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Abstract

Object detection systems based on the deep convolu-
tional neural network (CNN) have recently made ground-
breaking advances on several object detection benchmarks.
While the features learned by these high-capacity neural
networks are discriminative for categorization, inaccurate
localization is still a major source of error for detection.
Building upon high-capacity CNN architectures, we ad-
dress the localization problem by 1) using a search algo-
rithm based on Bayesian optimization that sequentially pro-
poses candidate regions for an object bounding box, and
2) training the CNN with a structured loss that explicitly
penalizes the localization inaccuracy. In experiments, we
demonstrate that each of the proposed methods improves
the detection performance over the baseline method on
PASCAL VOC 2007 and 2012 datasets. Furthermore, two
methods are complementary and significantly outperform
the previous state-of-the-art when combined.

1. Introduction

Object detection is one of the long-standing and impor-
tant problems in computer vision. Motivated by the recent
success of deep learning [26, 21, 3, 6, 27, 4, 35] on vi-
sual object recognition tasks [25, 38, 46, 39, 42], signifi-
cant improvements have been made in the object detection
problem [41, 11, 20]. Most notably, Girshick et al. [18]
proposed the “regions with convolutional neural network”
(R-CNN) framework for object detection and demonstrated
state-of-the-art performance on standard detection bench-
marks (e.g., PASCAL VOC [12, 13], ILSVRC [34]) with a
large margin over the previous arts, which are mostly based
on deformable part model (DPM) [15].

There are two major keys to the success of the R-CNN.
First, features matter [18]. In the R-CNN, the low-level
image features (e.g., HOG [8]) are replaced with the CNN
features, which are arguably more discriminative represen-
tations. One drawback of CNN features, however, is that
they are expensive to compute. The R-CNN overcomes this
issue by proposing a few hundreds or thousands candidate
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bounding boxes via the selective search algorithm [44] to
effectively reduce the computational cost required to evalu-
ate the detection scores at all regions of an image.

Despite the success of R-CNN, it has been pointed out
through an error analysis [22] that inaccurate localization
causes the most egregious errors in the R-CNN frame-
work [18]. For example, if there is no bounding box in the
close proximity of ground truth among those proposed by
selective search, no matter what we have for the features
or classifiers, there is no way to detect the correct bound-
ing box of the object. Indeed, there are many applications
that require accurate localization of an object bounding box,
such as detecting moving objects (e.g., car, pedestrian, bi-
cycles) for autonomous driving [17], detecting objects for
robotic grasping or manipulation in robotic surgery or man-
ufacturing [28], and many others.

In this work, we address the localization difficulty of the
R-CNN detection framework with two ideas. First, we de-
velop a fine-grained search algorithm to expand an initial
set of bounding boxes by proposing new bounding boxes
with scores that are likely to be higher than the initial ones.
By doing so, even if the initial region proposals were poor,
the algorithm can find a region that is getting closer to
the ground truth after a few iterations. We build our al-
gorithm in the Bayesian optimization framework [31, 40],
where evaluation of the complex detection function is re-
placed with queries from a probabilistic distribution of the
function values defined with a computationally efficient sur-
rogate model. Second, we train a CNN classifier with a
structured SVM objective that aims at classification and lo-
calization simultaneously. We define the structured SVM
objective function with a hinge loss that balances between
classification (i.e., determines whether an object exists) and
localization (i.e., determines how much it overlaps with the
ground truth) to be used as the last layer of the CNN.

In experiments, we evaluated our methods on PASCAL
VOC 2007 and 2012 detection tasks and compared to other
competing methods. We demonstrated significantly im-
proved performance over the state-of-the-art at different lev-
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els of intersection over union (IoU) criteria. In particular,
our proposed method outperforms the previous arts with a
large margin at higher IoU criteria (e.g., [oU = 0.7), which
highlights the good localization ability of our method.

Overall, the contributions of this paper are as follows:
1) we develop a Bayesian optimization framework that can
find more accurate object bounding boxes without signif-
icantly increasing the number of bounding box proposals,
2) we develop a structured SVM framework to train a CNN
classifier for accurate localization, 3) the aforementioned
methods are complementary and can be easily adopted to
various CNN models, and finally, 4) we demonstrate sig-
nificant improvement in detection performance over the R-
CNN on both PASCAL VOC 2007 and 2012 benchmarks.
2. Related work

