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Abstract

Descriptor learning has recently drawn increasing atten-

tion in computer vision, Existing algorithms are mainly de-

veloped for classification rather than for regression which

however has recently emerged as a powerful tool to solve a

broad range of problems, e.g., head pose estimation. In this

paper, we propose a novel supervised descriptor learning

(SDL) algorithm to establish a discriminative and compact

feature representation for multi-output regression. By for-

mulating as generalized low-rank approximations of matri-

ces with a supervised manifold regularization (SMR), the

SDL removes irrelevant and redundant information from

raw features by transforming into a low-dimensional space

under the supervision of multivariate targets. The obtained

discriminative while compact descriptor largely reduces the

variability and ambiguity in multi-output regression, and

therefore enables more accurate and efficient multivariate

estimation. We demonstrate the effectiveness of the pro-

posed SDL algorithm on a representative multi-output re-

gression task: head pose estimation using the benchmark

Pointing’04 dataset. Experimental results show that the

SDL can achieve high pose estimation accuracy and sig-

nificantly outperforms state-of-the-art algorithms by an er-

ror reduction up to 27.5% . The proposed SDL algorithm

provides a general descriptor learning framework in a su-

pervised way for multi-output regression which can largely

boost the performance of existing multi-output regression

tasks.

1. Introduction

Descriptor learning, which is also known as feature rep-

resentation learning, has recently become attractive in vi-

sual recognition [33, 25, 37]. Most of existing algorithm-

s are specifically developed for classification tasks while

not directly applicable to regression due to the continu-

ous multivariate targets rather than discrete class labels [4].

However, multi-output regression has recently emerged and

extensively studied for many computer vision tasks, e.g.,

head pose estimation [15], human body pose estimation

[29] and viewpoint estimation [28]. Moreover, many re-

searchers have found their applications, e.g., camera relo-

calization [24, 13] and cardiac volume estimation [1, 38],

can be elaborately solved by transferring the original prob-

lem into a multi-output regression task, which not only sub-

stantially outperforms conventional approaches but also of-

fers a more compact and exquisite mathematical formula-

tion to circumvent the difficulty in conventional approaches,

e.g., the inverse problems [13].

Great challenges in multi-output regression arise from

the complex relationship between the high-dimensional in-

put feature descriptors and multivariate targets. Images with

the same targets often exhibit great variability due to illu-

mination changes, geometrical complexity and inter-subject

variations. Meanwhile, images with different targets can al-

so share very similar appearance which causes large ambi-

guity. The variability and ambiguity pose great challenges

in multi-output regression tasks and designing discrimina-

tive feature descriptors to reduce the variability and am-

biguity becomes the bottleneck for accurate and efficient

multivariate estimation [9]. Handcrafted descriptors, e.g.,

HOG, are mainly used and can obtain good results in many

multi-output regression tasks [14, 15]. However, the guid-

ance of observed regression targets that represent high-level

concepts in the input data [15] is completely ignored, which

leads to indiscriminate and lengthy representations. Incor-

porating the supervision of targets into descriptor learning

to achieve discriminative feature representations is impera-

tive and highly desired for more accurate and efficient mul-

tivariate estimation, which has not been addressed.

In this paper, we propose a novel supervised descrip-

tor learning (SDL) algorithm for multi-output regression

to achieve more accurate and efficient multivariate estima-
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tion. The proposed SDL is formulated as generalized low-

rank approximations of matrices with a supervised mani-

fold regularization (SMR). The SDL seeks low-dimensional

feature representations under the supervision of regression

targets achieving discriminative and compact descriptors.

By systematically assembling the generalized low-rank ap-

proximation and the newly proposed SMR to leverage their

strengths in dimension reduction and supervised manifold

learning, the SDL provides a novel general framework to ef-

fectively learn compact and discriminative feature represen-

tations for multi-output regression. The SDL can be built

on image intensity, handcrafted features and deeply learned

representations, and can also work seamlessly in conjunc-

tion with existing regressors. The obtained compact and

discriminative feature representation not only substantial-

ly boosts multivariate estimation for better performance but

also enables to conduct in a more efficient way.

