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Abstract

With the rapid growth of web images, hashing has re-
ceived increasing interests in large scale image retrieval.
Research efforts have been devoted to learning compact bi-
nary codes that preserve semantic similarity based on la-
bels. However, most of these hashing methods are designed
to handle simple binary similarity. The complex multilevel
semantic structure of images associated with multiple labels
have not yet been well explored. Here we propose a deep
semantic ranking based method for learning hash functions
that preserve multilevel semantic similarity between multi-
label images. In our approach, deep convolutional neu-
ral network is incorporated into hash functions to jointly
learn feature representations and mappings from them to
hash codes, which avoids the limitation of semantic rep-
resentation power of hand-crafted features. Meanwhile, a
ranking list that encodes the multilevel similarity informa-
tion is employed to guide the learning of such deep hash
functions. An effective scheme based on surrogate loss is
used to solve the intractable optimization problem of non-
smooth and multivariate ranking measures involved in the
learning procedure. Experimental results show the supe-
riority of our proposed approach over several state-of-the-
art hashing methods in term of ranking evaluation metrics
when tested on multi-label image datasets.

1. Introduction

Representing images efficiently is an important task for
large scale content-based image retrieval. Binary hashing
has attracted extensive attention due to computational and
storage efficiencies of binary hash codes. It aims to map
high-dimensional image data to compact binary codes in a
Hamming space while maintaining some notion of similar-
ity (e.g., metric similarity in the original feature space or
semantic similarity based on labels).

Early hashing methods are data-independent, such as lo-
cality sensitive hashing [5] and its variants, which use ran-
dom projections as hash functions without exploring the
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Figure 1. The proposed deep semantic ranking based hashing.
Solid and hollow arrows indicate forward and backward propaga-
tion directions of features and gradients respectively. Hash func-
tions consist of deep convolutional neural network (CNN) and bi-
nary mappings of the feature representation from the top hidden
layers of CNN. Multilevel semantic ranking information is used to
learn such deep hash functions to preserve the semantic structure
of multi-label images.

data distribution. Recently, various data-dependent hashing
methods have been proposed, which learn hash functions
according to the data distribution. Some of them mainly fo-
cus on preserving the metric structure of the data in the orig-
inal feature space, such as spectral hashing [32] and binary
reconstructive embedding [14]. However, distance metrics
(e.g., Euclidean distance) in the original space sometimes
cannot measure well the semantic similarity that is essential
for image retrieval.

To preserve semantic structure of the data, hashing meth-
ods with supervisory information in form of class labels
have been further developed [24, 27, 28, 19, 17]. Through
formulating hash function learning as a classification prob-
lem or as an optimization problem of pairwise relation
based loss functions, these methods are able to learn hash
codes which preserve binary semantic similarity. But in
practice images are usually simultaneously associated with
multiple semantic labels, and in this case the similarity re-
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lationship between two images is more complex and is usu-
ally relevant to the number of common labels that images
have. Consequently, a multilevel measure (such as very
similar, normally similar and dissimilar) is required to de-
scribe the similarity, which cannot be handled well by the
above methods and has not been studied well.

Besides, the learning capability of the standard pipeline
followed by most hashing method, i.e., firstly extracting
features like GIST [21] and SIFT [18] as image represen-
tations, and then learning mappings from these representa-
tions to binary codes, is inadequate for dealing with rela-
tively complex semantic structure due to the semantic in-
formation loss in the hand-crafted features. Thus more ef-
fective semantic feature representation is also desirable.