The DPM [15] and its variants [32, 16] have been the
dominating methods for object detection tasks for years.
These methods use image descriptors such as HOG [&],
SIFT [30], and LBP [I] as features and densely sweep
through the entire image to find a maximum response re-
gion. With the notable success of CNN on large scale ob-
ject recognition [25], several detection methods based on
CNNSs have been proposed [38, 37, 41, 11, 18]. Following
the traditional sliding window method for region proposal,
Sermanet et al. [38] proposed to search exhaustively over an
entire image using CNNs, but made it efficient by conduct-
ing a convolution on the entire image at once at multiple
scales. Apart from the sliding window method, Szegedy
et al. [41] used CNNs to regress the bounding boxes of ob-
jects in the image and used another CNN classifier to ver-
ify whether the predicted boxes contain objects. Girshick
et al. [18] proposed the R-CNN following the “recognition
using regions” paradigm [19], which also inspired several
previous state-of-the-art methods [44, 45]. In this frame-
work, a few hundreds or thousands of regions are proposed
for an image via the selective search algorithm [44] and the
CNN is finetuned with these region proposals. Our method
is built upon the R-CNN framework using the CNN pro-
posed in [39], but with 1) a novel method to propose extra
bounding boxes in the case of poor localization, and 2) a
classifier with improved localization sensitivity.

The structured SVM objective function in our work is
inspired by Blaschko and Lampert [5], where they trained
a kernelized structured SVM on low-level visual features
(i.e., HoG [8]) to predict the object location. In contrast,
we built the linear structured objective upon high-level fea-
tures learned by deep CNN architectures. In addition, our
negative mining step is very efficient thanks to the region-
based detection framework. We present a gradient-based
optimization method for training our architecture.

There have been several other related work for accu-
rate object localization. Fidler et al. [16] incorporated the
geometric consistency of bounding boxes with bottom-up

[\

segmentation as auxiliary features into the DPM. Dai and
Hoiem [7] used the structured SVM with color and edge
features to refine the bounding box coordinates in DPM
framework. Schulter et al. [36] used the height prior of an
object. These auxiliary features to aid object localization
can be injected into our framework without modifications.

Localization refinement can be also taken as a CNN re-
gression problem. Girshick et al. [18] extracted the mid-
dle layer features and linearly regressed the initially pro-
posed regions to better locations. Sermanet et al. [38] re-
fined bounding boxes from a grid layout to flexible locations
and sizes using the higher layers of the deep CNN architec-
ture. Erhan et al. [1 1] jointly conducted classification and
regression in a single architecture. Our method is different
in that 1) it uses the information from multiple existing re-
gions instead of a single bounding box for predicting a new
candidate region, and 2) it focuses only on maximizing the
localization ability of the CNN classifier instead of doing
any regression from one bounding box to another.

3. Fine-grained search for bounding box via
Bayesian optimization

Let f(x,y) denote a detection score of an image x at the
region with the box coordinates y = (u1, vy, ua,v2) € V.
The object detection problem deals with finding the local
maximum of f(x,y) with respect to y of an unseen image
x." As it requires an evaluation of the score function at
many possible regions, it is crucial to have an efficient algo-
rithm to search for the candidate bounding boxes.

A sliding window method has been used as a domi-
nant search algorithm [8, 15], which exhaustively searches
over an entire image with fixed-sized windows at differ-
ent scales to find a bounding box with a maximum score.
However, evaluating the score function at all regions de-
termined by the sliding window approach is prohibitively
expensive when the CNN features are used as the im-
age region descriptor. The problem becomes more severe
when flexible aspect ratios are needed for handling object
shape variations. Alternatively, the “recognition using re-
gions” [19, 18] method has been proposed, which requires
to evaluate significantly fewer number of regions (e.g., few
hundreds or thousands) with different scales and aspect
ratios, and it can use the state-of-the-art image features
with high computational complexity, such as the CNN fea-
tures [10]. One potential issue of object detection pipelines
based on region proposal is that the correct detection will
not happen when there is no region proposed in the prox-
imity of the ground truth bounding box.> To resolve this
issue, one can propose more bounding boxes to cover the
entire image more densely, but this would significantly in-

'When multiple (including zero) objects exist, it involves finding the
local maxima that exceed a certain threshold.

2We refer to selective search as a representative method for region pro-
posal.
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Figure 1: Pipeline of our method. 1) Initial bounding boxes are given by methods such as the selective search [44] and
their detection scores are obtained from the CNN-based classifier trained with structured SVM objective. 2) The box(es)
with optimal score(s) in the local regions are found by greedy NMS [18] (shown as “local optimum” boxes), and Bayesian
optimization takes the neighborhood of each local optimum to propose a new box with a high chance of getting a better
detection score. 3) We evaluate the detection score of the new box, take it as an observation for the next iteration of the
Bayesian optimization until convergence. Note that the local optimum and the search region may change in each iteration. 4)

All the bounding boxes are fed into the standard post-processing stage (e.g., thresholding and NMS, etc.).

crease the computational cost. In this section, we develop
a fine-grained search (FGS) algorithm based on Bayesian
optimization that sequentially proposes a new bounding
box with a higher expected detection score than previously
proposed bounding boxes without significantly increasing
the number of region proposals. We first present the gen-
eral Bayesian optimization framework (Section 3.1) and de-
scribe the FGS algorithm using Gaussian process as the
prior for the score function (Section 3.2). We then present
the local FGS algorithm that searches over multiple local
regions instead of a single global region (Section 3.3), and
discuss the hyperparameter learning of our FGS algorithm
(Section 3.4).