In order to take advantage of prior knowledge to capture

edges and gradient structures [7], we propose building our

SDL on gradient orientation matrices (GOM) rather than

pixel intensity. This is partially inspired by previous work

showing that combining gradient orientations with super-

vised learning can boost classification performance [33, 2]

and replacing pixel intensities with gradient orientations of-

fers reliable subspace estimation [30]. The GOM of an im-

age can be constructed by stacking histogram of oriented

gradients (HOG) in a matrix with rows of orientations and

columns of spatial cells. The SDL provides an effective

strategy to differentially explore spatial layout and orienta-

tion information in the GOM to achieve data-driven repre-

sentations for specific tasks.

To demonstrate the ability of learned compact and dis-

criminative representations for multivariate estimation, we

evaluate the SDL on a representative multi-output regres-

sion tasks: head pose estimation, a challenging problem in

computer vision. Experimental results show that the SDL is

able to generate compact while discriminative feature rep-

resentations for head poses, and achieves high estimation

accuracy which significantly outperforms the state-of-the-

art algorithms including both descriptors and dimensionali-

ty reduction techniques.

2. Related Work

We will briefly review related work on discriminative de-

scriptor learning and multi-output regression both of which

have recently drawn considerable attention in computer vi-

sion for diverse applications.

Discriminative descriptor learning can either be built on

well-established feature descriptors, e.g., the SIFT [20, 6],

LBP [22, 12], HOG [2] descriptors or be reformulated to

learn those descriptors in a discriminative way [33, 18, 25].

The performance of handcrafted descriptors can be im-

proved by applying discriminative learning techniques [6,

12, 2]. Cai et al. [6] proposed to learn linear discriminant

projections for dimensionality reduction of local SIFT de-

scriptors by minimizing the distance between matched pairs

of descriptors while maximizing those between unmatched

pairs. Guo et al. [12] developed a three-layered model to

extract discriminative and robust features based on the LBP

descriptors. Ahmend et al. [2] proposed a learning archi-

tecture to select relative discriminative filters from a pool of

candidate HOG filters based on their incremental contribu-

tions to the performance of object detection.

By reformulating and parameterizing the handcrafted de-

scriptors, e.g., SIFT, HOG and LBP descriptors, [33, 25,

18], to learn new descriptors discriminatively has gained

great popularity recently. These methods can take advan-

tages of prior knowledge and discriminative learning tech-

niques to improve classification performance. To increase

the discriminate ability of kernel descriptors [5], Wang et

al. [33] presented a supervised framework to embed the

image label information into the design of patch level ker-

nel descriptors. The obtained supervised kernel descriptors

(SKDES) achieve impressive performance on image classi-

fication benchmarks. Simonyan et al. [25] reformulated the

learning of the configuration of SIFT-like spatial pooling

regions as the problem of selecting a few regions among

a large set of candidate ones. They solved a convex op-

timization objective function with a sparse and low-rank

regularization to learn a new SIFT-like descriptor. Lei at

al. [18] developed a discriminant face descriptor (DFD) for

face recognition. They follow an LBP-like feature extrac-

tion mechanism by extending from a pixel in LBP to a local

image patch. Both image filters and neighborhood sampling

weights are parameterized and simultaneously learned in a

data-driven way.

Multi-output regression has recently generated increas-

ing interest and been used to solve conventional problems,

e.g., camera pose estimation in [13, 24], which substantially

outperforms previous approaches based on an inverse prob-

lem. To avoid tedious segmentation, cardiac bi-ventricular

volume estimation has also been formulated as a multi-

output regression problem, which achieved much better re-

sults [38] than conventional segmentation based methods.

