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Abstract

This paper focuses on the problem of hyper-graph
matching, by accounting for both unary and higher-order
affinity terms. Our method is in line with the linear approx-
imate framework while the problem is iteratively solved in
discrete space. It is empirically found more efficient than
many extant continuous methods. Moreover, it avoids un-
known accuracy loss by heuristic rounding step from the
continuous approaches. Under weak assumptions, we prove
the iterative discrete gradient assignment in general will
trap into a degenerating case — an m-circle solution path
where m is the order of the problem. A tailored adaptive
relaxation mechanism is devised to detect the degenerat-
ing case and makes the algorithm converge to a fixed point
in discrete space. Evaluations on both synthetic and real-
world data corroborate the efficiency of our method.

1. Introduction

Graph matching has become a popular tool in a variety
of areas in computer science, ranging from computer vi-
sion to machine learning to computational geometry. Graph
matching aims at finding correspondence between two fea-
ture sets, with a wide spectrum of applications that re-
quire feature matching, as diverse as image recognition
[36], shape matching [1] and object tracking [28], among
others. Specifically, classical first-order methods [9, 12]
only consider the node-wise unary compatibility between
two point sets, which can be reduced to a linear assign-
ment problem and solved in polynomial time by standard
techniques such as the Hungarian algorithm [12]. One step
further, in second-order graph matching, each feature set
is formulated as a graph with nodes representing features
and edge weights measuring the similarity between nodes,
where the correspondence is established through preserving
the structure similarity across two graphs. When involving
both node and edge compatibilities, the objective of second-
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order graph matching is essentially linked to the quadratic
assignment problem that is known to be NP hard [3, 10, 15].

More recently, the higher-order relations (mostly third-
order) between graphs are explored to derive more sophis-
ticated graph matching techniques, namely hyper-graph
matching, which is the focus of this paper. Compared
with conventional second-order approaches [7, 13, 14, 10,

, 39], hyper-graph matching methods enjoy a better
scale/rotation/deformation invariance thus tend to be more
robust to outliers and noise. Due to the theoretical advance
and empirical success, hyper-graph matching has attracted
increasing attention and many methods have been devel-
oped e.g. [37, 8, 13, 4] and the references therein.

In this paper, we are particularly interested in devising
a pure discrete method with theoretically guaranteed con-
vergence property for hyper-graph matching. This is mo-
tivated by the observation that current hyper-graph/graph
matching methods mostly relax the problem domain to con-
tinuous space, and adopt iterative deterministic annealing,
such as soft-assignment used in [10] or iterative bistochas-
tic normalization [13] to confine the variable in the convex
hull of the discrete space. However this strategy might not
be perfect: i) the graduated annealing procedure or iterative
normalization is time-consuming and, in general no conver-
gence can be theoretically guaranteed in discrete domain
that leaves the optimality unclear; ii) at the end of itera-
tions, an ad-hoc post-step is needed to round the continuous
solution, which is implicitly based on the assumption that
the continuous optimum is close to the discrete optimum of
the original combinatorial problem. However so far no one
can guarantee this assumption always hold thus it can incur
unclear and perhaps arbitrary accuracy loss.

This paper adopts an iterative procedure that approxi-
mates the higher-order assignment problem into a first-order
linear assignment one. This strategy is in line with the state-
of-the-art for both second-order graph matching [14, 10, 7]
and higher-order hyper-graph matching [8, 13]. In each it-
eration, we employ the gradient assignment method (e.g.
Hungarian method) for discrete optimization as used in
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[15, 26] to find the optimal assignment matrix in the integer
domain. The relative performance-wise advantage of this
“discrete” solver is its empirically observed efficiency (as
shown in the experiment part of this paper) against the typ-
ical “soft-assignment” counterpart [10]. It also dispenses
with the heuristic post-rounding step. Moreover, to our best
knowledge, it is so far one of the very few discrete methods'
for solving the hyper-graph matching problem.

