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Abstract

This paper addresses the illumination and reflectance
spectra separation (IRSS) problem of a hyperspectral im-
age captured under general spectral illumination. The huge
amount of pixels in a hypersepctral image poses tremen-
dous challenges on computational efficiency, yet in turn of-
fers greater color variety that might be utilized to improve
separation accuracy and relax the restrictive subspace il-
lumination assumption in existing works. We show that this
IRSS problem can be modeled into a low-rank matrix factor-
ization problem, and prove that the separation is unique up
to an unknown scale under the standard low-dimensionality
assumption of reflectance. We also develop a scalable algo-
rithm for this separation task that works in the presence of
model error and image noise. Experiments on both synthet-
ic data and real images have demonstrated that our separa-
tion results are sufficiently accurate, and can benefit some
important applications, such as spectra relighting and illu-
mination swapping.

1. Introduction

A hyperspectral signal records the spectral radiance of a
reflective surface, which is the compound of the illumina-
tion spectral power distribution and the surface reflectance
spectra. To extract the illumination and the reflectance spec-
tra from an observed hyperspectral signal has been a long-
standing problem in photometric computer vision [8,10,15].
Obviously, this separation problem is underconstrained, s-
ince there are twice as many unknowns as observations. To
resolve this issue, a typical way is to introduce the low-
dimensional subspace model of reflectance and that of il-
lumination. Although it is widely believed that any prac-
tical reflectance spectrum can be well approximated by a
low-dimensional model [24, 25], this does not hold for the
illumination spectra in general, except the daylight spectra
family [19,28] and a limited few spectra of artificial illumi-
nants [27].

This paper addresses a more practical variant of the clas-
sical separation problem of a single spectral signal under
restricted subspace illumination, namely, the illumination
and reflectance spectra separation problem of a whole hy-
perspectral image captured under general spectral illumina-
tion, hereafter referred to as the IRSS problem. We believe
that to explore this extension is necessary and worthwhile,
especially when considering that an image usually contains
greater color variation, which might be utilized to improve
the separation accuracy and relax the restriction of subspace
illumination. Unfortunately, the huge amount of pixels in a
hyperspectral image does impose great challenges on the
aspects of model expression and computational efficiency.

Under the ideal diffuse reflectance and spatially unifor-
m illumination assumption, we have found that this IRSS
problem can be modeled into a low-rank matrix factoriza-
tion problem. By doing so, the solution properties, like u-
niqueness, can be analyzed elegantly by means of singu-
lar value decomposition (SVD). Actually, we have proved
that this IRSS problem assumes a unique solution up to
an unknown scale between the illumination and reflectance
components, under the standard assumption that reflectance
spectra lie in a low-dimensional linear subspace. Consider-
ing that this subspace model is not perfectly errorless and
the image intensity values usually suffer from noise, we al-
so develop a scalable algorithm that works in the presence
of both model error and image noise. Rather than explicitly
describing the physical imaging process of those compli-
cated effects beyond diffuse reflectance, like shadows and
highlights, we treat them as outliers to our low-rank model,
which can be accounted for via low-rank matrix approxima-
tion operation of a nonnegative observation matrix under the
robust L1-norm error metric.

Quantitative experiments on both synthetic data and re-
al images have demonstrated that, our separation results of
scenes with sufficient color variation are reasonably accu-
rate, and can benefit some important applications, such as
spectra relighting of a single view and illumination swap-
ping between two different views.

Our major contributions can be summarized as follows:
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(i). To suggest a novel low-rank matrix factorization per-
spective for the IRSS problem under general spectra illu-
mination; (ii) To analyze its solvability via singular value
decomposition; (iii) To develop a scalable factorization al-
gorithm that works in real scenarios with model error and
image noise.

1.1. Related Works

1.1.1 Illumination and Reflectance Spectra Separation

Existing works on illumination and reflectance spectra sep-
aration originate either from the classical problem of sepa-
rating a single hyperspectral color signal or from the broad
class of literatures on color constancy of a trichromatic RG-
B image.