Moreover, it is also shown in recent work that exploring

the multivariate output space can largely improve regres-

sion performance. By incorporating the geometric structure

of the output manifold into the regression process, Liu et al.

[19] provided a novel mechanism named local linear trans-

form (LLT) to redefine the loss functions, which largely im-

proves the performance of support vector regression (SVR)

[26]. Sohn et al. [27] proposed a new approach for multi-

output regression that can jointly learn both the output struc-

ture and regression coefficients via using inverse-covariance

regularization. Rai et al. [23] presented a multiple-output

regression model that simultaneously uses the covariance



structure of the latent model parameters and the conditional

covariance structure of the observed outputs. Both of these

methods have shown improved performance for their appli-

cations.

Most of the existing multi-output regression tasks use

handcrafted descriptors [24, 15] which are lack of sufficient

discrimination for accurate multivariate estimation. Regres-

sion targets are explored for specific regressors [19]. More-

over, supervised descriptor learning algorithms are mainly

developed for classification tasks, which are not directly ap-

plicable to regression due to the continuous multivariate tar-

gets rather than the discrete class labels [4]. In this work,

we focus on supervised descriptor learning for multi-output

regression by exploring the multivariate targets to achieve

discriminative and compact feature representations.

3. Supervised Descriptor Learning

Our supervised descriptor learning (SDL) algorithm is

to learn low-rank approximations of matrices from oriented

gradients for image representations. The gradient orienta-

tion matrices (GOM) are first constructed from pyramid his-

togram of gradients (PHOG) for images, which takes advan-

tages of prior knowledge to capture the key image character-

istics: spatial layout and edges of local shapes. The GOMs

of training samples associated with targets are fed into the

proposed SDL which is formulated as generalized low-rank

approximations of matrices with a supervised manifold reg-

ularization (SMR). By integrating the proposed SMR to ex-

plore the manifold of the target space, the SDL incorporates

the supervision of targets to achieve discriminative feature

representations. As a consequence, the SDL is able to ef-

fectively find low-rank approximations of matrices [34] to

obtain compact and discriminative feature representations

for efficient and accurate multivariate estimation.

3.1. Preliminaries

Given a set of annotated training data {X1, . . . , XL} and

the corresponding multivariate targets {Y1, . . . , YL}, where

L is the number of training samples and Yi ∈ R
d, our task is

to learn discriminative and compact representations of ma-

trices. Instead of using a vectorized input space, we consid-

er matrix representations, i.e., Xi ∈ R
M×N , which could

be any matrix representations of images, e.g., raw pixel in-

tensities. We propose using gradient orientations matrices

(GOM) because of its physically-meaningful representation

of images by capturing spatial layout and orientation struc-

tures. We will find a discriminative low-rank representation

of each Xi by differentially exploring the spatial and ori-

entation information in the GOM. The obtained low-rank

representations of matrices are then vectorized as our final

descriptors.

3.2. Generalized Low-Rank Approximation

We propose using the generalized low-rank approxima-

tion of matrices due to its efficient computation of dimen-

sion reduction of matrices [34]. This is to find two-side

transformations: W ∈ R
M×m and V ∈ R

N×n with

m ≪ M and n ≪ N , and L matrices Di ∈ R
m×n such

that WDiV
T is an appropriate approximation of each Xi,

i = 1, . . . , L. We solve the following optimization problem

of minimizing the reconstruction errors:

argmin
W,V,D1,...,DL

WTW=Im,V TV=In

1

L

L∑

i=1

‖Xi −WDiV
T‖2F (1)

where ‖ · ‖F is the Frobenius norm of a matrix, Im is an

identity matrix of size m×m and the constraints WTW =
Im and V TV = In ensure that W and V have orthogonal

columns to avoid redundancy in the approximations.