Based on this general methodology, the key problem
is how to devise an effective optimization mechanism in
discrete domain. We propose a particular adaptive dis-
crete gradient assignment method, which bears several de-
sirable properties: i) no heuristic re-weighting step as used
in [7, 13, 15] is imposed, being less dependent on parame-
ter tuning; ii) inherently return integer solutions that avoids
heuristic rounding; iii) converge to a fixed discrete point
by theoretical guarantee and empirically show competitive
overall efficiency compared with continuous methods.

Perhaps most importantly, at methodology level, this pa-
per might raise the community’s attention to pure discrete
methods for hyper-graph matching, as currently this prob-
lem is often addressed in continuous space [37, 8, 13]. In
the long run, we hope our work will trigger follow-up efforts
for new discrete methods, and/or continues methods based
on the proposed mechanism for hyper-graph matching.

At practice level, our method so far can be of help in
places where efficiency is first priority as it can achieve a
tradeoff between accuracy and efficiency, as shown later in
the paper. Extensive empirical comparison with represen-
tative continuous hyper-graph matching methods suggests
that the proposed algorithm produces competitive results.

2. Related Work

Graph matching has been previously mainly addressed
by modeling its second-order affinity information” [7, 10,

, 15, 25]. The more closely related work is for hyper-
graph matching that incorporates higher-order affinity for
matching, which typically extends the original algorithm for
second-order problem to the higher-order one. Specifically,
Duchenne et. al. extend the spectral matching method used
for second-order graphs [14] to hyper-graphs via a multi-
dimensional power method in continuous domain [8]. Re-
weighted Random Walks Graph Matching method is devel-
oped for both the second-order [7] and higher-order [13]

'Except for the hyper version of IPFP [15] we implemented in this pa-
per termed as HIPFP, we are unaware of any other existing discrete method.

2Throughout the paper, several acronyms are used to term the related
methods. RRWHM [13]: Re-weighted Random walk Hypergrph Match-
ing; TSM [8]: Tensor Graph Matching; IPFP [15]: Integer Projected Fixed
Point; GAGM [10]: Graduated Assignment Graph Matching; We fur-
ther term HIPFP and HGAGM [4] as the hyper-graph matching extension
for IPFP and GAGM respectively. In addition, the proposed two algo-
rithms are termed as i) HDGA: Hyper Discrete Gradient Assignment; ii)
HADGA: Hyper Adaptive Discrete Gradient Assignment.

graph matching problems from a random walk perspective.
The work [37] addresses the hyper-graph matching prob-
lem in a probabilistic setting solved by convex optimization.
However, the probabilistic hyper-graph matching approach
relies on the assumption of conditional independence that
helps simplify the model by factorizing the higher-order in-
teractions into first-order ones. Regardless of the formu-
lations and objectives, except for few works [17], most of
the aforementioned hyper-graph matching methods relax
the original higher-order matching problem to a first-order
assignment problem in continuous domain, followed by an
iterative optimization procedure. The convergence of these
methods are often empirically observed in [7, 10] and theo-
retically justified by [15, 20] under certain moderate condi-
tions: for instance, when the affinity matrix is semi-positive
definite for the second-order case. However in general cases
when the affinity matrix is not semi-positive definite or the
affinity tensor is arbitrary, the convergence is still unclear
and cannot be theoretically guaranteed. Moreover, even
if such an iterative strategy reaches convergence to a fixed
point, it is often a continuous one, which calls for heuristic
post-rounding whose influence on the accuracy is unclear.
For instance, in the re-weighted hyper-graph random walk
formulation [13], the final converged distribution has to be
converted to a binary matrix by a certain means.

As the previous works commonly follow an iterative op-
timization procedure, it turns out the main difference is how
the solution path is updated over iterations. As pointed out
by the authors in [7, 13], their solvers RRWM [7] (RRWHM
[13]) can be interpreted as a re-weighting of the power
method [14, 8] and softassign that adopts Sinkhorn bis-
tochastic normalization [23]. Accordingly, RRWHM is a
natural extension from RRWM for hyper-graph matching.
This extension is also applicable to IPFP [15] and GAGM
[10], which are termed HIPFP and HGAGM [4] in this pa-
per, and will be evaluated together in our experiments. In
[24] candidate particles in permutation space are computed
by reusing extant graph matching solvers, to sequentially re-
weight its sampling distribution. While no original discrete
method is devised for generating particles.

