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Abstract

There has been emerging interest on recovering tra-
ditionally challenging intrinsic scene properties. In this
paper, we present a novel computational imaging solution
for recovering the ambient occlusion (AO) map of an object.
AO measures how much light from all different directions
can reach a surface point without being blocked by self-
occlusions. Previous approaches either require obtaining
highly accurate surface geometry or acquiring a large num-
ber of images. We adopt a compressive sensing framework
that captures the object under strategically coded lighting
directions. We show that this incident illumination field
exhibits some unique properties suitable for AO recovery:
every ray’s contribution to the visibility function is bina-
ry while their distribution for AO measurement is sparse.
This enables a sparsity-prior based solution for iteratively
recovering the surface normal, the surface albedo, and
the visibility function from a small number of images. To
physically implement the scheme, we construct an encod-
able directional light source using the light field probe.
Experiments on synthetic and real scenes show that our
approach is both reliable and accurate with significantly
reduced size of input.

1. Introduction

The problem of recovering intrinsic properties of a
scene/object from images has attracted much attention in
the past decade. Tremendous efforts have been focused
on intrinsic properties related to shading and reflectance
[11, 2]. The problem is inherently challenging as it is under-
constrained: we have multiple unknowns but a smaller
set of constraints (images). Additional constraints such
as priors are needed to make the problem trackable. For
example, the earlier work by Weiss [35] used a maximum
likelihood (ML) method to recover illumination invariant
intrinsic properties from a sequence of images captured at
a fixed viewpoint but under significantly different lightings.

∗These authors contributed to the work equally.

More recent work has focused on recovering intrinsic prop-
erties related to surface reflectance and visibility [3].

In this paper, we explore a challenging type of intrinsic
properties called the ambient occlusion map. Ambient Oc-
clusion (AO) characterizes the visibility of a surface point
due to local geometry occlusions. Given a scene point x, its
AO measures the occlusion of ambient light caused by local
surface geometry:

A(x) =
1

π

∫
Ω

v(x, ẇ)〈ẇ · ṅ〉dẇ (1)

where ẇ is the direction of incident light; ṅ is the normal
of x; and 〈·〉 refers to the dot product. v(x, ẇ) is the local
visibility function and is equal to 0 if the light ray from ẇ
is occluded from x. Ω is the unit sphere over the point x.

AO reveals local visibility of illumination and hence
affects the appearance of objects under shading. Applica-
tions are numerous in both computer vision and graphics,
ranging from inverse rendering[1], image based relighting
[25] to photometric stereo [20, 32, 6]. Recovering AO
from images, however is highly ill-posed (See details in
Sec. 3.1). A brute-force approach is to first capture the 3D
geometry of object and then compute AO using ray casting
[28]. This task, however, is challenging since accurate
3D reconstruction remains difficult. The seminal work by
Hauagge et al. [12] analyzes a stack of images acquired
under a moving point light source. To make the problem
trackable, they adopt a parametric visibility model, a cone-
shaped function centered at the normal. A simple, per-
pixel statistics was then used to cancel out surface albedo
and to estimate visibility. Although highly effectively, their
approach used a large number of images to obtain high
accuracy and the parametric visibility model is not always
valid (e.g., point A and D in Fig. 1).

In this paper, we present a novel computational imaging
solution for recovering AO. We adopt a compressive sens-
ing framework that captures the object under strategically
coded directional lights. We show that the incident illumi-
nation field exhibits some unique properties suitable for AO
recovery: every ray’s contribution to the visibility function
is binary and their distribution for AO measurement is
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sparse. This enables a sparsity-prior based solution for it-
eratively recovering the surface normal, the surface albedo,
and the sparse visibility function from a small number of
images. To physically implement the scheme, we construct
an encodable directional light source using the light field
probe [36]. We validate our approach on both synthetic and
real data and show that our scheme produces AO estimation
at comparable accuracy to [12] but with a much smaller set
of images. In addition, we can recover more general vis-
ibility functions beyond the normal-centered cone-shaped
models.

2. Related Work
In this section, we review state-of-the-art intrinsic image

recovery techniques and emerging computational imaging
solutions.