In this paper, we introduce a novel framework based
on semantic ranking and deep learning model for learning
hash functions that preserve multilevel similarity between
multi-label images in the semantic space. An overall view
of the proposed framework termed deep semantic ranking
based hashing (DSRH) is illustrated in Fig. 1. Here we use
deep convolutional neural network (CNN) [13] to construct
hash functions to learn directly from images, which pro-
vides much richer sematic information than hand-crafted
features. Meanwhile, we learn such deep hash functions
with semantic ranking supervision which is the order of a
ranking list derived from shared class labels between query
and database images. The learning is a joint optimization
of feature representation and mappings from them to hash
codes, and it is more effective than the conventional two-
stage pipeline. A ranking loss defined on a set of triplets
is used as surrogate loss to solve the optimization problem
resulting from nonsmooth and multivariate ranking mea-
sures, and then the stochastic gradient descent algorithm
can be used to optimize model parameters. We evaluate the
proposed DSRH method on a couple of multi-label image
datasets and compare it with several state-of-the-art hashing
methods based on both hand-crafted features and activation
features from the CNN model. Experimental results demon-
strate that our method is able to capture complex multilevel
semantic structure and significantly outperforms other hash-
ing methods in ranking quality.

Our main contributions include: 1) A novel hash func-
tion learning formwork is proposed to combine semantic
ranking and deep learning model to address the problem
of preserving multilevel semantic similarity between multi-
label images. To the best of our knowledge, it is the first
time to exploit deep convolutional neural network with list-
wise ranking supervision for hashing. 2) A scheme based
on surrogate losses is applied to the proposed framework to
effectively solve the optimization problem of ranking mea-
sures. 3) Our method boosts the benchmark of multi-label
image retrieval, achieving the state-of-the-art performance
in terms of ranking evaluation metrics.

The rest of this paper is organized as follows. Related
work is briefly discussed in Section 2. The proposed deep
semantic ranking based hashing is formulated and opti-
mized in Section 3. Experimental evaluations are presented
in Section 4. Finally, Section 5 concludes this paper.

2. Related Work

As described before, the existing hash methods can be
roughly divided into two categories: data-independent and
data-dependent. Here we mainly discuss data-dependent
hash methods preserving the semantic structure which this
paper focuses on. Iterative quantization with canonical cor-
relation analysis (CCA-ITQ) [8] utilizes CCA with labels
to reduce the dimensionality of input data and binarizes the
outcome through minimizing the quantization error, where
only the pointwise label information is exploited to guide
hash function learning. By comparison, some approaches
try to preserve the semantic similarity based on pairwise
relation. Boosted similarity sensitive coding (BSSC) [24]
assigns each pair of data points a label to learn a set of
weak classifiers as hash functions. Semi-supervised hash-
ing (SSH) [28] minimizes an empirical error over the la-
beled pairs of points and makes hash codes balanced and
uncorrelated to avoid overfitting. Motivated by latent struc-
tural SVM, minimal loss hashing (MLH) [19] proposes a
pairwise hinge-like loss function and minimizes its upper
bound to learn similarity-preserving binary codes.

Furthermore, order-preserving approaches, which are
more related to this paper, explicitly use ranking informa-
tion in objective functions to learn hash codes that preserve
the similarity order in the feature or semantic space. Order
preserving hashing (OPH) [3 1] formulates an alignment be-
tween the similarity orders computed respectively from the
original Euclidean space and the Hamming space, which
can be solved using the quadratic penalty algorithm. On the
basis of [19], hamming distance metric learning (HDML)
[20] develops a metric learning framework based on a triplet
ranking loss to preserve relative similarity. However, this
triplet loss function only considers local ranking informa-
tion and is limited in capturing information about multi-
level similarity. By using a triplet representation for list-
wise supervision, ranking-based supervised hashing (RSH)
[29] minimizes the inconsistency of ranking order between
the hamming and original spaces to keep global ranking or-
der. Different from RSH, our method leverages deep learn-
ing model to discover deeper semantic similarity and can
scale well on large training sets. Column generation hash-
ing (CGH) [15] and StructHash [16] combine ranking in-
formation with the boosting framework to learn a weighted
hamming embedding. In contrast, our method needs no ex-
tra weight to rank hash codes.