There are other threads about graph matching in paral-
lel with our work. Recent works leverage various learning
algorithm to derive optimal graph matching, while refining
the affinity matrix simultaneously or learning optimal affin-
ity setting via labeled node correspondences [3, 16, 17, 6].
Such an affinity refinement process falls into either super-
vised [3] or unsupervised [!6] or semi-supervised [17]
learning paradigms. While [22] shows that point-wise infor-
mation is often enough to provide good matchings and re-
duces the higher-order affinity matrix into a unary one. Re-
cently, the problem of matching multiple graphs as a whole
also attract research efforts such as [32, 30, 34, 33, 29]. Our
work is learning-free and focuses on two-graph matching.
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Figure 1: Image examples of the used dataset. Left: car
from Pose dataset; right: hotel from CMU sequence.

3. Algorithms and Convergence Analysis

Under the general first-order approximate framework for
hyper-graph matching as adopted by [8, 13], we show how
to explore the capability of a discrete method, especially
improving its cost-effectiveness compared with continuous
methods. In the second-order cases, the extant popular
continuous solvers like RRWM [7] and Factorized Graph
Matching [39] usually achieve higher accuracy than the dis-
crete solver IPFP [15] as reported in [39]. Our key technical
point is an adaptive and dynamic objective relaxation mech-
anism for optimization in discrete domain directly, whose
convergence is ensured by theoretical analysis.

3.1. Preliminaries and Notations

Given two hyper-graphs G; and Gy with n; and ng
nodes respectively, there exist affinity measurements be-
tween each subset of m nodes (a hyper-edge) in one graph
and m nodes (also a hyper-edge) in the other, which to-
gether form a set of pairs of hyper-edges between two
graphs. For a fixed assignment matrix used to account
for node correspondence, by adding up all corresponding
hyper-edge pairs determined by the assignment matrix, one
can obtain an overall affinity objective score. This paper
assumes the hyper-edge affinity is given, thus this score be-
comes a function w.r.z. the assignment matrix. The goal of
hyper-graph matching is to establish node mapping of two
hyper-graphs such that the objective is maximized.

We use the tuple (i1,i2,...,%,) to denote the m-
order hyper-edge correspondence where each element in
the tuple {i)}7* , indicates a node-to-node correspondence
(it<»i3), i.e. node i}, (it=1,...,n1) in G; matches node
i3 (i3=1,...,n2) in Go. We allow (i} «+i2)=(i1<>?) for
k+#s, to encode lower-order (<m) hyper-edges. Formally,
we use an mth-order super-symmetric tensor H to encode
the hyper-edge to hyper-edge affinity score. For instance,
H;, i, .. i, denotes the relation between two hyper-edges
that is induced by the correspondence tuple (i1, @2, . . . , i)
More rigourously, let p € {0,1}™"2 denote the vec-
torized form of the node correspondence matrix P €
{0,1}™*"2 (or termed as assignment matrix) by its rows
for one-to-one matching. Its nonzero element p;, whose po-
sition in p is indexed by i, for (ix=1, 2, ...,nins), denotes
the node-to-node correspondence (i}<+i7) and the index is
calculated by iy, = (i}, — 1)na + i2. Based on the above
notations, by assuming nq <n, without loss of generality,

the hyper-graph matching problem can be formulated as the
following constrained combinatorial optimization problem
which is widely adopted by extant works e.g. [8, 13]:

P = argmax (3, iy, ip Hiyin,.. i Pis Pis « - - Pi) (1)
st. Pl,, =1, ,P'1, <1,,,pec{0,1}mn=x!