As for the spectra separation task of a single signal, Ho
et al. [15] introduced the subspace models of illumination
and reflectance, and formulated it into a noncovex bilinear
program. To better constrain this problem, Chang and H-
sieh [8] enforced proper constraints on reflectance and illu-
mination, and used simulated annealing to solve the bilinear
program so as to reduce the risk of being trapped into lo-
cal minima. Drew and Finlayson [10] successfully avoided
the bilinearity by manipulating it in the logarithmic space.
Although some heuristic countermeasures have been sug-
gested in [10], the resulting linear system might suffer from
numerical instability, since taking logarithm of an infinites-
imal number would result in a huge one.

Efforts have been made to handle more hyperspectral
signals. For example, Ikari et al. [17] utilized similar sub-
space assumptions and constraints of [8], and were able to
separate dozens of hyperspectral signals. One might seek
to extend their method further to handle a high-resolution
hyperspectral image with at least tens of thousands of pix-
els. Unfortunately, the classical bilinear formulation and
the typical simulated annealing algorithm [8, 15, 17] could
not handle such a large-scale spectra separation problem.
This reveals the necessity of developing a compact mod-
el to describe, and a scalable algorithm to solve, this large
separation problem.

Computational color constancy of a trichromatic image
[2, 11, 13] is to simultaneously estimate the RGB color of
the illuminant and the true scene color. A number of pri-
ors on the scene, ranging from the plain grey-world [5] or
white-world [20] assumption to more complicated statisti-
cal knowledge [3,12], as well as special optical effects, like
highlights [29], have been utilized for this task.

Researchers have generalized the assumptions and meth-
ods in trichromatic computational color constancy for the
illumination and reflectance separation problem of a hy-
perspectral image [26]. For example, Huynh and Robles-
Kelly [16] assumed that the scene could be segmented in-
to several homogeneous surface patches, and were able to
estimate the illumination and reflectance spectra under the

dichromatic reflectance model. In principle, some other
methods for trichromatic color constancy, like [5, 20, 29],
could be extended to handle a hyperspectral image as well,
when their underlying assumptions on the scene or the illu-
minant indeed apply.

Rather than relying on any restrictive spatial distribution
assumption of the scene, we resort to the more general and
widely accepted assumption that any reflectance spectrum
lies in a low-dimensional subspace [24, 25]. In this sense,
our work is more closely related to those on separating one
or multiple hyperspectral signals [8,10,15,17] than to those
arising from the scenario of computational color constancy.
Interestingly, this subspace assumption on reflectance spec-
tra leads naturally to a compact mathematical description
of the IRSS problem via low-rank matrix factorization. It
also enables us to easily analyze its solvability, and to read-
ily develop scalable algorithms for solving by virtue of the
latest theoretical and algorithmic advancements in low-rank
matrix factorization.

1.1.2 Low-Rank Matrix Factorization

A great variety of problems in science and engineering as-
sume low-dimensional subspace structures, and have been
solved via low-rank matrix factorization. Particularly, in
photometric and geometric computer vision, the underly-
ing low-rank structure of various entities has been exploit-
ed for photometric stereo [32], camera calibration [21, 33],
rigid [30, 35] and nonrigid [4, 9, 35] structure-from-motion
and so on.

The fundamental tool for low-rank matrix factorization is
singular value decomposition (SVD), which offers the opti-
mal solution when the measurement matrix is corrupted by
Gaussian noises [18]. In recent years, much research at-
tention has been paid to the more practical scenario that a
measurement matrix is corrupted by gross outliers. A plen-
ty of theoretical fruits on the quality of various convex sur-
rogates [6, 7] have been reported, followed by tremendous
algorithmic advancements in developing different kinds of
fast first-order optimization algorithms (see [22,23,34] and
many others).

This work adds another member into the broad family of
low-rank problems in photometric computer vision. Unlike
a typical low-rank problem, IRSS is particular in the sense
that its measurement matrix is nonnegative due to the phys-
ical restrictions on illumination and reflectance spectra.