Deep learning models, particularly deep convolutional
neural networks (CNNs), have achieved great success in
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various visual tasks such as image classification, annota-
tion, retrieval and object detection [13, 7, 4, 30, 6] due
to their powerful representation learning capability. Some
ranking loss based CNNs have been explored in these tasks.
Wang et al. [30] use a ranking loss based on triplet sam-
pling in CNNs to learn image similarity metric. Gong et
al. [7] incorporate a warp approximate ranking into CNNs
for image annotation. There are a few hashing methods that
also use deep models. Salakhutdinov et al. [23] use a deep
generative model as hash functions. Similarly, Torralba et
al. [27] model a deep network by using multiple layers of
RBMs. Given approximate hash codes learned from pair-
wise similarity matrix decomposition, Xia et al. [33] learn
hash functions using CNNs to fit the learned hash codes.
However, these methods do not explicitly impose the rank-
ing constraint on the deep models, which can not figure out
the multi-level similarity problem.

3. Our Method

In general, a hash function i : RP? — {—1,1} is treated
as a mapping that projects a D-dimensional input onto a
binary code. Assume that we are given a set of class la-
bels £ = {1,...,C} and a dataset D = {x, })_; where
each data point x € RP is associated with a subset of
labels ) C L, our goal is to learn a set of hash func-
tions h(x) = [h1(x), ha(X), ..., hx (x)] that generates K-
bit (K < D) binary codes while preserving the semantic
structure of data points with multiple labels.

3.1. Deep Hash Functions

A good form of hash functions is important for ob-
taining desirable hash codes. As mentioned earlier, most
conventional hashing methods first extract visual features
like GIST and SIFT from images and then learn “shallow”
(usually linear) hash functions upon these features. How-
ever, these hand-crafted features have limited representa-
tion power and may lose key semantic information which
is important to the task of similarity search. Here we con-
sider designing deep hash functions using CNNs to jointly
learn feature representations from raw pixels of images and
their mappings to hash codes. This non-linear hierarchical
hash function has more powerful learning capability than
the shallow one based on features extracted in advance, and
thus is able to learn feature representations more suitable
for multilevel semantic similarity search.

As shown in Fig. 2, we construct hash functions through
incorporating the CNN model whose architecture is the
same as [12]. A deep feature representation is computed by
forward propagating a mean-subtracted 224 x 224 image
through five convolutional layers and two fully connected
layers, and then fed into the last hash layer to generate a
compact binary code. Please refer to [13, 12] for more de-
tails about the geometry of the convolutional layers, local
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Figure 2. The structure of deep hash functions. An input image is
first transformed to a fixed size, and then goes through five con-
volution layers and two fully-connected layers, which provides a
deep feature representation. Finally, the hash layer generates a
compact binary code. The hash layer is also directly connected
to the first fully-connected layer (FCa) in order to utilize diverse
feature information biased toward visual appearance.

normalization and max pooling. Unlike image classifica-
tion, hash codes are expected to contain global feature in-
formation within an image when used for retrieval. Thus
instead of cropping an image, we warp all pixels in the im-
age to the required size. Inspired by [26], we add a bypass-
ing connection between the first fully connected layer (FCa)
(called the skipping layer) and the hash layer to reduce the
possible information loss. We argue that the features from
the second fully connected layer (FCb) of CNN are depen-
dent on classes too much and have strong invariance, which
is unfavorable for capturing subtle sematic distinction. Thus
we connect the hash layer to both the two fully-connected
layers to enable it encoding more diverse information bi-
ased toward visual appearance. Accordingly we define a
deep hash function as:

h(x;w) = sign(w' [fa(x); f5(x)]), ()

where w denotes weights in the hash layer, f,(.) and f3(.)
denote feature vectors from the outputs of the layers FCa
and FCb respectively and can be represented as the compo-
sition of the functions of previous layers. Here bias terms
and parameters of f,(.) and f,(.) are omitted for the sake
of concision. To obtain a K-bit binary code, h(x; W) =
[h1(x;W1), ha(x; Wa), ..., hi (X; Wi )] can be computed.