According to (1), we know that Di is the low-rank ap-

proximation of Xi in terms of the transformations of W and

V , and it is worth to mention that the matrices D1, . . . , DL

are not required to be diagonal. Di is the compact represen-

tation of Xi which will reduce regression complexity for ef-

ficient multivariate estimation. The objective function in (1)

only minimize the approximation errors in the low-rank s-

pace leading to indiscriminate representations {Di}
L
i=1

. To

be more discriminative, we consider incorporating regres-

sion targets for supervised learning to achieve discrimina-

tive low-rank representations.

3.3. Supervised Manifold Regularization

In order to to achieve discriminative representations, we

propose a supervised manifold regularization (SMR) to ex-

plore the manifold of the multivariate target space for su-

pervised descriptor learning.

We impose discrimination on the low-rank representa-

tion {Di}
L
i=1

by integrating the proposed SMR into (1). To

this end, we first construct a weighted graph G = (V,E)
using the ǫ-neighborhood method [16], namely, nodes Yi

and Yj are connected if ||Yi − Yj ||
2 < ǫ, where ǫ ∈ R.

V and E respectively represent L vertices and edges be-

tween vertices. The graph is built on the multivariate targets

(Y1, . . . , YL) rather than on inputs in conventional manifold

regularization [3, 36], which naturally induces the supervi-

sion of regression targets.

We denote S ∈ R
L×L as the symmetric similarity ma-

trix with non-negative elements corresponding to the edge

weights of the graph G, where each element Sij is comput-

ed by a heat kernel with a parameter: σ:

Sij = exp

(
−‖Yi − Yj‖

2

2σ2

)

, i, j = 1, . . . , L. (2)

We set the diagonal elements of S to be zeros, i.e., Sii =



0. In the low-rank space, we would like to minimize the

following term

∑

i,j

‖Di −Dj‖
2

FSij . (3)

Since the similarity matrix S characterizes the manifold

structure of the multivariate target space, low-rank approx-

imations {Di}
L
i=1

preserve the intrinsic local geometrical

structure of the target space and are therefore automatical-

ly aligned to their regression targets. The discrimination

is then naturally injected into the low-rank representations

{Di}
L
i=1

. An intuitive consequence of minimizing the reg-

ularization term is that in the low-dimensional space, data

points with similar targets are forced to be close while these

with different targets tend to be far apart, which therefore

increases the discriminative ability of new representations.

3.4. Descriptor Learning with SMR

Combining (3) and (1), we obtain the compact objective

function of GLRAM with the proposed SMR in terms of

W , V and {Di}
L
i=1

as follows:

argmin
W,V,D1,...,DL

WTW=Im,V TV=In

1

L

L∑

i=1

‖Xi −WDiV
T‖2F

︸ ︷︷ ︸

Low-rank approximation errors

+ β
∑

i,j

‖Di −Dj‖
2

FSij

︸ ︷︷ ︸

Supervised manifold regularization

(4)

where β ∈ (0,∞) is a tuning parameter to balance the

tradeoff between approximation errors and discrimination

of the low-rank approximations, which also serves to keep

the flexibility of the model.

In the objective function of (4), the first term guarantees

the reconstruction fidelity in the low-rank approximation

while the second SMR term introduces the discrimination

to learned new representations. The SDL takes advantages

of the strengths of the GLRAM in dimension reduction of

matrices and the SMR in supervised manifold learning, and

provides an effective and compact formulation to efficient-

ly learn low-dimensional but highly discriminative feature

representations.

3.5. Alternate Optimization

The objective function in (4) can not be solved straight-

forwardly using existing methods since we have to solve for

the projections: W , V and the low-rank approximations:

{Di}
L
i=1

simultaneously. We seek an alternative objective

function which can be efficiently solved by an iterative al-

gorithm via an alternate optimization. To this end, we can

rewrite the low-rank approximation error term in the objec-

tive function (4) in term of traces of matrices as

1

L

L∑

i=1

‖Xi −WDiV
T‖2F

=
1

L

L∑

i=1

Tr((Xi −WDiV
T)T(Xi −WDiV

T))

=
1

L

L∑

i=1

(Tr(XT

i Xi)− Tr(V DT

i W
TXi)

− Tr(XT

i WDiV
T) + Tr(DT

i Di)).