2. Low-Rank Factorization Model of IRSS
For a diffuse surface point, its radiance di at the i-th spec-

tral band recorded by a hyperspectral camera is proportion-
al to the product of the illumination li and the surface re-
flectance ri, that is,

di = liri, 1 ≤ i ≤ m, (1)



where the proportional scalar, accounting for such factors
as gain and exposure time, has been omitted, and m denotes
the number of spectra bands. It is also assumed that the
spectral sensitivity function of the hyperspectral camera has
been precorrected to be one at all spectral bands. To sepa-
rate the observed radiance spectra, one has to assume that
both the illumination and the reflectance spectra are low-
dimensional [8,10,15], since otherwise there would be more
variables than constraints. In the following, we try to utilize
a huge amount of spectral signals in a hyperspectral image
to assist the separation, without imposing any restriction on
the illumination spectra. It is worthy to note that the log-
arithmic transformation [10] does not apply to our separa-
tion problem, since certain bands (unknown beforehand) of
a general illumination spectrum might be close to zero (e.g.
a banded illumination).

For a hyperspectral image with n pixels under spatially
uniform illumination, the intensity value di j of the j-th pixel
at the i-th spectral band reads

di j = liri j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (2)

which can be stacked into a matrix systemd11 · · · d1n

· · · · · · · · ·
dm1 · · · dmn

︸               ︷︷               ︸
Dm×n

=

l1 · · ·
lm

︸           ︷︷           ︸
Lm×m

r11 · · · r1n

· · · · · · · · ·
rm1 · · · rmn

︸              ︷︷              ︸
Rm×n

. (3)

The above system has mn constraints in the observation ma-
trix D and m(n + 1) variables in the diagonal illumination
matrix L and the reflectance matrix R, which means that the
IRSS problem without any assumption on illumination nor
reflectance is underconstrained, no matter how many sig-
nals we have.

It has been widely agreed that reflectance spectra lie in a
low-dimensional linear subspace. Therefore, we introduce
the subspace model of reflectance R, and rewrite eq.(3) into

Dm×n = Lm×mRm×n = Lm×mBm×sCs×n, (4)

in which B and C denote the spectral bases and coefficients,
respectively, and s the subspace dimensionality. According
to [24,25], s is often chosen to be around 8 so as to reach the
best tradeoff between expression power and noise resistance
in the process of fitting reflectance spectra.

Interestingly, we have found that the low-rank formula-
tion of IRSS in eq.(4) is very similar to that of the nonrigid
structure-from-motion problem (NRSfM) [1, 4, 9, 14] in ge-
ometric vision, thus can be regarded as a spectra-domain
counterpart to the NRSfM problem in time-domain. Due to
page limitation, the detailed comparison of these two prob-
lems will be presented in the supplementary materials. This
analogy might interest researchers in photometric and geo-
metric computer vision in drawing on experience of solving
one problem to better handle the other.

3. Ambiguity Analysis
In addition to the physically meaningful factorization in

eq.(4), we can also factorize D mathematically via the par-
tial singular value decomposition as follows

Dm×n = Um×sS s×sVT
n×s = UQQ−1S VT = (UQ)

(
Q−1S VT

)
,

(5)
in which Q is an arbitrary s × s invertible matrix. By com-
paring eq.(4) with eq.(5), we can recognize that our IRSS
problem is to find a proper matrix Q such that

UQ = LB. (6)

When the spectral bases matrix B is unknown, eq.(6) is triv-
ial1. In other words, to simultaneously separate the hyper-
spectral image and learn the bases is infeasible.

In the following, we assume that B has been learned vi-
a principle component analysis (PCA) of a spectra dataset
[24, 25]. Considering that UT U = Is, in which Is is the
s × s identity matrix, we can multiply UT at both sides of
eq.(6), and obtain Q = UT LB, which can be plugged back
into eq.(6), such that

UQ = UUT LB =
(
UUT

)
LB = LB. (7)

From eq.(4), the bounds on s should be 1 ≤ s ≤ min{m, n}.
Considering that n is much greater than m in general, we
can assume that 1 ≤ s ≤ m. When s = m, U becomes a
square matrix, and we have UT U = UUT = Is. Under this
condition, Eq.(7) reduces to a trivial equation LB = LB,
which can be trivially satisfied by any nonnegative diagonal
L. When s ≤ m − 1, eq.(7) implies that LB is the s eigen-
vectors of UUT corresponding to the eigenvalue 1, which
results in a linear system with ms constraints and m vari-
ables in L. This means that, when 1 ≤ s ≤ m − 1, eq.(7) has
a unique solution in general, up to an arbitrary scale. Given
L, the reflectance R can be calculated as

R = BC = BQ−1S VT = B
(
UT LB

)−1
S VT . (8)

Therefore, the scale ambiguity between L and R could not
be resolved.

