposals and deep features for testing. ICCV’11 [30] is an-

other weakly supervised method using DPM. Since all these

three methods only use the training set and validation set of

Pascal VOC 2007 to train the detector, they are relevant to

our method as “upper bound” baselines.

Another two most relevant comparison methods are

the webly supervised method [8] and video supervised

method [30]. Webly supervised method uses items in

Google N-grams as queries to collect images from image

search engine for training the detectors. So their training set

of detector could be considered as the unlimited number of

images from search engines. Video supervised method [30]

trains detectors on manually selected videos without bound-

ing boxes and shows results on 10 classes of Pascal VOC

2007. Since these two methods train detectors on other data

source then test on Pascal VOC 2007, which is similar to our

scenario, we consider them as direct comparison baselines.

Our method outperforms these two methods with better AP

on majority of the classes. Besides, if we pool the concepts

learned from SBU dataset and concepts learned from NUS-

WIDE dataset together as the initial concept pool, the final

mAP reaches 23.2, which even outperforms the weakly su-

pervised method in ICML’14 [31].

7. Conclusion and Future Work
In this paper, we presented ConceptLearner, a max-

margin hard instance learning approach to discover visual

concepts from weakly labeled image collection. With more

than 10,000 concept detectors learned from NUS-WIDE

and SBU datasets, we apply the discovered concepts to con-

cept recognition and detection. Based on domain-selected

supervision, we further quantitatively evaluate the learned

concepts on benchmarks for scene recognition and object

detection, with promising results compared to other fully

and weakly supervised methods.

There are several possible extensions and applica-

tions for the discovered concepts. Firstly, since there

are thousands of the concepts discovered, some concept

detectors have overlaps. For example, as the predicted

labels in the second example in Figure 6(b), there

are ‘market-fruit:NN’,‘market-local:AMOD’,‘market-

a:DET’,‘market-vegetable:NN’,‘market-farmers:NN’, and

‘fruit-market:PREP IN’, which are redundant to describe

the same image. Thus some bottom-up or top-down

clustering methods could be used to merge the similar

concept detectors or to merge the predicted labels for a

query image. Besides, some measures could be introduced

to characterize the properties of learned concepts, such

as the visualness [15] and localizability [1]. Then the

subset of concept detectors could be grouped and used in a

specific image interpretation task. Meanwhile, in concept

recognition and concept detection, since every concept

is detected independently, some spatial or co-occurrence

constraints could be defined and used to filter out some

outlier concepts detected in the same image, in the context

of all the other detected concepts. Besides, with the

grammatical structure integrated, the predicted phrases

and tags could be further used to generate a full sentence

description for the image.
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[28] A. Saha, P. Rai, H. Daumé III, S. Venkatasubramanian, and

S. L. DuVall. Active supervised domain adaptation. In

Machine Learning and Knowledge Discovery in Databases.

2011.

[29] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery

of mid-level discriminative patches. In Proc. ECCV. 2012.

[30] P. Siva and T. Xiang. Weakly supervised object detector

learning with model drift detection. In Proc. ICCV, 2011.

[31] H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui,

T. Darrell, et al. On learning to localize objects with min-

imal supervision. In International Conference on Machine
Learning, 2014.

[32] R. K. Srihari. Piction: A system that uses captions to label

human faces in newspaper photographs. In T. L. Dean and

K. McKeown, editors, AAAI, pages 80–85. AAAI Press / The

MIT Press, 1991.

[33] K. Tang, V. Ramanathan, L. Fei-Fei, and D. Koller. Shifting

weights: Adapting object detectors from image to video. In

NIPS, 2012.

[34] A. Torralba and A. A. Efros. Unbiased look at dataset bias.

In Proc. CVPR, 2011.

[35] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. Int’l
Journal of Computer Vision, 2013.

[36] S. Wang, J. Joo, Y. Wang, and S.-C. Zhu. Weakly supervised

learning for attribute localization in outdoor scenes. In Proc.
CVPR, 2013.

[37] J. Xiao, J. Hays, K. A. Ehinger, A. Torralba, and A. Oliva.

Sun database: Exploring a large collection of scene cate-

gories. 2014.

[38] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places

database. In NIPS, 2014.