(5)

By the fact that Tr(Z) = Tr(ZT), we know

Tr(XT

i WDiV
T) = Tr(V DT

i W
TXi). (6)

The first term:
∑L

i=1
‖Xi‖

2

F in (5) is a constant given

the data {Xi}
L
i=i, and therefore the minimization of (5) is

equivalent to minimizing

L∑

i=1

(Tr(DT

i Di)− 2Tr(V DT

i W
TXi)) (7)

Setting the derivatives of (7) w.r.t. Di to be 0, we have

Di = WTXiV, i = 1, . . . , L. (8)

Thus, given the W and V , for any i, Di is uniquely deter-

mined by Di = WTXiV which is the compact representa-

tion of Xi in the low-rank space.

By substituting (8) into (5) and dropping the constant
∑L

i=1
‖Xi‖

2

F , the minimization of (5) is equivalent to the

following maximization problem:

argmax
W,V

WTW=Im,V TV=In

1

L

L∑

i=1

‖WTXiV ‖
2

F (9)

Therefore, by changing the sign of the second term in

original objective function (4), we have an alternative ob-

jective function as follows:

argmax
W,V

WTW=Im,V TV=In

1

L

L∑

i=1

‖WTXiV ‖
2

F

− β
∑

i,j

‖WT(Xi −Xj)V ‖
2

FSij ,

(10)

which is our final optimization problem to solve, and has

no closed-form solution. To seek the optimal solutions of

W and V iteratively, we employ an alternate optimization

procedure to compute one variable by fixing the other. In



other words, we optimize W by fixing V , and we optimize

V by fixing W .

We rewrite the objective function in (10) in terms of

traces of matrices as

argmax
W,V

WTW=Im,V TV=In

1

L
Tr(

L∑

i=1

WTXiV V TXT

i W )

−β Tr(
∑

i,j

WT(Xi −Xj)V SijV
T(Xi −Xj)

TW ).

(11)

The above formulation naturally avoids the rank deficit is-

sue in a trace ratio form in which the estimation would be

unstable and overly sensitive to the sample in hand with less

training samples [17].

Given a V , to find an optimal W is to solve

argmax
W

Tr(WTAW ), s.t. WTW = Im. (12)

The solution of W ∈ R
M×m consists of the m eigenvec-

tors of matrix A corresponding to the m largest eigenvalues,

where

A =
1

L

L∑

i=1

XiV V TXT

i

− β
∑

i,j

(Xi −Xj)V SijV
T(Xi −Xj)

T. (13)

Similarly, given a W , the solution of V ∈ RN×n can be

found by solving

argmax
V

Tr(V TBV ), s.t. V TV = In, (14)

and consists of the n eigenvectors of B with the n largest

eigenvalues, where B is computed by

B =
1

L

L∑

i=1

XT

i WWTXi

− β
∑

i,j

(Xi −Xj)
TWSijW

T(Xi −Xj). (15)

The optimal solutions of W and V are obtained by itera-

tively solving the optimization problems in (12) and (14),

respectively. Both are the standard eigen decomposition

problem and can be efficiently solved by the singular value

decomposition (SVD) which is used in our algorithm due to

the fact that the truncated SVD achieves the best approxima-

tion with respect to the Frobenius norm for given matrices

[34, 36].

4. Experiments and Results

We demonstrate the effectiveness of the proposed SDL

on a typical multi-output regression task: head pose esti-

mation. Automatic head pose estimation from images is

challenging due to illumination, facial expression and inter-

subject variations, etc.