3.1. General Bayesian optimization framework

Let {y1, - ,yn} be the set of solutions (e.g., bound-
ing boxes). In the Bayesian optimization framework, f =
f(x,y) is assumed to be drawn from a probabilistic model:

p(fIDn) < p(Dnlf) p(f), (1)

where Dy = {(y;, f;)}}_y and f; = f(z,y;). Here,
the goal is to find a new solution yy4; that maximizes
the chance of improving the detection score fxn 1, where
the chance is often defined as an acquisition function
a(yn+1|Dn). Then, the algorithm proceeds by recursively
sampling a new solution yy ¢ from Dy (;_1), and update
the set Dy ¢ = D4 (¢—1) U{YN+¢} to draw a new sample
solution Yy (;+1) with an updated observation.

Bayesian optimization is efficient in terms of the num-
ber of function evaluation [24], and is particularly effective
when f is computationally expensive. When a(yn+1|Dn)
is much less expensive than f to evaluate, and the com-
putation for arg max, . a(yn+1|Dn) requires only a few
function evaluations, we can efficiently find a solution that
is getting closer to the ground truth.

3.2. Efficient region proposal via GP regression

A Gaussian process (GP) defines a prior distribution
p(f) over the function f : ) — R. Due to this prop-
erty, a distribution over f is fully specified by a mean func-
tion m : Y — R and a positive definite covariance ker-
nel k : Y xY — R, ie., f~GP(m(-),k(-,-)). Specif-
ically, for a finite set {y;}’.;, C J, the random vec-
tor [f;]1<j<n follows a multivariate Gaussian distribution
N ([m(yj)hi<j<n, [k(Yi, yj)li<ij<n). A random Gaus-
sian noise with precision 3 is usually added to each f; in-
dependently in practice. Here, we used the constant mean
function m(y) = mgo and the squared exponential covari-
ance kernel with automatic relevance determination (SEard)
as follows: ksgara(Yi, yj; 2) =

exp (=3 (0.00) = W) ACE. ) — .00

where A is a 4 x 4 diagonal matrix whose diagonal entries
are /\Z-Q,i = 1,---,4. These form a 7-dimensional GP hy-
perparameter 6 = (3, mg,n, A2, A3, A2, \?) to be learned
from the training data. ¥, : Y — R* transforms the bound-
ing box coordinates y into a new form:

U v

0= 0@ )

; logw s loght, (2)

where & = “1%2 and v = “*2 denote the center coor-
dinates, w = uo — uy denotes the width, and h = vy — vy
denotes the height of a bounding box. We introduce a latent
variable z to make the covariance kernel scale-invariant.’?
We determine z in a data-driven manner by maximizing the
marginal likelihood of Dy, or

z= argflaxp({fj}jyzll{yj}ﬁll;9)- 3)

31f the image and the bounding boxes ¥;, y; are scaled down by a cer-
tain factor, we can keep Asgard (¥i, ;5 2) invariant by properly setting z.
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The GP regression (GPR) problem tries to find a new ar-
gument yn 41 given N observations Dy that maximizes the
value of acquisition function, which, in our case, is defined
with the expected improvement (EI) as: ag;(yn+1|Dn) =

[ = ) p(flynsrs D O)dF @)

where fN maxi<;j<n fj-. The posterior of
fn4+1 given (yni1,Dyn) follows Gaussian distribution:
P(fn+1lyn+1, Dns 6)

N (fn+1; (yn+1/DN), 0% (Yn+1|Dn)), (5)

with the following mean function and covariance kernels:

p(yn41Dn) = mo + ky Ky ([fj — mo] 1§j§N) ’
o*(yn+1/Dn) = knsr — ky Ky kg,
kvt =B+ k(yns1,un 1),
kyy1 = [k(yN+1ayj)]1§j§Na
Ky = [k(yi7yj)]1gi,j§N +B7'T,

We refer [33] for detailed derivation. By plugging (5) in (4),

apr(yn+1/Dn) = o (yn+1/Dn) ¥
(v~ 1) F(y(yn11)) + N(v(yn+1);0,1))

oy
where y(yn+1) = %

distribution function of standard normal distribution A/(-).

(6)

. F(.) is the cumulative

3.3. Local fine-grained search

In this section, we extend the GPR-based algorithm for
global maximum search to local fine-grained search (FGS).

The local FGS steps are described in Figure 1. We per-
form the FGS by pruning out easy negatives with low clas-
sification scores from the set of regions proposed by the
selective search algorithm and sorting out a few bounding
boxes with the maximum scores in local regions. Then, for
each local optimum gy (red boxes in Figure 1), we propose
a new candidate bounding box (green boxes in Figure 1).
Specifically, we initialize a set of local observations Djycy
for ypest from the set given by the selective search algorithm,
whose localness is measured by an [oU between ype5 and re-
gion proposals (yellow boxes* in Figure 1). Djocy is used to
fit a GP model, and the procedure is iterated for each local
optimum at different levels of IoU until there is no more ac-
ceptable proposal. We provide a pseudocode of local FGS
in Algorithm 1, where the parameters are set as: tymax = 8,
(pr)E=3 = (0.3,0.5,0.7).