Or using the tensor product [21] in a more compact form:

p=argmax(H®1 p®2p... D P) 2)
s.t. Pln2 = lnl,PTln1 S lnz’p c {0’ 1}n1n2><1

Note one can further add dummy nodes in G; to make
the number of nodes in two graphs become equal. Thus
for discussion convenience, in the rest of this paper we
further assume n;=ns if not otherwise explicitly speci-
fied. In line with the convention used in [8], the ten-
sor product ®j satisfies the property B = A ®i V:
B, il — 150k 41 ,..4,7;“:2% Ai] ,,,,, ik,.“,in‘/ik where V is a
vector and A, B is an n-th and n—1th order tensor, respec-
tively. The index k in ®j, indicates that we multiply on the
k-th dimension. Readers are referred to Sec.3.1 in [8] for
more expositions on tensor multiplication.

The constraints refer to two-way constraints for the one-
to-one node matching. This formulation is also widely
adopted by other work such as [8, 13], where the super-
symmetric tensor H is assumed invariant under any permu-
tation of the order in the tuple. One aims to find the solu-
tion that maximizes the matching score in the permutation
matrix space. We describe our main results under m-order
formulation, while the experiments focus on the third-order
in line with previous work [37, 8, 5, 13, 17] since the third-
order information has been shown able to handle the rota-
tion and scale variance robustly for most applications. It is
also a good compromise between efficiency and efficacy.

3.2. Proposed Convergent Algorithms

We first propose our baseline method Hyper Discrete
Gradient Assignment (HDGA) which uses a series of it-
erative linear assignments to approximate the original ob-
jective by fixing m-1 subsequent variables {p; };‘:k tom
in the objective (2). Then it adopts the Hungarian method
(denoted as Hy(+)) to obtain the global-optimal discrete
solution regarding the linearized objective per iteration:
Pri1=Hi(H ®1 Pypig - ®m—1Py) as stated in Alg.1.
This is because the input to the Hungarian method K2H ®,
Piio_m - -- @m—1 Py in fact is a vector after m-1 times of
tensor product operations have been performed on the m-th
order tensor H. Thus K®,, p;., ; can be rewritten as Kp,, |
and reduced to a linear assignment problem. In this sense,
our method follows the first-order approximate framework.

Note that HDGA forms a score-ascending solution se-
quence w.r.t. the relaxed objective function. Note the se-
quence generated by IPFP [15] for second-order matching
is also score-ascending, but w.rt. the original objective.
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Algorithm 1 Hyper Discrete Gradient Assignment

Algorithm 2 Hyper Adaptive Discrete Gradient Assignment

1: Input: p, = [n—l27 e n—12]T H K
2: Output: vectorized assignment matrix solution p*
3: for k=1:K do

4 Pryr1 = Hd(H X1 Prio—m ®2 ... Om—1 pk)
5 if converge then

6: return p* = P13

7 end if

8: end for

One key issue of such an approximate strategy is the so-
lution path over iterations might be degenerated and deviate
from the original objective (2) when the solutions are diver-
gent. Thus it is appealing to design a convergent algorithm
which is able to find the optimal solution in discrete domain
for the approximating objective. The following Theorem
(1) shows under the moderate condition i.e. ‘equal-score
equals unique-solution’ as stated in Assumption (1), HDGA
will converge to an m-point cycling solution path. Note that
like many previous methods, the global-optimality for Alg.1
is not guaranteed as the original problem is in fact NP-hard.

Assumption 1. Givenp, ,p;,,....,p;, _.; Vi, k,j # k, as-

sume H @1 (pj —pi) O2P;, - Omp;, | F0; Pi;P;,Py,
are vectorized permutation matrix in Alg.1’s solution chain.

Theorem 1. Alg.] will converge to an m-point circle:

Pre1) = Prgi—msPria—ms - Pr) =
JPr_1)— - if Assumption (1) holds.