Now we reach the following proposition on the solvabil-
ity of our IRSS problem.

Proposition 1. Under the standard assumption that
scene reflectance lies in a s-D low-dimensional subspace
spanned by known bases, the IRSS problem assumes a u-
nique solution, except that the absolute magnitudes of illu-
mination and reflectance are ambiguous. The illumination
spectra can be very general, as long as there are at least s
nonzero bands.

1For example, when letting L = Is, B can be chosen to be UQ for an
arbitrary invertible Q.
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Figure 1. Illumination spectra estimation error of the linear solu-
tion using perfect and raw reflectance, with respect to varying di-
mensionality of reflectance subspace. A perfect reflectance spec-
trum is obtained by projecting a raw reflectance spectrum onto the
8-D subspace.

3.1. Verification Using Synthetic Data

To verify our theoretical analysis, we use the raw re-
flectance spectra of ten color patches in the Macbeth color
checker as the test target. The reflectance bases are trained
via PCA on the spectra data of the Gretag Macbeth Color
Checker Digital Camera (CCDC) target. We have also tried
to use other spectra data to learn the bases, and verified that
similar results can be obtained. Considering that the raw
reflectance spectra do not lie perfectly in the subspace, we
project the raw spectra onto the low-dimensional subspace
to simulate ’perfect reflectance spectra’ for the purpose of
numerical verification. According to [24, 25], the dimen-
sionality of reflectance subspace is chosen to be 8 in the
projection process. We generate random illumination spec-
tra and normalize the scale such that the maximum value is
1. We measure the root-mean-square-error (RMSE) of the
estimated illumination spectra from the linear solution in e-
q.(7), with respect to the corresponding ground truth. To
synthesize noisy signals, we add zero-mean Gaussian noise
with derivation of 5% relative magnitude. We vary the di-
mensionality s from 1 to 10.

As shown in Fig.1(a), the estimation error is zero, when
s = 8 for perfect reflectance. This verifies our assertion in
proposition 1. However, the solution from eq.(7) is quite in-
accurate, when raw reflectance spectra that slightly deviate
from the subspace are used. This indicates that the linear
solution in eq.(7) is very sensitive to the subspace model
error, even in no presence of image noise.

Surely, using the first principle component to express
reflectance should not be accurate. However, an interest-
ing observation from Fig.1(a) and (b) is that, when s = 1,
the estimation accuracy of illumination is the highest in
the case of raw reflectance. This phenomenon links to
the well-known grey-world assumption [5]. Specifically,
when s = 1, eq.(6) reduces to u1q11 = Lb1. As shown
in Fig.1(c), the first principle component (in thick dark) of
reflectance b1 is almost flat, the illumination spectra vector
l, l =

[
l1, · · · , lm

]T
, is thus almost proportional to u1, the

primary left singular vector of D. In addition, for a nonneg-
ative matrix, like our observation matrix D, its primary left
singular vector is close to its row-wise average. Therefore,

the illumination spectrum li at the i-th band almost equals
the mean pixel value of the i-th band image, which is exact-
ly the grey-world assumption. Since there are ten different
colors in this simulation, the grey-world assumption holds
true to a large extent.

In the following, we propose a scalable algorithm for the
separation problem that works in the presence of model er-
ror and image noise.

4. Scalable Algorithms
4.1. Handling Model Error and Image Noise

As recognized in [8, 17], the scene reflectance is bound-
ed between 0 and 1, that is 0 ≤ ri j ≤ 1, i = 1, 2, · · · ,m, j =
1, 2, · · · , n. According to eq.(3), the constraints on the illu-
mination spectra are

li ≥ max
1≤ j≤n
{di j}, 1 ≤ i ≤ m. (9)

Let us observe that the constraints in eq.(9) link to the
well-known white-world assumption [20], which assumes
that the scene contains a white surface and the illumination
spectrum is equivalent to the radiance of that surface. This
is exactly the special case of eq.(9) when equality holds. It
is widely known that this assumption is sensitive to image
outliers, caused for example by sensor defects or highlights.
We are going to relieve this problem by using the robust
estimation technique described later in this section.