4.1. The Pointing’04 Dataset

The Pointing’04 dataset [11] is a widely used benchmark

for head pose estimation which is a typical multi-output re-

gression problem. The dataset is challenging and contains

2790 images of 15 subjects, and each subject has two series

of 93 images with different head poses represented by yaw

and pitch, namely, each image with a two-dimensional tar-

get. Bounding boxes associated with images indicating the

head regions are provided with the dataset. We crop the im-

ages with the bounding boxes and resize them into 64× 64
pixels. To benchmark with existing methods [15, 9, 14] on

the this dataset, we employ two validation protocols, i.e.,

even training/test split and five-fold cross validations.

4.2. Experimental Settings

The gradient orientation matrix (GOM) is constructed

from oriented gradients with different spatial and orienta-

tion divisions. To fully capture sufficient spatial informa-

tion, we use a three-level pyramid HOG (PHOG) of cell

sizes: 8× 8, 16× 16 and 32× 32 in 9 signed and unsigned

orientations obtaining a matrix of size 84× 31 from an im-

age of 64× 64 pixels [8].

To show the advantage of our SDL algorithm, we have

also compared with widely-used descriptors, e.g., GIST

[21] and histogram of LBP [32] both of which are imple-

mented with a similar spatial pyramid to the PHOG descrip-

tor, and dimensionality reduction methods, e.g., generalized

principal component analysis (GPCA) [35] and principal

component analysis (PCA). Note that our final descriptor

(800d) learned by the SDL is of much lower dimensional-

ity than the compared descriptors (LBP: 4872d and GIST:

4096d), which will dramatically reduce the computational

complexity in regression.

To leverage the strength of random forests for regression

tasks [38], we use the adaptive K-cluster regression forests

(AKRF) recently proposed in [15] as for multivariate esti-

mation. The AKRF has shown large advantages over other

regressors, e.g., support vector regression (SVR), traditional

random forests and kernel partial least squares [15]. We use

the same experimental settings as in [15] to establish fair

comparisons. The free parameter β that keeps the tradeof-

f between reconstruction fidelity and discrimination in the

approximated low-rank space can be obtained by cross val-

idation in the training stage. The performance of head pose

estimation is measured by the commonly-used mean abso-

lute error (MAE).



Table 1. The comparison results for head pose estimation on

the Pointing’04 dataset using even training/test split. The SDL

achieves an improvement of 27.5%.

Methods yaw pitch average

SDL 4.58 3.03 3.81

PHOG (Baseline) 5.35 4.23 4.79

GPCA [35] 5.28 3.60 4.44

PCA 5.46 4.43 4.94

LBP [22] 5.36 4.49 4.92

GIST [21] 6.21 5.30 5.76

AKRF [15] 5.49 4.18 4.83

4.3. Head Pose Estimation

The proposed SDL produces high estimation accuracy

for both yaw and pitch and significantly outperforms the

state-of-the-art algorithm in [15] with a large reduction of

the MAE up to 27.5% (pitch) as shown in Table 1 using

even training/test split validation. Furthermore, the SDL al-

so produces consistently better results than the state-of-the-

art methods using the same five-fold cross validation with a

reduction of MAE up to 22.3% (pitch) as shown in Table 2.

The overall results using five-fold cross validation are better

than those using even training/test split validation in Table 1

due to that more samples are available for training.

The strength of the proposed SDL is further shown by

comparing with the handcrafted PHOG, LBP and GIST

descriptors and the unsupervised dimensionality reduction

techniques: GPCA (800d) and PCA (800d). The perfor-

mance improvement over the PHOG descriptor indicates the

advantage of the induced learning in the proposed SDL al-

gorithm. The effectiveness of the supervised learning, i.e.,

the proposed supervised manifold regularization (SMR), is

shown by superb performance over GPCA without supervi-

sion. Moreover, the significant improvement over PCA ap-

plied to the PHOG indicates the advantages of our gradient

orientation matrix (GOM) representation based on which

descriptors are learned.