3.2. Semantic Ranking Supervision

When each data point in D is associated with a single
class label, pairs of points could be labelled as either sim-
ilar or dissimilar according to whether they have the same
label, and the learning procedure of hash functions is simply
to make the Hamming distances between binary codes small
(large) for similar (dissimilar) pairs. However, in the case
of multiple labels, there exits multilevel similarity between
data points depending on how many common labels they
have. To preserve such multilevel semantic structure, one
of the most essential ways is that for individual data points,
we keep the ranking order of neighbors computed by the
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Hamming distance consistent with those derived from se-
mantic labels in terms of ranking evaluation measures.
Assume we have a sample point from D as a query q. For
the query q, a semantic similarity level r of a database point
x with q can be calculated based on the number of their
common labels. The most similar database points are those
sharing all the labels with q, and assigned a level r = |/,
Accordingly, the second similar points, which share any
|V4| — 1 of the labels, are assigned a level r = |),| — 1.
At last, the dissimilar points share none of the labels and
are assigned a level r = 0. And then we can obtain a
ground-truth ranking list for q by sorting the database points
in decreasing order of their similarity levels. According to
the ground-truth ranking, various evaluation criteria can be
used to measure the consistency of the rankings predicted
by hash functions, such as the Normalized Discounted Cu-
mulative Gain (NDCG) score [10], which is a popular mea-
sure in the information retrieval community and defined as:

|
NDCG@p = 217 )

where p is the truncated position in a ranking list, Z is a nor-
malization constant to ensure that the NDCG score for the
correct ranking is one, and r; is the similarity level of the
i-th database point in the ranking list. Directly optimizing
such ranking criteria is intractable, which involves minimiz-
ing nonsmooth and multivariate ranking losses. One solu-
tion is to regard it as a problem of structured output learn-
ing and optimize the problem by structured SVM. But this
framework is not suitable for deep learning model which is
used to construct our hash functions. Next we will discuss
a simple but effective scheme based on surrogate loss.

3.3. Optimization with Surrogate Loss

To circumvent the problem of directly optimizing the
ranking criteria, we try to use a surrogate loss as the risk
that the learning procedure minimizes in practice. Given a
query q and a ranking list {x;}M, for q, we can define a
ranking loss on a set of triplets of hash codes as follows:

L(h(q), {h(x))}}1,) =

M
> N [bdu(h(a), h(x),h(x;) +pl,, 3)

i=1 jir; <r;

where M is the length of the ranking list, [.]+ = max(0, .),
(SdH(h, h17 hg) = dH(h7 hl) — dH(h7 hg), dH(7 ) is the
Hamming distance and p is a margin parameter which con-
trols the minimum margin between the distances of the two
pairs. This surrogate loss is a convex upper bound on the
pairwise disagreement which counts the number of incor-
rectly ranked triplets. This type of surrogate loss has been

used in Ranking SVM [ 1] for leaning to rank where a score
function for ranking is learned.

From the definition of NDCG, it can be observed that
the top ranked items have a larger gain factor for the score,
which better reflects the performance of the ranking models
in practical image retrieval systems, because users usually
pay most of their attentions to the results on the first few
pages. Thus we wish that the ranking of these items could
be predicted more accurately than others. However, (3)
treats all triplets equally, which is not desired. Inspired by
[1], we modify the ranking loss by adding adaptive weights
related to the similarity levels of database points:

Lo (h(a), {h(x;)} ;) =

> wlri,ry)ddu(h(a), h(xi), h(x;)) + o], -

i=1 jir;<r;
“)
According to NDCG, the weight w can be given by:
2Ti _ 2Tj
A

where Z is the normalization constant in (2). The higher
the relevance of x; and q is than that of x; and q, the larger
decline the NDCG score would suffer if x; is ranked behind
x;. And thus the larger weight should be assigned to this
triplet. When w(r;, ;) = 1, it corresponds to (3).