(pk—m7pk+1—m’ e
%(pk’—mﬂpkﬁ—l—ww e

Proof Given a super-symmetric affinity tensor H, HDGA
is score-ascending w.r.t. the approximate objective as it
employs the gradient assignment approach e.g. Hungar-
ian method iteratively. Since the score function is bounded
due to the feasible domain is the assignment matrix space,
there exists a certain &, such that after k& rounds of iterations,
the value of the approximate objective will stop ascending:
H X1 Pr—m X2 pk’+17m s Qi Pr—1= H ®1 pk—‘rlfm X2
Pii2_m - - - @m Pg. On the other hand, Assumption (1) en-
sures the equal score value leads to the unique solution such
that p;, = pi._,,» thus henceforth we are in the circled se-
quence (Py 1y Prio_ms---»Pg) of length m. Remem-
ber the tensor H is super-symmetric thus the score value is
invariant to permutations of {p, f:_kl_m. O

It is desirable to devise an cfficient discrete algorithm
that bears strong convergence. The key idea is, one can
monitor the solution path of Alg.1 and once the degenerat-
ing m-circle pattern is detected, an adaptive updating mech-
anism shall be launched to change the solution path to a
fixed point. Theorem (2) shows by modifying the affinity
tensor, the solution path will converge to a fixed point. To
make the paper self-contained, two definitions for Theorem
(2) are introduced. We leave proof details in Appendix.

Definition 1. For an m-tuple (ji,jo,...,Jm) Wwhere

1: Input: p, = [ﬁ, e ﬁ]T p* =py.H, o, K

2: Output: vectorized assignment matrix solution p*

3: for k=1:K do

4 Pit1 = Ha(H ®1Ppyo_p, ®2 - Om—1Py)

5 if converge then

6 return: p* = Py

7: else if Fall into the m-cycling loop sequence then

8 H=H+aH? + a3H® +... + a,, H™)
9 end if

10: end for

{Jr} P, is a positive integer, its multiplicity is defined as
the largest number of duplicate elements in the tuple.

Definition 2. A g-multiplicity unit tensor is defined as:

O _ HY, =1 (ir,iz...,im)'s multiplicity is q
Hgtll?i27---yi7n =0 otherwise

Theorem 2. If Assumption (1) holds, one can introduce

Q2,Q3, ..., 0y to modify the affinity tensor by H = H +

agH(Q) —|—a3H(3) +...+ amH(m) s.t. HDGA will converge

to a fixed point in the permutation matrix space.

This theorem stimulates the adaptively regularized gra-
dient assignment algorithm as described in Alg.2. We use
the term adaptively regularized because it gradually modi-
fies the objective function that implicitly penalizes the de-
viation between two successive solutions during iteration.

Compared with Alg.1, its “adaptively regularized” coun-
terpart Alg.2 obtains strong convergence at the cost of more
iterations by gradually changing the original tensor. Note
that the global optimal solution regarding the new objec-
tive function will still keep unchanged under the modified
affinity tensor. This is because the added terms H®) as de-
fined in Definition (2) have no discrimination to any partic-
ular solution in the assignment matrix space thus the added
terms in the modified objective is constant to any assign-
ment matrix. This is similar to the strategy for the second-
order graph matching case discussed by [ 11, 8], wherein an
identity matrix is added to the original affinity matrix before
iteration starts, in order to make the affinity matrix positive-
definite so as to obtain a convergent solution by their contin-
uous approximating solvers’. Note that adding the identity
matrix in the second-order graph matching formulation has
neither no effect on the global optimum configuration in the
permutation matrix space as discussed in [26] which fur-
ther develops a convergent algorithm in continuous domain
for the second-order case. While this work generalizes to
the any-order case by a unified formulation and convergent
algorithm in discrete domain.

3For second-order graph matching, positive definite affinity matrix in-
duces a concave minimization problem leading to an integer point [2, 39].
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We summarize the features of HADGA: i) solve the
problem in discrete domain by theoretical convergence
guarantee; ii) the convergence is fulfilled by adaptively
modifying the affinity tensor which avoids the m-circle
case, meanwhile induces a relaxed objective that keeps the
global optimum unchanged for the original objective; iii)
the approach is generalizable to any-order problem and no
matter the affinity tensor is full or sparse, as its formulation
is independent from the property of the affinity tensor.