We look into the results of the SDL by the visualization

in a low-dimensional space as illustrated in Fig. 1. Even

with only two dimensions (a: m = 2 and n = 1 and b:

m = 1 and n = 2), the learned descriptor demonstrates

highly discriminative ability. As a result, data points of head

poses with similar orientations are clustered while those

with very different orientations tend to be scattered faraway,

which is due to the supervision of the regression targets in-

corporated by the supervised manifold regularization (SM-

R). The SDL can effectively extract the most discriminative

features closely related to regression targets, which makes

the data points discriminatively aligned according to their

targets even in a very low-dimensional space. Interesting-

Table 2. The comparison results for head pose estimation on the

Pointing’04 dataset using five-fold cross validation. The SDL

achieves an improvement of 22.3%.

Methods yaw pitch average

SDL 4.12 2.09 3.11

PHOG (Baseline) 5.30 3.34 4.32

GPCA[35] 5.11 3.13 4.12

PCA 5.25 3.53 4.39

LBP [22] 5.53 3.37 4.45

GIST [21] 6.06 5.03 5.55

AKRF [15] 5.50 3.41 4.46

Geng et al. [10] 4.24 2.69 3.47

Fenzi et al. [9] 5.94 6.73 6.34

Haji [14] 6.56 6.61 6.59

ly, Fig. 1 (a) and (b) exhibit different clustering patterns,

which demonstrates the different roles of orientation and s-

patial features in the obtained image representations. The

different effects of spatial cells and orientation bins on the

clustering patterns validate the use of the GOM rather than

the HOG vector in which spatial and orientation informa-

tion is equally treated for feature representations. The SDL

allows to effectively investigate the different physical mean-

ings of orientation and spatial layout for more useful image

representations.

Moreover, we have also investigated the performance of

the proposed SDL with varied dimensionality to show the

effectiveness in low dimensions. Since the dimensionality

reduction is induced by both W and V , we test one by keep-

ing the other fixed. Fig. 2 (a) and (b) are the results of head

pose estimation using the even training/split validation. The

SDL reaches the best results for both head pose with very

low dimensions, which shows the effectiveness of the SDL

in learning compact but discriminative descriptors. We use

m = 40 and n = 20 in all our experiments for our final

results.

In addition, Fig. 2 also shows the advantages of differen-

tially exploring spatial and orientation information of im-

ages by using the GOM rather than the vectorized HOG

descriptor. The performance demonstrates different varia-

tion patterns head pose with the changes of W and V . The

performance is more affected by orientation bins than the

spatial bins, which would be due to that the orientation in-

formation is more characteristic in representing head poses.

This finding again validates individual investigation of ori-

ental and spatial information for image representations.

5. Conclusion

In this paper, we have presented a novel, general super-

vised descriptor learning (SDL) algorithm for multi-output

regression. The proposed SDL algorithm can obtain a com-



Figure 1. Illustration of head pose images in a two-dimensional space (a: m = 2 and n = 1 and b: m = 1 and n = 2). Head poses

with similar orientations tend to be clustered while these with distinctive orientations are scattered away. The visualization is implemented

using the method provided in [31]. The bottom are the images with all 93 different pose orientations.
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Figure 2. The estimation errors with different dimensions for head pose estimation in (a) and (b) using the even train/test split validation.

m is the reduced dimensionality by W and n is the reduced dimensionality by V .

pact and highly discriminative feature representation, which

enables more accurate and efficient multivariate estima-

tion. Based on a matrix representation of images, the SDL

is formulated as a generalized low-rank approximation of

matrices with a supervised manifold regularization, which

achieves a compact while effective dimensionality reduc-

tion algorithm. The SDL offers a general supervised de-

scriptor learning framework which can be widely built on

image intensity, handcrafted features and representations by

deep learning algorithms. The SDL can not only boost the

performance of existing multi-output regression tasks, but

also allows to conduct more efficiently. Experimental re-

sults on a representative multivariate estimation task: head

pose estimation using the Pointing’04 dataset demonstrate

the effectiveness of the SDL for image representations in

multi-output regression.
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