Given the dataset D as a training set, we wish to learn
hash functions that optimize the rankings for all query
points q from D. Based on the surrogate loss (4) and the
hash function (1), the objective function can be given by the
empirical loss subject to some regularization:

F(W) = >

quﬁ{"i}ﬁil cD

®)

w(r,rj) =

Lo, (h(qs W), {h(x;; W)}}1))

2

o 8 2
+ 3 + 3 W5 (6)

mgan(h(a: W)

2

Similar to [20], the second term is the balance penalty
which is used to encourage each bit averaged over the train-
ing data to be mean-zero and to make sure more stable con-
vergence of the learning procedure. And the third term is the
Ly weight decay which penalizes large weights [12]. Due
to the discontinuous sign function in (1), the optimization
of (6) is difficult. To address this issue, we relax h(x; w)
to:

h(x;w) = 20(w'[fa(x); fo(x)]) — 1, )
where o(t) = 1/(1 + exp(—t)) is the logistic function. In
order to facilitate the gradient computation, we rewrite the
hamming distance as the form of inner product:

K —h(q; W) h(x; W)
2

dp (h(q; W), h(x; W)) = ®)
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Figure 3. Ranking performance evaluations (NDCG, ACG and weighted mAP) of different components using various numbers of hash bits

on two datasets: (a) MIRFLICKR-25K and (b) NUS-WIDE.

where K is the number of hash bits.

Stochastic gradient descent is used to minimize the ob-
jective function. It can be observed that the loss function (4)
is actually a summation of a sequence of weighted triplet
losses. For any one triplet (q, x;, X;), if

2 (h(a; W) ™h(3x;s W) — h(a; W) Th(xi; W) + p > 0,

the derivatives of (6) with respect to hash code vectors are
given by:

oOF a
g w) N, memh(a W)
1
+ w(ri, ;) (h(x;s W) = h(x;; W) (9)
oF 1
Thig W)~ e n)h@W), 10
oOF 1
Fhix,w) 2 e r)hla W), (11)

where the mean value is computed over one mini-batch and
Ny is the size of a mini-batch. These derivative values can
be fed into the underlying CNN via the back-propagation
algorithm to update the parameters of each layer.

4. Experiments

We test the proposed hashing method on two multi-label
benchmark datasets, i.e., MIRFLICKR-25K [9] and NUS-
WIDE [2]. We present quantitative evaluations in terms
of ranking measures and compare our method with unsu-
pervised methods: iterative quantization (ITQ) [8], spec-
tral hashing (SH) [32], and supervised methods using multi-
label and ranking information respectively: CCA-ITQ [£],
hamming distance metric learning (HDML) [20].

We set the mini-batch size for gradient descent to 128,
and impose dropout with keeping probability 0.5 on the
fully connected layers to avoid overfitting. The regulariza-
tion parameter « and 3 in the objective function (6) are set
to 1 and 5e~* respectively. The length of the ground-truth
ranking list used for training is set to 3, which can be cre-
ated by taking one item sharing all the labels with a query,
one item without any common label and one item having at
least one common label. For all compared methods, we use
the best settings reported in their literatures.

The ImageNet ILSVRC-2012 dataset [22] is utilized to
pre-train the CNN model by optimizing multinomial logis-
tic regression objective function in the image classification
task. This dataset contains about 1.2 million training im-
ages and 50,000 validation images, roughly 1000 images
in each of 1000 categories. We use the pre-trained param-
eters of convolutional layers and fully-connected layers to
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Figure 4. Comparison of ranking performance of our DSRH and other hashing methods based on hand-crafted features on two datasets: (a)

MIRFLICKR-25K and (b) NUS-WIDE.

initialize the CNN part of hash functions in our method. In
order to ensure fairness, we apply the features from the pre-
trained CNN model to the compared hashing methods as
well. Furthermore, the compared methods are carried out
using the features that are learned through fine-tuning the
CNN model on the multi-label datasets in our retrieval task.

4.1. Datasets

The MIRFLICKR-25K dataset [9] consists of 25,000 im-
ages collected from the social photography website Flickr.
All images are annotated for 24 semantic concepts includ-
ing various scenes and objects categories such as sky, night,
food and tree. Moreover, 14 of these concepts are used for
a stricter labeling, i.e., an image is annotated with a concept
again only if the concept is salient. Thus we have total 38
semantic labels where each image may belong to several la-
bels. 2000 images are randomly selected as testing queries
and the remaining images are used as the database for train-
ing and retrieval. Following [25], a 3857-dimensional fea-
ture vector for each image is extracted by concatenating
Pyramid Histogram of Words (PHOW) features, Gist and
MPEG-7 descriptors, which will be used for the compared
methods.