3.3. Implementation Details

For practical implementation, there are two main aspects
for consideration: 1) effective m-circle degenerating case
detection; ii) perturbation parameter « setting.

Effective cycling path detection One basic idea is
comparing among the subsequent iterative solutions which
brings about additional cost. More importantly, there exists
a subtle case that breaks Assumption (1) when the global
optimal solution of Hungarian method is not unique. Con-
sider an extreme case when all elements in the tensor are
equal, then any permutation matrix is a best solution. One
important observation is that these two cases both lead to
the score w.rt. the relaxed objective function stop climbing.
Based on this observation, we propose that instead of sepa-
rately examining the cycling behavior of the solution path or
verifying the uniqueness of the Hungarian method, a unified
way is to monitor the score value over iterations. Once the
objective score stops climbing and meanwhile does not con-
verge to a fixed point, further relaxation can be launched.

Perturbation parameter o, setting In general, a larger
« will guide the iteration converge faster but hurts its explo-
ration capability; Comparatively, a smaller o will enhance
exploration capability, at the cost of more iterations. In line
with the setting of the experiments, we conduct a concrete
discussion on third-order matching. The idea can be gen-
eralized to any-order. As shown in the proof of Theorem

2 in Appendix, a loose estimation of the parameter o is

m2M—2q,_,
n2(m—q—1)

the highest-order affinity H™ (as set in the experiment),

20 o
C,qu,lq. When m:3, for
n

arbitrary H, an=2n%c, as=2n*ay. And for H only en-
coding third-order information, the estimation is tighten to
ao=(n — 1)ay, az=n(n — 1)ag. This bound is still very
loose because we assume after one swapping operation (re-
fer to Appendix for more details), the affected terms de-
crease their scores from the largest one to zero which in fact
rarely happens. To better model the score difference after
swapping, we suggest use the standard deviation s over the
elements in H to approximate the upper bound . This is
another rough estimation co=(n—1)s, ag=n(n—1)s to have
a good chance for converging. On the other hand, enforc-
ing convergence too early may reduce its exploration abil-

. If the original H is sparse that only encodes

the estimation can be tighten to

ity thus we suggest the whole perturbation « is amortized
into pieces and added separately by multiple times over it-
erations. Therefore, we use another piecewise parameter
a*:m.for each t.in.le when the cycling is det.ected.
Concretely, given the original tensor H whose value is nor-
. L. . . (n—1)s .
mfdhzed within [0,1], o3 is est1matf3d by TierMaz Keep in
mind that we assume H can be arbitrary, which renders the
theoretical estimation not tightly bounded. In our tests for
third-order hyper-graph matching, we set a’é:W and
leave a3=0. This setting is empirically found cost-effective

and the results are insensitive to the ranges around it.

4. Experiments and Discussion

We conduct the experiments on a PC with dual cores at
3.02GHz for each. All methods are implemented by C++.
By performing experiments on both synthetic point-set data
and real images, we compare with several state-of-the-art
hyper-graph matching approaches: the Higher Order Power
Method [8] (TSM) and RRWHM [13]. For both TSM and
RRWHM methods, we use the public codes from [13]. Note
that some representative approaches like the probabilistic
hyper-graph matching [37] underperforms other competing
methods as shown in the previous evaluation [13], so we
exclude them in the comparison for space saving. In ad-
dition, we implement two higher-order extensions of the
GAGM [10] and IPFP [15] methods, which are termed as
HGAGM and HIPFP. Note HIPFP (HGAGM) is general-
ized from IPFP (GAGM) in the way like [13] from [7] by
iteratively using first order solver. For HIPFP, the first-order
solver is the discrete gradient assignment, while HGAGM
uses a soft-assignment strategy. In our implementation for
HIPFP, we set the optimal line search step of A for its itera-
tive updating X, = 1X4q + (1 — 7)X;—1 (see more details in
[15]) using the binary search technique, as it is not straight-
forward to obtain a closed form for hyper problem as in
its second-order case [15]. For HGAGM, we set only two
rounds for outer annealing loop for efficiency otherwise its
time cost is even higher. The goal is to focus on accuracy
evaluation under comparable time cost.