In addition to the capability of handling multiple objects
in a single image, better computational efficiency is another

“4In practice, the local search region associated with Djocq is not a rect-
angular region around local optimum since we use IoU to determine it.
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Algorithm 1 Local fine-grained search (FGS)

Require: Image z, classifier fonn, a set of structured labels and
classification scores Dy = {(y;, f;)2-1}, GP hyperparam-
eter §, maximum number of GP iterations tmax, a threshold
fprune to prune out the bounding boxes, different levels of IoU

pr,T =1,..., R determining the size of local regions.
Ensure: A set of structured labels and classification scores D.
1: D+ Dn
2: fort =1, tmx do
meposal =09

(95}

4 Dprune = {(y, f) S D: f > fprune}
5: Dxms = NMS(Dprune)

6: for each (Ybest, foest) € Dnms do
7 for r=1,--- /R do

8 Diocal = {(y7 f) €D: IOU(y’ ybesl) > p’"}
9

2 = arg max, p(Diocas; 0) (Equation (3))

§ = argmax, api(Y|Diocas; 0, 2) (Equation (6))
11: f = fon(z,9) X
12: Dproposal — Dproposal U {(Q7 )}
13: end for
14: end for
15: D+ DU Dproposal
16: end for

factor making local FGS preferable to global search. As
a kernel method, the computational complexity of GPR in-
creases cubically to the number of observations. By restrict-
ing the observation set to the nearby region of a local opti-
mum, the GP fitting and proposal process can be performed
efficiently. In practice, FGS introduces only < 20% compu-
tational overhead compared to the original R-CNN. Please
see the supplementary materials, which are also available in
our technical report [47], for more details on its practical
efficiency (Sec. S4).

3.4. Learning GP hyperparameter

As we locally perform the FGS, the GP hyperparameter
6 also needs to be trained with observations in the vicinity
of ground truth objects. To this end, for an annotated object
in the training set, we form a set of observations with the
structured labels and corresponding classification scores of
the bounding boxes that are close to the ground truth bound-
ing box. Such an observation set is composed of the bound-
ing boxes (given by selective search and random selection)
whose IoU with the ground truth exceed a certain threshold.
Finally, we fit a GP model by maximizing the joint likeli-
hood of such observations:

6= arg max > logp({(w, f) 1y € Vi, f = f(ai,9)}:0),

4€ Ipos

where I is the index set for positive training samples (i.e.,
with ground truth object annotations), and y; is a ground



truth annotation of an image x;> We set ﬁi ={y =
yiory € Y;ory € V; : 1oU(y,y;) > p}}, where Y; con-
sists of the bounding boxes given by selective search on x;,
Y; is a random subset of ), and p is the overlap threshold.
The optimal solution 6 can be obtained via L-BFGS. Our
implementation relies on the GPML toolbox [33].

4. Learning R-CNN with structured loss

This section describes a training algorithm of R-CNN for
object detection using structured loss. We first revisit the
object detection framework with structured output regres-
sion introduced by Blaschko and Lampert [5] in Section 4.1,
and extend it to R-CNN pipeline that allows training the net-
work with structured hinge loss in Section 4.2.

4.1. Structured output regression for detection

Let {x1,22,..., 2} be the set of training images and
{y1,Y2,.-.,yr} be the set of corresponding structured la-
bels. The structured label y € ) is composed of 5 ele-
ments (I, u1,v1,u2,v2); when { = 1, (ug,v1) and (ug, ve)
denote the top-left and bottom-right coordinates of the ob-
ject, respectively, and when [ = —1, it implies that there
is no object in z;, and there is no meaning on coordinate
elements (ug,v1,us,v2). Note that the definition of y; is
extended from Section 3 to indicate the presence of an ob-
ject (1) as well as its location (u1,v1,ug,v2) when exists.
When there are multiple objects in an image, we crop an
image into multiple positive (I = 1) images, each of which
contains a single object, and a negative image (I = —1) that
doesn’t contain any object.’ Let ¢(x,y) represent the fea-
ture extracted from an image x for a label y with [ = 1.
In our case, ¢(x,y) denotes the top-layer representations
of the CNN (excluding the classification layer) at location
specified by 7,” which are fed into the classification layer.
The detection problem is to find a structured label y € Y
that has the highest score:

g(x;w) = argmax f(z,y; w) @)
yey
where
flay;w) = w” gz, y), ®)
e o ¢((E, y) ) I=+1 y
¢(x7y){0 R ©)

Note that (9) includes a trick for setting the detection thresh-
old to 0. The model parameter w is trained to minimize the

5We assumed one object per image. See Section 4.2 for handling mul-
tiple objects in training.