Based on eq.(6), the illumination spectra can be estimat-
ed by solving the following minimization problem

min
l,Q
∥UQ − LB∥2F , s.t., li ≥ max

j
{di j}, lz ≤ max

i, j
{di j}, (10)

in which we introduce another constraint lz ≤
maxi, j{di j}, 1 ≤ i ≤ m, 1 ≤ j ≤ n, to restrict the ab-
solute scale of l, and z denotes the row index of the
maximum value maxi, j{di j}. The optimization problem in
eq.(10) is a small convex quadratic program (QP), thus can
be easily solved.

After obtaining l, we can further improve the separation
accuracy by minimizing the following cost function on the
basis of the original low-rank model in eq.(4)

min
l,C
∥D − LBC∥2F ,

s.t.,0 ≤ (BC)i j ≤ 1, li ≥ max
j
{di j}, lz ≤ max

i, j
{di j}.

(11)

Considering that C is extremely large in size, a typical de-
scending method would be impractical. We thus develop a
simple but scalable alternating projection algorithm to min-
imize eq.(11). Specifically, given l, C can be updated as C =
(LB)+D, in which (LB)+ denotes the Moore-Penrose pseu-
doinverse of LB. Then, the bound constraints on reflectance
BC are enforced by clamping the negative elements of BC
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Figure 2. Separation accuracy w.r.t. the dimensionality of re-
flectance under random illumination (a) or daylight illumination
(b), in the presence of 5% relative image noise.

to be 0 and those elements greater than one to be 1. Given
BC, to update l is simpler, since li, i = 1, 2, · · · ,m, are in-
dependent. By letting R = BC, li = (d̂T

i r̂i)/(r̂T
i r̂i), in which

d̂i and r̂i denote the transpose of the i-th row of D and R,
respectively. The bound constraints on li in eq.(11) can be
enforced posteriorly by clamping those elements beyond the
bounds to be the bounded value. Starting from the initial l
by solving eq.(10), we update C and l alternatively, until the
maximum iteration number (20 in all our experiments) is
reached.

4.2. Handling Outliers

Let us recall that our low-rank factorization model in e-
q.(4) relies on the assumption of diffuse surface reflectance
and spatially uniform illumination. Here, we slightly relax
this assumption by treating those effects beyond diffuse re-
flectance as outliers to our low-rank model, and accounting
for them in a robust factorization framework.

We introduce a mask matrix W with the same size of
the observation D. Its element wi j is 0, when the j-th pixel
at the i-th band is apparently saturated, i.e., the maximum
allowed value (255 for 8-bit images) is reached. Otherwise,
wi j is 1. Given an observation matrix D with outliers, we try
to find a nonnegative matrix D̃, whose rank is at most s̃, by
minimizing the following robust L1-norm error

min
D̃

∥∥∥W ⊙ (D − D̃)
∥∥∥1

1 , s.t., D̃ ≥ 0, rank(D̃) ≤ s̃, (12)

in which ⊙ denotes element-wise multiplication of matrices.
To eliminate the rank constraint, we adopt the bilinear

expression such that D̃ = ŨṼT , in which ŨT Ũ = Is̃. E-
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Figure 3. Separation accuracy w.r.t. the number of colors under
general illumination in the presence of 5% relative image noise.
(a) shows the results by using color patches only, while (b) the
improved results by randomly adding a grey patch to assist the
separation.

q.(12) can be reformulated as

min
D̃,Ũ,Ṽ

∥∥∥W ⊙ (D − D̃)
∥∥∥1

1 , s.t., D̃ ≥ 0, D̃ = ŨṼT , ŨT Ũ = Is̃.

(13)
Challenging as it is, the large-scale nonconvex optimiza-

tion in eq.(13) can be directly solved by using the first-order
augmented Lagrange multiplier method of [34]. The rank
upper bound s̃ is chosen to be 8 in all the experiments.