Intrinsic Image Recovery. Traditional approaches have
focused on intrinsic properties related to reflectance (albe-
do), normal and geometric occlusion. Many single images
based methods [17, 33, 19] aim to perform the reflectance
and illumination decomposition. Theoretically, these meth-
ods can potentially used to recover AO when the scene is
illuminated by a uniform and constant light source. Howev-
er they rely on smoothness prior and hence are not reliable
in the presence of complex albedo and surface geometry.
Recent studies show that image sequences based methods
(e.g. [35]) cannot robustly handle soft and persistent shad-
ows produced by AO. Our work is also related to visibility
estimation in photometric stereo[20, 32, 6]. Sunkavalli et
al. [32] approximate lighting visibility via dimensionality
reduction in illumination spaces. Their method, however,
is not suitable for handling a large number of varying
lighting conditions. Aldrian and Smith [1] conduct inverse-
render on simple geometry such as faces under uniform
and constant illumination. Hauagge et al. [12] estimate AO
from a stack of images captured under a moving point light
source. They adopt a simplified visibility model and show
impressive results on recovering AO. A major drawback of
their technique is the requirement of a large of number input
images, which we aim to reduce through computational
imaging and compressive reconstruction.

Computational Imaging. The core of our technique is to
create a controllable illumination field. Masselus et al. [23]
position an object on a rotational table and the illuminate
it using a projector. By exploiting the rich shading and ge-
ometric information through spatial-angular analysis, they
can relight the object with high realism. Later, Cossairt et
al. [8] apply computational illumination to produce synthet-
ic illumination between real and synthetic objects. Debevec
[9] uses the Light Stage system to exploit the richness in
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Figure 1: An 1-D illustration of ambient occlusions for
different scene points with different occlusion levels.

angular and spatial variation of the light field, and the object
can be relit with nearly realism. Ezra et al. [4] proposes a
novel BRDF measurement device consisting exclusively of
LEDs. Their device uses no cameras and is fast and simpler
for measuring BRDF.

Our idea resembles the inverted light field camera. Light
fields [18] are image based representations that gather rays
sampled both spatially and angularly. Physically, they can
be collected through a light field camera array or more
recently a light field camera. The concept of light field
illumination is relatively new. Wetzstein et al. [36] put
coded image patterns behind a microlens array to encode
rays spatially and angularly. The device, called the light
field probe, can be used to determine light path variations
and then to reconstruct transparent objects [37]. In a similar
vein, Ji et al. [15] place a color coded pattern behind the
light field probe to capture light paths through a 3D gas flow
for volumetric heat reconstruction. In this paper, we build
a controllable directional illumination field using the light
field probe.

Compressive Sensing. Finally, our work is closely re-
lated to latest advances on Compressive Sensing (CS) [5]
for signal reconstruction. The literature of CS is huge and
we refer the readers to the comprehensive survey [27]. In
photography, CS allows a reduction in image acquisition
energy per image by as much as a factor of 15 at the
cost of complex decompression algorithms [30]. There is
also emerging interest on applying CS for multi-spectral
imaging [21], light field imaging [22] and super-resolution
[13], light transport [26], and depth sensing [7]. Our work
employs the compressive sensing technique to reduce the
number of input images for AO reconstruction.

3. Ambient Occlusion Recovery

In this section, we first show why AO recovery from
images is an ill-posed problem and then discuss how to
solve it using CS. Before proceeding, we clarify our as-
sumptions. Similar to previous work [12], we assume
Lambertian reflectance and fixed camera location. The AO
map is measured w.r.t. the camera’s viewpoint.



3.1. Ill-Posedness

By Eqn. 1, we can discretize the lighting directions and
approximate AO as:

Ã =
1

c

N∑
i=1

vi〈ẇi · ṅ〉 (2)

where c is the normalization factor that regularizes Ã into
the range [0, 1], ẇi is the discretized lighting direction and
vi is the local visibility function.

To measure Ã, we can illuminate the object using a
dense set of uniform directional lights ẇi and measure its
corresponding intensity as:

Ii = ρvi〈ẇi · ṅ〉 (3)

where ρ is the surface albedo.
Summing up images captured from all directions, we

have
N∑
i=1

Ii = ρ

N∑
i=1

vi〈ẇi · ṅ〉 = ρÃc (4)

Notice that the AO term Ã in Eqn. 2 cannot be resolved
based on the intensity of images since the albedo ρ is also
unknown. To address this issue, Hauagge et al. [12] adopt
a simplified parametric visibility model. Specifically, they
assume that the visibility function follows cone-shaped dis-
tribution centered at the normal asA = π sin2 α, where α is
the cone’s half angle. Computing the visibility function is to
estimate α. Under uniformly distributed lighting directions,
they have shown that computing κ = E[I]2/E[I2] (E[·]
stands for expectation) directly cancels the albedo and can
be used to directly solve for α. For their assumption to
work, densely distributed light sources will be needed and
an image needs to be captured for each lighting direction.