5We also perform the same procedure for images with a single object
during the training.

"Following [18], we crop and warp the image patch of z at location
given by y to a fixed size (e.g., 224 x224) to compute the CNN features.
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structured loss A(+, -) between the predicted label g(z;; w)
and the ground-truth label y;:

M
W = argmin Y A(g(wi; w), ;) (10)
wo=1
For the detection problem, the structured loss A(y,y;) is
defined in terms of intersection over union (IoU) of two
bounding boxes defined by y and y; as follows:

1- IOU(y,yl) ) ifl = lz - ]-7
Ay,y:) =40 Jifl=1;=-1, (11
| i
where ToU(y, ;) = 72;228853 In general, the optimiza-

tion problem (10) is difficult to solve due to the complicated
form of structured loss. Instead, we formulate the surrogate
objective in structured SVM framework [43] as follows:

1 c Y
min §Hw||2+M;5i , subject to (12)

w' p(zi, yi) > w' Gz, y) + Ay, yi) — &Yy, Vi (13)
&> 0,Vi (14)

Using (9) and (11), the constraint (13) is written as follows:

w (@i, ;) > w' dlai,y) + A (y, 1) — &, (15)
Vy € YD Wi € I,

wl (@i, y:) 21 =&, Vi € Lo, (16)

w'G(ziy) < —1+&, Yy € YD Vi € L, (17)

where A% (y, y;) = 1 —ToU(y, 1), Ios and I, denote the

set of indices for positive and negative training examples,

respectively, and Y=V = {y ¢ Y : [ = 1}.

4.2. Gradient-based learning of R-CNN with struc-
tured SVM objective

To learn the R-CNN detector with structured loss, we
propose to make several modifications to the original struc-
tured SVM formulation. First, we restrict the output space
Y; C Y of ith example to regions proposed via selective
search. This results in a change in notation for every )
in (15) and (17) of ith example to );. Second, the con-
straints (15, 16, 17) should be transformed into hinge loss to
backpropagate the gradient to lower layers of CNN. Specifi-
cally, the objective function (12) is reformulated as follows:

1 1
min 2 [lwl + 7 (Cy D hposi+Ca Y huegi) (18)
1€ Tpos 1€ Ineg

where hpos,i = Rpos,i (W), Fneg,i = hneg,i(w) are given as:

hposi(w) = max {0,1 = w” ¢l ), (19)
max (w7 (0(zi,y) — 6w 3)) + A(,9)) |
yey;
53



g i(w) = max {0, wax, (1+wTo(iy))} (20
yey;

Note that we use different C' values for positive and negative
examples. In experiments, C; = 2 and Cy = 1.

Structured SVM objective may cause a slow conver-
gence in parameter estimation since it utilizes at most one
instance y among a large number of instances in the (re-
stricted) output space );, whose size varies from few hun-
dreds to thousands. To overcome this issue, we alternately
perform a gradient-based parameter estimation and hard
negative data mining that effectively adapts the number of
training examples to be evaluated for updating the parame-
ters (Sec. S2 in the supplementary materials).

For model parameter estimation, we use L-BFGS to first
learn parameters of the classification layer only. We found
that this already resulted in a good detection performance.
Then, we optionally use stochastic gradient descent to fine-
tune the whole CNN classifiers (Sec. S1 in the supplemen-
tary materials).

5. Experimental results

We applied our proposed methods to standard visual
object detection tasks on PASCAL VOC 2007 [12] and
2012 [14]. In all experiments, we consider R-CNNs [18] as
baseline models. Following [18], we used the CNN models
pretrained on ImageNet database [9] with 1, 000 object cat-
egories [25, 39], and finetuned the whole network using the
target database by replacing the existing softmax classifica-
tion layer to a new one with a different number of classes
(e.g., 20 classes for VOC 2007 and 2012). We provide the
learning details in the supplementary materials (Sec. S3).
Our implementation is based on the Caffe toolbox [23].

Setting the R-CNN as a baseline method, we compared
the detection performance of our proposed methods, such
as R-CNN with FGS (R-CNN + FGS), R-CNN trained with
structured SVM objective (R-CNN + StructObj), and their
combination (R-CNN + StructObj + FGS). Since our goal is
to localize the bounding boxes more accurately at the object
regions, we also consider the IoU of 0.7 for an evaluation
criterion, which only counts the detection results as correct
when the overlap between the predicted bounding box and
the ground truth is greater than 70%. This is more challeng-
ing than common practices (e.g., IoU > 0.5), but will be a
good indicator for a better localization of an object bound-
ing box if successful.