The NUS-WIDE dataset [2] is a relatively larger image
dataset containing 269,648 images annotated with 81 con-
cepts. It is also from Flickr, but more challenging than
MIRFLICKR-25K due to more images and more diverse

semantic concepts. Since the website of the dataset does
not provide raw image data but the URLs of images, for
learning deep feature representations we download these
images ourselves from the web. However, we only col-
lected 226,265 images as some of those URLs have been
invalid now. We randomly sample 5000 images for test-
ing queries and the rest is used for training and retrieval.
The dataset includes six types of low-level features ex-
tracted from these images: bag of words based on SIFT
feature, color histogram, color correlogram, edge direction
histogram, wavelet texture and block-wise color moments.
We concatenate them all and get a 1134-dimensional feature
representation for each image.

4.2. Evaluation Criteria

In our experiments, Normalized Discounted Cumulative
Gain (NDCG) [10], Average Cumulative Gain (ACG) [10]
and weighted mean Average Precision (mAP) are used to
measure the ranking quality of retrieved database points.
As mentioned before, NDCG defined in (2) evaluates the
ranking of data points by penalizing errors in higher ranked
items more strongly.

ACG is calculated by taking the average of the similarity
levels of data points within top-p positions:

p
ACGap =33 (12)

n=1

1561



0.4 b. 4,/’ § .
8 034 g 25 ?"—’.;-’_.—_. % hg\.’—l———_.
& —— ® = £ 19 3 o >
8 028 +—_=4—DSRH = g, 5l —0—DSRH = E -
z T _m-CCATQHCNN " _@-CccAITQ+CNN Ei6l__ --CCAITQ:CNN
02 L DML CNN s HOMLsNN 2 HDML+CNN
016 +———=>=ITQ+CNN — ’ —<ITQ+CNN 13 —¢ITQ+CNN .
o —%SH+CNN . —=SH+CNN . —-SH+CNN

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits
Number of bits

0.53 1.6

Number of bits

48 bits 64 bits 16 bits 32 bits 48 bits 64 bits
Number of bits

14

14 — 12 /0—/"'____‘
0.44 .
4 1.2 g 5/._"'.__-
2 2 o
W : £ o1
8 035 — 8 17 e ® (/)(_’—-x—"_)<
= <
& @ — £ 08
1 X
é 026 4 —o—DSRH T R ——— e 1Y E —o—DSRH X
e — _
~f-CCA-ITQ+CNN 06 4 —@—CCA-ITQ+CNN _ o 06 % —-CCA-ITQ+CNN
017 HDML+CNN HDML+CNN 2 HDML+CNN
—ITQ+CNN 0.4 —ITQ+CNN - 04 1 =¢=ITQ+CNN
—#=SH+CNN ~#=SH+CNN ~#=SH+CNN
0.08 02 . 02 :

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits
Number of bits

Number of bits

48 bits 64 bits 16 bits 32 bits 48 bits 64 bits
Number of bits

Figure 5. Comparison of ranking performance of our DSRH and other hashing methods based on activation features of pre-trained CNN

on two datasets: (a) MIRFLICKR-25K and (b) NUS-WIDE.

where r; is the similarity level of the data point on the i-
th position of a ranking. ACG actually is equivalent to the
precision weighted by the similarity level of each data point.

mAP is the mean of average precision for each query.
Since the similarity level r can be bigger than one, we com-
pute a weighted mAP using ACG:

Q
mAP, = =57 AP, (g), (13)
Q%

Sl T(r, > 0)ACG@p
Mr>0 ’

where II(.) € {0, 1} is an indicator function and M,~¢ is
the number of relevant data points.