4.3. Computational Procedures

Now, we briefly summarize the computational proce-
dures for our IRSS problem as follows: (Step-1). Construct
the observation matrix D and remove potential outliers by
solving eq.(13); (Step-2). Compute the partial SVD factor-
ization of D̃; (Step-3). Solve the convex QP in eq.(10) to
find the illumination spectra l; (Step-4). Refine the illumi-
nation spectra via alternating minimization of eq.(11).

Actually, by solving eq.(11), we can obtain both the il-
lumination spectra l and reflectance spectra R. However,
as shall be shown in the following experiment section, we
are going to compare our algorithm with the grey-world and
white-world assumption, both of which directly estimate the
illumination spectra from image observations. Given the es-
timated illumination spectra l, we calculate the reflectance
spectra for these two assumptions as

R = B̃(LB̃)+D̃, (14)

in which B̃ is the reflectance bases with dimensionality s̃.
To make the comparison fair, for all our experiment results
in the following, we re-calculate the reflectance spectra by
using eq.(14) as well, instead of using those from eq.(11).
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(h) Recovered Reflectance Spectra of the 6th Patch (solid green) vs. Ground Truth (dotted black)
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(i) Recovered Reflectance Spectra of the 8th Patch (solid green) vs. Ground Truth (dotted black)
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(j) Recovered Reflectance Spectra of the 12th Patch (solid green) vs. Ground Truth (dotted black)

Figure 4. Illumination and reflectance separation of the Macbeth color checker (18 color patches) under daylight (a), LED lamp (b), office
fluorescent light (c), LED lamp with fluorescent light (d), incandescent lamp with fluorescent light (e) and blue light (f). The recovered
illumination spectra (g) and representative reflectance spectra (h,i,j) are compared with their respective ground truth.

5. Experiment Results
5.1. Synthetic Data

We use the reflectance spectra of all 18 color patches in
the Macbeth color checker to simulate data. Random illumi-
nation spectra or random daylight spectra are generated for
experiments. To resolve the scale ambiguity of illumination
and reflectance, we normalize the illumination spectra such
that the maximum value is 1. We measure the RMSE of es-
timated illumination and reflectance spectra with respect to
their respective ground truth.

5.1.1 Accuracy w.r.t. Dimensionality of Reflectance

Here, we try to investigate the effect of reflectance dimen-
sionality on separation accuracy. We vary the dimension-
ality s from 1 to 10, and measure the illumination and re-
flectance spectra error for each s. We add zero-mean Gaus-
sian noise with 5% relative magnitude. We show the aver-
age error over 100 independent trials in Fig.2. To clearly
reveal how estimation accuracy is improved hierarchically,
we present the results of the linear solution (Linear) in e-
q.(7), the quadratic program solution (QP) in eq.(10) and

the refined solution (QP+Refinement) in eq.(11). We also
include the grey-world and the white-world assumption as
baseline.

From Fig.2, our preliminary observation is that the most
appropriate dimensionality s is 3. This is a little bit surpris-
ing to us, since we were expecting that the best s should be
around 8, the dimensionality usually adopted to represent
reflectance. One possible reason for this observation might
be that the potential sway of error between illumination and
reflectance will advocate a tighter subspace expression of
reflectance spectra. Due to this observation, the subspace
dimensionality s is chosen to be 3 in all the remaining ex-
periments.

5.1.2 Accuracy w.r.t. Color Variation

In addition to the subspace dimensionality, color variation
in a scene might also affect the separation accuracy. To
investigate this factor, we randomly pick k color patches,
varying from 3 to 18. The average illumination and re-
flectance spectra error over 100 runs are shown in Fig.3(a),
from which we can observe that color variation indeed has
significant impact on the estimation accuracy. The accuracy
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Figure 5. Spectra separation and relighting of the textured paper scene. For each row, the subfigures from left to right are the original scene,
residual image, recovered illumination spectra, reflectance image, relighted scene under another illumination and the captured scene under
that illumination, respectively.
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Figure 6. Spectra separation and relighting of the fruit scene. The subfigures are arranged in the same way as of Fig.5.

improves monotonically as the number of colors increas-
es. Roughly, to ensure an accurate separation, the scene
should contain at least 10 colors. In some real scenarios,
the number of colors might be less than 10. As a remedy, it
is not too demanding to assume that the scene usually cov-
ers some nearly white or grey surfaces. This is similar to
the white-world assumption in a certain sense. We repeat
the above experiment, and randomly pick a grey patch from
the Macbeth color checker as well. The results are shown
in Fig.3(b), from which we see that the separation accura-
cy is reasonably high, even in the presence of three or four
colors.