5.1. FGS efficacy test with oracle detector

Before reporting the performance of the proposed meth-
ods in R-CNN framework, we demonstrate the efficacy of
FGS algorithm using an oracle detector. We design a hypo-
thetical oracle detector whose score function is defined as
fidear (x4, y) = IoU(y, y;), where y; is a ground truth anno-
tation for an image ;. The score function is ideal in the
sense that it outputs high scores for bounding boxes with
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Figure 2: mAP at different IoU criteria on PASCAL VOC
2007 test set using an oracle detector. We used different
numbers of bounding boxes proposed by selective search
(SS) [44], Objectness [2], local random search, and our
proposed FTS methods. The average numbers of bounding

boxes used for evaluation are specified.
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high overlap with the ground truth and vice versa, overall
achieving 100% mAP.

We summarize the results in Figure 2. We report the per-
formance on the VOC 2007 test set at different levels of IoU
criteria (0.1, - - - ,0.9) for the baseline selective search (SS;
“fast mode” in [44]), selective search with objectness [2]
(SS + Objectness), selective search with extended super-
pixel similarity measurements (SS extended) [44], “quality
mode” of selective search (SS quality) [44], local random
search,® and the proposed FGS method with the baseline
selective search.

For low values of ToU (< 0.3), all methods using the or-
acle detectors performed almost perfectly due to the ideal
score function. However, we found that the detection per-
formance with different region proposal schemes other than
our proposed FGS algorithm start to break down at high val-
ues of IoU. For example, the performance of SS, SS + Ob-
jectness, SS extended, and local random search methods,
which used around 2, 000 ~ 3, 500 bounding boxes per im-
age in average, significantly dropped at IoU > 0.5. SS qual-
ity method kept pace with the FGS method until IoU of 0.6,
but again, the performance started to drop at IoU > 0.7.

On the other hand, the performance of FGS dropped 5%
in mAP at IoU of 0.9 by only introducing approximately
100 new bounding boxes per image. Given that SS qual-
ity requires 10,000 region proposals per image, our pro-
posed FGS method is much more computationally efficient
(~ 80% less bounding boxes) while localizing the bound-
ing boxes much more accurately. This provides an insight
that, if the detector is accurate, our Bayesian optimization
framework would limit the number of bounding boxes to a
manageable number (e.g., few thousands per image on av-
erage) to achieve almost perfect detection results.

8Like local FGS, local random search first determine the local search
regions by NMS. However, it randomly choose a fixed number of bounding
box in those regions rather than sequentially proposing new boxes based
on some informed method.



Model BBoxReg | aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
R-CNN (AlexNet) No 64.2 69.7 50.0 419 320 62.6 71.0 60.7 32.7 585 46.5 56.1 60.6 668 542 31.5 52.8 489 579 64.7 | 542
R-CNN (VGG) No 68.5 745 61.0 37.9 40.6 69.2 737 69.9 37.2 68.6 56.8 70.6 69.0 67.1 59.6 334 639 589 62.6 685 | 60.6
+ StructObj No 68.7 73.5 62.6 40.6 41.5 69.6 73.5 71.1 399 69.6 58.1 70.0 67.5 69.8 59.8 359 63.6 59.0 62.6 67.7 | 612
+ StructObj-FT No 69.3 752 62.2 394 423 70.7 745 743 404 713 59.8 72.0 698 694 603 353 645 620 63.7 69.8 | 62.3
+FGS No 70.6 784 65.7 462 488 74.6 77.0 743 427 70.8 609 75.1 758 70.7 663 37.1 663 57.6 66.6 71.0 | 64.8
+ StructObj + FGS No 73.4 809 645 46.7 49.1 739 782 76.8 448 753 63.0 753 742 727 685 37.0 67.5 58.1 66.9 70.5 | 65.9
+ StructObj-FT + FGS No 72.5 78.8 67.0 452 51.0 73.8 78.7 78.3 46.7 73.8 61.5 77.1 764 739 665 39.2 69.7 594 668 72.9 | 66.5
R-CNN (AlexNet) Yes 68.1 72.8 56.8 43.0 36.8 66.3 742 67.6 344 635 545 61.2 69.1 686 587 334 629 51.1 625 648 | 585
R-CNN (VGG) Yes 70.8 77.1 69.4 458 484 74.0 77.0 75.0 422 725 61.5 75.6 777 66.6 653 39.1 658 642 68.6 71.5 | 654
+ StructObj Yes 73.1 715 69.2 47.6 47.6 745 782 754 445 763 649 767 763 699 68.1 394 67.0 65.6 68.7 70.9 | 66.6
+ StructObj-FT Yes 72.6 794 69.4 452 478 744 718 765 454 763 614 80.2 77.1 738 66.8 41.1 67.8 647 679 72.3 | 66.9
+FGS Yes 742 789 67.8 51.6 523 75.7 787 76.6 454 724 63.1 76.6 79.3 70.7 68.0 403 678 61.8 70.2 71.6 | 67.2
+ StructObj + FGS Yes 74.1 83.2 67.0 50.8 51.6 76.2 81.4 772 48.1 789 65.6 77.3 784 751 701 414 69.6 60.8 70.2 73.7 | 68.5
+ StructObj-FT + FGS Yes 71.3 80.5 69.3 49.6 54.2 754 80.7 79.4 49.1 76.0 652 794 784 750 684 41.6 713 612 682 73.3 | 684

Table 1: Test set mAP of VOC 2007 with IoU > 0.5.