3.2. AO Estimation Via Compressive Sensing

Our approach is motivated by recent compressive sens-
ing schemes. Instead of capturing one lighting direction at
a time, we aim to enable multiple lighting directions in one
shot. A downside though is that we can no longer use the
κ statistics mentioned above for canceling out the albedo
for visibility estimation. Instead, we build our solution on
compressive signal reconstruction.

We use a binary vector b = [l1, ...lN ] to represent the sta-
tus of N lighting directions, where li = 1 or 0 corresponds
to if the lighting direction ẇi is enabled or disabled. Under
this formation, we have:

I = ρ

N∑
i=1

livi〈ẇi · ṅ〉 (5)

We can now use a set of M strategically coded direc-
tional lighting patterns. For each pattern bj , j = 1...M , we
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Figure 2: (a) A simple scene illuminated by one of our
directionally encoded light sources. Point P’s AO is affected
by the sphere and the cylinder. We use 50 different patterns
and (b) shows the P ’s intensity with respect to different
patterns. (c) shows P ’s ground truth visibility distribution
over the hemisphere (foreshortened by its normal). (d)
shows intermediate visibility estimation results at different
iterations by our algorithm.

capture an image Ij . This results in anM×N measurement
matrix B = [b1, b2....bM ]T and we can rewrite Eqn. 5 as

I = ρB[V ∗W (ṅ)] (6)

where W (ṅ) = [〈ẇ1 · ṅ〉, 〈ẇ2 · ṅ〉, ..., 〈ẇN · ṅ〉] and [ ∗ ]
refers to the pairwise element-wise product.

Given the measurements, for each pixel, we aim to solve
for ρ (a scalar), V (aN×1 vector ) and ṅ (a unit vector with
two degrees of freedoms). Hence the number of unknowns
is N + 3. Again, we want to use fewer constraints (number
of input images), i.e., M < N + 3. Our solution is to
reduce the problem to two sub-problems and solve them
using iterative optimization.

Visibility Recovery Sub-problem. The simplest initial-
ization of the surface normal is to directly use the camera’s
viewing direction ṅ0 = [0, 0, 1] for all normals. This works
well in our scheme but incurs slower convergence. A better
scheme is to use the lighting pattern that incurs highest
intensity and use their averaged direction. This results in the
initial assignment ofW0. We then set out to find the optimal
ρ and V by optimizing the following objective function:

ρ, V ← arg min
ρ,V

‖ρB(W0 ∗ V )− I‖2

Subject to: V = [0, 1]
(7)

Notice that V is a binary pattern and solving V in this
optimization is NP-hard.



Recent works in compressive sensing [5] and signal rep-
resentation [34, 16] show that this problem can be reduced
to an `∞ regularized `1 minimization. Specifically, we
transform the optimization objective function to:

ρ̂, V̂ ← arg min
ρ,V

{
‖ρB(W0 ∗ V )− I‖22 + λ1‖V ‖1

+ λ1‖V − 0.5‖∞ + λ2‖∇V ‖1
} (8)

where λ1, λ2 and λ3 are weighting factors. The new objec-
tive function consists of four terms: 1) ‖ρB(W0 ∗V )− I‖22
corresponds to the fidelity term where the estimated V
should be consistent with the observed pixel intensities I;
2) ‖V ‖1 is the sparse prior term that forces the visibility of
negligible light directions, i.e., those do not affect the ob-
servation should be zero. With this term, the solution would
favor a sparse set of visible light directions; 3) ‖V − 0.5‖∞
is the binary prior term. It is used to clamp the elements of
V with high values to 1 and lows values to 0. Combining
‖V ‖1 and ‖V − 0.5‖∞ with weighting factors allows us
to obtain an approximate binary solution; and 4) ‖∇V ‖1 is
the total variation term, i.e., to bias towards a solution with
compact visible areas. Under this formulation, Eqn. 8 can
be modeled as a second order cone problem (SOCP), we use
the CVX optimization toolbox [10] to obtain the solution.

We have validated our approach on both synthetic and
real experiments.