5.2. Real Images

To capture hyperspectral images of real scenes, we use a
NH-7 camera by EBA JAPAN Co. LTD, working in the vis-
ible range from 420nm to 700nm with an interval of 5nm.
All hyperspectral images are shown in RGB for visualiza-
tion.

5.2.1 Separation Accuracy

We first investigate the separation accuracy of real images
under varying spectra illuminations. For convenience, the
18 color patches of the Macbeth color checker are used
as test target, whose reflectance spectra are standard. As

shown in Fig.4, we take images of the target under either
natural or artificial lights, and compare the recovered illumi-
nation and reflectance spectra with their respective ground
truth. From Fig.4, we can observe that our separation re-
sults are sufficiently accurate, no matter when the illumina-
tion spectra are relatively smooth (e.g. the household LED
spectra in Fig.4(b)) or extremely spiky (e.g. the office fluo-
rescent lamp spectra in Fig.4(c-e)).

An important observation from the last column of Fig.4
is that our method works very well to recover banded illu-
mination spectra. However, for those intervals without irra-
diance, the recovered reflectance spectra rely primarily on
the subspace model. Therefore, the accuracy of recovered
reflectance might be poor.

5.2.2 Spectra Relighting

By recovering the reflectance component, it is possible to
relight the scene under any novel illumination. We have ob-
tained some preliminary results by using the textured paper
scene in Fig.5 and the fruit scene in Fig.6. The robust non-
negative low-rank matrix approximation scheme in Sec.4.2
has been used first to remove potential highlights. As shown
in the residual images (2nd column) of Fig.5 and Fig.6, this
robust scheme seems to work reasonably well and success-
fully identify some highlighted regions that conform to our
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Figure 7. Spectra separation and illumination swapping of the sushi scene (1st row) and the currency note scene (2nd row). For each
row, the subfigures from left to right are the original scene, residual image, recovered illumination spectra, reflectance image, scene under
swapped illumination of the other row, and the captured scene under that illumination, respectively.
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Figure 8. Spectra separation and illumination swapping of two pencil sets. The subfigures are arranged in the same way as of Fig.7.

visual perception, although it rarely accounts for their un-
derlying imaging mechanisms. As for the relighting results,
they are pretty satisfactory even for the fruit scene in Fig.6,
whose scene geometry is very complex.

5.2.3 Illumination Swapping

Given two hyperspectral images of different scenes, we can
easily swap their illumination conditions on the basis of our
illumination and reflectance separation results. As illus-
tration, we have tried to swap the sushi and the currency
note scene in Fig.7 and the two pencil scenes in Fig.8. Al-
though the synthesized scene is not in complete agreement
with the ground truth, the appearance discrepancy has been
drastically reduced, which demonstrates the accuracy and
applicability of our illumination and reflectance separation
method.

6. Conclusions
We have addressed the generalized illumination and re-

flectance spectra separation problem of a hyperspectral im-
age captured under arbitrary spectra illumination. We have
shown that this separation problem can be handled by using
low-rank matrix factorization, which is much more com-
pact and convenient than the existing bilinear formulation.
We have also proved that the separation is unique up to an
unknown scale under the standard low-dimensionality as-

sumption of reflectance. Scalable algorithms that work in
the presence of model error, image noise and outliers, have
been developed and shown to be successful. Experiments
on both synthetic data and real images have demonstrated
that, when the scene covers sufficient color variation, our
separation results are sufficiently accurate. We have demon-
strated two applications of spectra relighting and illumina-
tion swapping.

Our work has left out quite a few important aspects that
deserve to be explored in depth. For example, highlights,
being treated as outliers to the low-rank model in this pa-
per, are known to encode some important information of the
illumination. Therefore, it would be rewarding to careful-
ly model and exploit highlights in a physically sound way,
as in [17, 31]. As for the application aspect, we hope that
our separation results can benefit some other potential ap-
plications, such as spectra-based material recognition and
hyperspectral image compression.
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