The entries

with the best APs for each object category are bold-faced.

Model BBoxReg | aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
R-CNN (AlexNet) No 329 40.1 19.7 18.7 11.1 394 405 265 148 29.8 245 264 237 319 185 133 27.6 258 26.6 39.5 | 26.6
R-CNN (VGG) No 402 433 234 144 133 482 445 364 17.1 340 279 363 268 282 212 103 337 36.6 31.6 489 | 30.8
+ StructObj No 42.5 444 245 17.8 153 46.8 464 379 17.6 334 266 368 243 315 213 104 30.0 36.1 30.6 463 | 31.0
+ StructObj-FT No 44.1 47.1 234 16.6 164 50.1 48.7 39.7 184 394 28.6 386 275 324 23.6 11.1 33.1 41.0 343 49.6 | 33.2
+FGS No 443 555 289 19.1 229 569 57.6 37.8 19.6 35.7 31.9 38.1 43.0 427 303 9.8 423 333 434 554 | 374
+ StructObj + FGS No 43.5 56.1 309 18.7 249 552 57.6 389 20.7 38.6 284 37.7 387 463 309 84 37.6 37.0 422 513 | 372
+ StructObj-FT + FGS No 46.3 58.1 31.1 21.6 25.8 57.1 58.2 43.5 23.0 464 29.0 40.7 40.6 463 334 106 413 409 45.8 56.3 | 39.8
R-CNN (AlexNet) Yes 47.6 48.7 253 25.0 173 534 54.6 36.8 16.7 423 31.6 358 38.0 418 245 143 388 289 34.0 49.0 | 352
R-CNN (VGG) Yes 45.1 48.6 26.0 182 21.2 57.2 524 37.3 20.1 33.7 319 388 39.6 363 265 92 378 334 394 50.7 | 35.2
+ StructObj Yes 494 56.5 36.5 21.3 233 61.0 58.1 44.3 20.8 47.4 333 39.8 40.7 459 31.0 14.7 39.6 429 457 569 | 40.5
+ StructObj-FT Yes 49.3 58.1 354 233 244 623 60.1 45.8 21.8 48.7 324 41.8 432 457 320 144 44.6 45.1 48.6 59.8 | 41.8
+FGS Yes 509 59.8 344 209 31.6 66.1 62.3 449 22.0 46.5 36.8 42.5 514 46.8 34.1 135 44.7 39.1 489 57.7 | 42.7
+ StructObj + FGS Yes 53.6 60.7 32.1 199 31.3 63.2 63.2 464 23.6 53.0 349 404 53.6 499 346 102 422 40.1 483 583 | 43.0
+ StructObj-FT + FGS Yes 47.1 61.8 352 18.1 29.7 66.0 64.7 48.0 25.3 50.4 349 43.7 50.8 494 368 13.7 44.7 43.6 49.8 60.5 | 43.7

Table 2: Test set mAP of VOC 2007 with IoU > 0.7. The entries with the best APs for each object category are bold-faced.

We also report similar experimental analysis for the real
detector trained with the proposed structured objective in
the supplementary materials (Sec. S6).

5.2. PASCAL VOC 2007

In this section, we demonstrate the performance of our
proposed methods on PASCAL VOC 2007 [12] detection
task (comp4), a standard benchmark for object detection
problem. Similarly to the training pipeline of R-CNN [18],
we finetuned the CNN models (with softmax classification
layer) pretrained on ImageNet database using images from
both train and validation sets of VOC 2007 and further
trained the network with linear SVM (baseline) or the pro-
posed structured SVM objective. We evaluated on the test
set using the proposed FGS algorithm. For post-processing,
we performed NMS and bounding box regression [18].

Figure 3 shows representative examples of successful de-
tection using our method. For these cases, our method can
localize objects accurately even if the initial bounding box
proposals don’t have good overlaps with the ground truth.
We show more examples (including the failure cases) in the
supplementary materials (Sec. S9, S10, S11).

The summary results are in Table 1 with IoU criteria of
0.5 and Table 2 with 0.7. We report the performance with
the AlexNet [25] and the VGGNet (16 layers) [39], a deeper

[\

CNN model than AlexNet that showed a significantly bet-
ter recognition performance and achieved the best perfor-
mance on object localization task in ILSVRC 2014.° First
of all, we observed the significant performance improve-
ment by simply having a better CNN model. Building upon
the VGGNet, the FGS improved the performance by 4.2%
and 1.8% in mAP without and with bounding box regres-
sion (Table 1). It becomes much more significant when
we consider IoU criteria of 0.7 (Table 2), improving upon
the baseline model by 6.6% and 7.5% in mAP without and
with bounding box regression. The results demonstrate that
our FGS algorithm is effective in accurately localizing the
bounding box of an object.