AP, =

(14)

4.3. Evaluation of Different Components

To analyze the effectiveness of several important com-
ponents in the proposed DSRH, we remove the connec-
tion between the hash layer and the skipping layer and set
w(r;, ;) = 1in (4) to evaluate their influence on the fi-
nal performance. These two models are called DSRH-NS
and DSRH-NS-NW. Here NS denotes no skipping layer and
NW denotes no adaptive weight. Fig. 3 shows the results in
the ranking measures.

We can see that using the surrogate loss with adaptive
weights can improve the ranking quality of top-100 rele-
vant items in terms of NDCG and ACG at the expense of

the averaged ranking performance because it assigns larger
weights to more relevant database points and weakens the
effect of the less relevant ones. Connecting the first fully-
connected layer to the hash layer can also improve the per-
formance because more information biased toward visual
appearance can be utilized which may be important for cap-
turing multilevel semantic similarity.

4.4. Method Comparison

We also compare the proposed DSRH with other hash
methods based on hand-crafted features. Fig. 4 illustrates
the scores of NDCG, ACG and weighted mAP of these
methods using various numbers of bits. We can see that
the performance of our method is significantly better than
other methods based on hand-crafted features in all cases.
By using the CNN model to construct hash functions, our
method have higher learning capability and is able to ex-
ploit more semantic information than the hashing methods
trained on hand-crafted features which are usually extracted
by unsupervised and shallow models.

We further evaluate the compared hashing methods on
the features obtained from the activation of the last hid-
den layer of the CNN model pre-trained on the ImageNet
dataset. This activation feature can be seen as a generic vi-
sual feature and has been used in object recognition, domain
adaption and scene recognition [3]. The results of NDCG,
ACG and weighted mAP are shown in Fig. 5. Although
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Figure 6. Comparison of ranking performance of our DSRH and other hashing methods based on activation features of fine-tuned CNN on

two datasets: (a) MIRFLICKR-25K and (b) NUS-WIDE.

the activation features boost the ranking performance of
the compared methods by a large margin, our method still
has better performance because we construct the deep hash
function to jointly learning feature representations and hash
codes, which can utilize semantic supervision information
to obtain features more fitted to the retrieval datasets. It is
more effective than learning hash codes from the features
learned in advance.

To further verify the superiority of our method, we use
the activation features fine-tuned on the retrieval datasets,
i.e., MIRFLICKR-25K and NUS-WIDE, to evaluate the
compared methods as well. Specifically, we retrain the
CNN model for multi-label image classification by using
cross-entropy cost function. We report the results in Fig. 6.
It can be seen that our method still achieves the best rank-
ing performance, which shows that the multilevel semantic
ranking supervision can make hash function learning bet-
ter preserve the semantic structure of multi-label images.
CCA-ITQ also uses multi-label information, but dose not
explicitly learn with the ranking. HDML performs even
worse than the unsupervised ITQ because it only consid-
ers binary similarity relationship which harms the seman-
tic structure in the fine-tuned features. Note that using the
features fine-tuned by multi-label supervision, the unsuper-
vised ITQ performs almost as well as CCA-ITQ which is its
supervised version, even better in terms of weighted mAP.

Similar to the skipping layer in the hash function of

DSRH, we also attempt to concatenate the activations of
the last two hidden layers of the CNN model as feature rep-
resentations and apply them to the compared hashing meth-
ods. However, the performance of the compared methods
trained using these features become even worse. It further
validates the effectiveness of the structure of our hash func-
tion which has a tight coupling with CNN.

5. Conclusion

In this paper we have proposed to employ multilevel se-
mantic ranking supervision to learn deep hash functions
based on CNN which preserves the semantic structure of
multi-label images. The CNN model with listwise rank-
ing supervision is used to jointly learn feature representa-
tions and mappings from them to binary codes. The re-
sulting optimization problem of nonsmooth and multivari-
ate ranking measure is solved by using a ranking loss on a
set of triplets as the surrogate loss, which makes stochastic
gradient descent could be used to optimize model parame-
ters effectively. Extensive experiments demonstrate that the
proposed method outperforms other state-of-the-art hashing
methods in terms of ranking quality.
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