Normal Recovery Sub-problem Recall that under our
formulation, the per-direction visibility vector V̂ obtained
by solving Eqn. 8 is not binary. We need to regularize V̂
to binary using a predefined threshold k, we set k = 0.35
in our experiment. This results in a binary visibility vector
Ṽ . Now that we have both the visibility vector and albedo,
we can refine the estimation of normal ṅ by solving for the
following least square problem:

ρ̄, ¯̇n← arg min
ρ,ṅ

‖ρ̂B[W (ṅ) ∗ Ṽ ]− I‖2

Subject to ‖ṅ‖2 = 1
(9)

Specifically, we relax the constraint to ‖ṅ‖ 6 1 and
directly solve it via constrained least square minimization
(e.g., the lsqlin function in Matlab). The results are normal-
ized to have unit length ¯̇n. Next, we use ¯̇n to update W . We
repeat the process to iteratively improve the visibility and
normal estimation. In our implementation, we preset the
maximum number of iterations (15 in most cases). In order
to perform CS acquisition, it is critical that the sampling
basis are incoherent. We choose to use the Hadamard
transform (HT) [29, 9] to generate the sampling pattern.

4. Experiments
4.1. Synthetic Experiment

For synthetic experiments, we render the scene using the
POV-Ray ray tracer (www.povray.org). We place an object
at the origin of the coordinate system and the camera on
z-axis viewing towards the negative z direction. We create
two 4D light field sources, each covers nearly a hemisphere.
Each light field source consists of 88 uniformly distributed
lighting directions. We generate 50 Hadamard patterns and
render the corresponding images.

We test our technique on two scenes: the turtle scene
and the tentacle scene. We apply our optimization scheme
Eqn. 8 and 9 to iteratively compute the visibility term and
surface normal. For Eqn. 8, we use the gradient of V on
the grid to compute the total variation term. We set the
weighting factors as λ1 = 0.25, λ2 = 10.5 and λ3 = 0.25
and the maximum number of iterations as 15.

Next, we compare our technique with [12]. [12] requires
uniformly distributed lighting directions. We emulate the
sampling by using uniformly partitioning a geo-sphere and
map the position of the vertices to direction. We render 161
images, each with only one lighting direction on. The com-
plete results with the ground truth ambient occlusion and
albedo is shown in Fig. 3. Overall, our technique produces
comparable results as [12]. Furthermore, for points lying in
a valley, our method produces better estimations since [12]
assumes cone-shaped visibility model which is no longer
valid in this case. Also note that [12] requires all 3 color
channels in their optimization algorithm. If one color has
zero albedo, it will fail to produce accurate AOs, (e.g., the
tentacle and tail of the turtle). Finally their estimated AO
tends to be smoother since they use statistical behavior of
visibility within a patch of pixels.

Further, our algorithm can significantly reduce the size
of input. Fig. 4 plots the rooted means squared error of AO
and albedo w.r.t the number of input images. Our results
show that with a small number of inputs (e.g., 40), we can
produce comparable results as [12].

4.2. Photometric Stereo

We also show that our technique can improve photomet-
ric stereo by exploring two public datasets SCHOLAR and
FROG which provide the images captured under calibrated
directional lightings. We emulate our coded lighting pro-
cess by summing the multiple images that correspond to the
code pattern. In our experiment, we synthesize 10 images
from the Scholar dataset and 6 for the Frog dataset and
test our algorithm for normal recovery. The first column
in Fig. 5 shows a sample image.

Recall that both datasets use a sparse set of directional
lights: 12 for the SCHOLAR and 8 for the FROG. To
robustly apply total variation in our `∞ regularized `1
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Figure 3: Comparison between our result and [12] on AO estimation on synthetic datasets. Left column shows the ambient
occlusion results on the Tentacle scene. Right three columns shows the recovery albedo and ambient occlusion with closeup
views.
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Figure 4: The Root Mean Square Error of AO and albedo
estimations with different input sizes.

optimization, we find, for each direction, its nearest light-
ing direction and compute the corresponding difference in
visibility term. For both datasets, we set the weighting
factors as λ1 = 0.25, λ2 = 8.5 and λ3 = 0.05 and the
maximum number of iterations as 15. The second column
of Fig. 5 shows our estimated lighting visibility and the
middle two columns show our estimated normal and albedo
maps. The last two columns shows the computed normal
and its error map w.r.t the ground truth normal. Our results
are comparable to state-of-the-art solutions. However, we

not only obtain the normal map but also the AO map,
which is largely missing using classical photometric stereo
techniques.