Further improvement has been made by training a clas-
sifier with structured SVM objective; we obtained 68.5%
mAP in IoU criteria of 0.5, which, to our knowledge, is
higher than the best published results, and 43.0% mAP in
IoU criteria of 0.7 with FGS and bounding box regression
by training the classification layer only (“StructObj”). By
finetuning the whole CNN classifiers (“StructObj-FT”), we
observed extra improvement for most cases; for example,
we obtained 43.7% mAP in IOU criteria of 0.7, which im-

9The 16-layer VGGNet can be downloaded from: https://gist.
github.com/ksimonyan/211839e770£7b538e2d8.
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Model BBoxReg | acro bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
R-CNN (AlexNet) No 68.1 63.8 46.1 294 279 56.6 57.0 659 26.5 487 39.5 662 573 654 532 262 545 38.1 50.6 51.6 | 49.6
R-CNN (VGGNet) No 763 69.8 57.9 40.2 372 64.0 63.7 802 36.1 63.6 473 81.1 712 738 595 309 642 522 624 58.7 | 59.5
R-CNN (AlexNet) Yes 71.8 65.8 52.0 34.1 32.6 59.6 60.0 69.8 27.6 52.0 41.7 69.6 613 683 578 29.6 57.8 409 59.3 54.1 | 533
R-CNN (VGGNet) Yes 792 723 629 437 451 67.7 66.7 83.0 393 66.2 51.7 822 732 765 642 337 66.7 56.1 683 61.0 | 63.0
+ StructObj Yes 80.9 74.8 62.7 42.6 462 702 68.6 84.0 422 682 54.1 822 742 798 66.6 393 67.6 61.0 71.3 652 | 65.1
+FGS Yes 80.5 73.5 64.1 453 487 66.5 683 82.8 39.8 68.2 52.7 82.1 751 76.6 663 355 669 568 68.7 61.6 | 64.0
+ StructObj + FGS Yes 829 76.1 64.1 446 494 70.3 71.2 84.6 42.7 68.6 558 82.7 77.1 799 687 414 69.0 60.0 72.0 66.2 | 66.4
NIN [29] 80.2 73.8 61.9 437 43.0 70.3 67.6 80.7 419 69.7 51.7 782 752 769 651 386 683 58.0 68.7 63.3 | 63.8

Table 3: Test set mAP of VOC 2012 with IoU > 0.5. The entries with the best APs for each object category are bold-faced.

0.78]

pottedﬁht

sheep

Figure 3: Detection examples from PASCAL VOC 2007 test set. Two examples from 20 object categories are shown, with
the ground truth bounding boxes (green), the boxes obtained by baseline R-CNN (VGGNet) (red), and those obtained by the
proposed R-CNN + StructObj + FGS (yellow). The numbers near the bounding boxes denote the IoU with the ground truth.

proves by 0.7% in mAP over the method without finetuning.
However, for IoU>0.5 criterion, the overall improvement
due to finetuning was relatively small, especially when us-
ing bounding box regression. In this case, considering the
high computational cost for finetuning, we found that train-
ing only the classification layer is practically a sufficient
way to learn a good localization-aware classifier.

We provide in-depth analysis of our proposed methods
in the supplementary materials. Specifically, we report the
precision-recall curves of different combinations of the pro-
posed methods (Sec. S7), the performance of FGS with dif-
ferent GP iterations (Sec. S5), the analysis of localization
accuracy (Sec. S8), and more detection examples.

5.3. PASCAL VOC 2012

We also evaluate the performance of the proposed meth-
ods on PASCAL VOC 2012 [14]. As the data statistics are
similar to VOC 2007, we used the same hyperparameters as
described in Section 5.2 for this experiment. We report the
test set mAP over 20 object categories in Table 3. Our pro-
posed method shows improvement by 2.1% with R-CNN +
StructObj and 1.0% with R-CNN + FGS over baseline R-
CNN using VGGNet. Finally, we obtained 66.4% mAP by
combining the two methods, which significantly improved

upon the baseline R-CNN model and the previously pub-
lished results on the leaderboard.

6. Conclusion

In this work, we proposed two complementary meth-
ods to improve the performance of object detection in R-
CNN framework with 1) fine-grained search algorithm in a
Bayesian optimization framework to refine the region pro-
posals and 2) a CNN classifier trained with structured SVM
objective to improve localization. We demonstrated the
state-of-the-art detection performance on PASCAL VOC
2007 and 2012 benchmarks under standard localization re-
quirements. Our methods showed more significant im-
provement with higher IoU evaluation criteria (e.g., IoU
= 0.7), and hold promise for mission-critical applications
that require highly precise localization, such as autonomous
driving, robotic surgery and manipulation.
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