4.3. Real Data

Light Field Probe: To produce encodable directional
light sources, we use the light field probe that consists of
a microlenslet array. To cover both sides of the object,
we use two Epson HC8350 projectors and two Fresnel 300
micro lenslet arrays to create the left and right light field
source. The projected resolution is 1920 x 1080. We
attach a diffuser onto the back of the micro lenslet array.
To expand over the full hemisphere, the left micro lenslet
arrays is set to have an included angle about 75◦ with the
horizontal plane, and the right micro lenslet arrays is 45◦.
The object is placed on a rotation table. When we rotate
the object one cycle, the illumination field will spread the
whole hemisphere. A PointGray Flee 3 camera is on the
rotation axis and viewing the object. The captured image
has a resolution of 4096 x 2160. The camera is aligned
with the rotation axis of the turning table. We also use the
telephoto lenses to minimize view-dependent occlusions.

Calibration: To calibrate the emit directions of our light
source, we use a mirror ball of 2 inch diameter. The center
of the ball is aligned with the rotation axis. We encode
the projection pattern for each mircolens to enforce that all
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Figure 5: Ambient occlusion and albedo estimation using our approach on the scholar and frog dataset.

light rays through microlenslets have a uniform direction.
We then detect the location of specular highlight on the ball
and use it to compute the lighting direction. Fig. 7 shows
our light field probe setup with angularly coded color wheel
pattern. The emitted rays with the same directions have the
same color.

Due to low angular resolution of the micro lenslets, we
need to rotate the object about 60 degree each time and we
capture 12 images at each position with different lighting
patterns. At each position, we solve for the visibility and
normal independently. The visibility measures for the same
patch are stitched over the hemisphere. We choose the one
that incurs least error (with respect to input) as the estimated
normal and albedo. The weighting factors we use in our
experiments are: λ1 = 0.1, λ2 = 10.5 and λ3 = 0.2.

Fig. 9 shows the reconstruction results on a toy duck.
In our experiment, a total of 72 images were captured at
a resolution of 4096 x 2160. To reduce image noise and
computational cost, we downsample the images and only
process regions of interest (about 500x400 image resolu-
tion). To calibrate the camera response curves, we use the
color calibration toolbox provided [14].

We use the Hadmard pattern with 75% of the lighting
directions enabled at each capture. This is more advanta-
geous than acquiring an image under a single light direction
since it provides more lights to reduce noise. Fig. 9 shows
our recovered AO, normal map and albedo map. Our results
are comparable to the synthetic ones. The recovered albedo
map, however, exhibits some color bleeding artifacts (e.g.,
the head and belly region of the duck), the might be caused
by the error when we align the rotated images together. Also
notice that our approach is per-pixel based and does not
impose smoothness priors to adjacent pixels and therefore
our normal map appears noisier than traditional photometric
stereo. Additional results can be found in the supplementary
materials.

Light Field Probes

 1&2

Turning

Table

Object

Projector 2

Projector 1

Camera

Figure 6: Left: our system uses two light field probes to
emulate encodable directional light sources. Right: Closeup
views of the light field probes.

5. Conclusions and Discussions

We have presented a novel computational imaging so-
lution for recovering the ambient occlusion (AO) map of
an object. Our technique borrows the compressive sens-
ing framework by capturing the object under strategically
encoded lighting directions. We have developed a sparsity-
prior based solution for robustly recover the surface normal,
the surface albedo, and the visibility function. To physically
implement our scheme, we have constructed an encodable
light source by exploiting the recent light field probe design-
s. Experiments on synthetic and real scenes have shown that
our approach is reliable and accurate and can greatly reduce
the input size.

Compared with [12], our technique uses much fewer
images but requires known lighting directions, which is a
major limitation. In the future, we will explore eliminating
this requirement, e.g., by correlating the 3D geometry of the
object with coding patterns. Our solution is also per-pixel
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Figure 7: Directional invariance of light field probes. We
project identical color wheel images for every microlenslet
so that each lighting direction maps to a unique color.
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Figure 8: Calibrating the lighting direction of a mirror ball.
Left: lighting directions represented by points on a uniform
sphere. Identical directions are shown in the same color.
Right: we detect specular highlights on the mirror ball for
calibrating the lighting direction.

based and does not consider coherence between neighbor-
ing pixels. A straightforward extension is to incorporate the
Markov Random Field work to enforce smoothness priors
on normal and albedo estimations. Finally, same as most
existing photometric stereo techniques, our method cannot
handle subsurface scattering and inter-reflection. It is our
important future direction to include light transport analysis
[31] and acquisition [24] in our AO measurement.
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