The parameters are set based on the authors’ original pa-
pers. For each trial, the same affinity tensor is used and
the Hungarian algorithm is used as the postprocess if the
discretization is required. The results of the synthetic ex-
periments are acquired through averaging the results from
100 random trials. For our method, we set the perturbation
parameter as=1/IterMax (i.e. as=1) for HADGA uni-
formly in all experiments. For all methods, similar to [10],
the iteration procedure will be terminated when the differ-
ence of normalized solutions of two consecutive iteration is
smaller than 4/n where n is the number of nodes, or the
iteration reaches the maximum IterMax = 50 rounds.

Synthetic Data The synthetic experiments follow a sim-
ilar setup as [13]. Briefly, we first construct the model
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Figure 2: Deformation test on synthetic data by 100 trials. Left to right: # of inlier=20, 30, 40 and # of outlier is fixed to 0.
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Figure 3: Outlier test on synthetic data by 100 trials. Left to right: deform £=0, 0.1, 0.2 and # of inlier is fixed to 20.

graph G,, by randomly generating n;,, inlier points under
the Gaussian distribution N(0;1). The test graph G, is
generated by perturbing the positions of the model points
with Gaussian deformation noise o in the interval [0,0.2].
nout Outliers are added to both sets, with positions from the
same Gaussian distribution N (0; 1). The outliers are extra
points in the test set having no correct correspondence in
the model graph. Note that there is no unary descriptor for
the synthetic points, and the point-to-point distance in the
graph is susceptible to scale, thus making the unary or pair-
wise matching infeasible. Similar to [13], only third-order
affinity is considered. Moreover, we use a triangle sampling
strategy to construct the sparse affinity tensor for fair evalu-

ation in line with [13]. The results of deformation and out-
lier tests are plotted in Fig.2 and Fig.3, which is measured
by accuracy (fraction of correct correspondences), and the
computational overhead. From these figures, we can ob-
serve that HADGA improves the performance of HDGA
notably, and performs competitively compared with other
methods, while being more efficient.

Image Sequence We further perform landmark point
matching on the CMU House and Hotel sequences (see
Fig.1 for illustration), which have been widely used as stan-
dard testbeds [7, 13, 26, 32]. Following the same setting
in the literature, a total of 30 landmark feature points are
manually tracked and labeled across all frames (101 frames
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Figure 4: Accuracy (top row) and time cost (bottom row) on CMU and Pose sequences, by varying the frame gap.

for Hotel and 111 for House). The first 30 frames of each
sequence is treated as one graph, and the other graph for
matching is selected by forwarding 10, 20, ..., 70 frames
respectively. Moreover, two other image sequences (house-
black and volvoC70 car) from [27] are tested. The results
are shown in Fig.4 which suggests HADGA achieves com-
parable accuracy yet with reduced time cost.

Natural Images Following the experimental setting in
[13], we test on 30 image pairs taken from the MSRC v2
dataset and Caltech 256 dataset. The MSER detector is used
to extract the key points, and we adopt the similar point se-
lection strategy as in [13] to prune redundant points. The
results are shown in Table 1, where our methods have com-
parable accuracy and reduced time cost.

Further Discussions The above deformation and outlier
testing results suggest that our discrete methods are com-
petitive (even faster without sacrificing much accuracy).
Although HGAGM and RRWHM achieve the best perfor-
mance in most cases, they are the most inefficient ones.
The empirical speed-up we think partly comes from the re-
moval of the Sinkhorn step and softmax with an anneal-
ing procedure typically used in the comparing continuous
methods. In particular, HADGA further improves the per-
formance of the baseline HDGA especially when the defor-
mation or outlier increases. RRWHM derives its solution
through reweighting between HGAGM and TSM, converg-
ing faster than HGAGM in deformation test while slower in
outlier test. Fig.5 shows the normalized score of the origi-
nal objective as a function of the number of iterations along
the solution path for three comparing methods. One can ob-
serve that HADGA further improves the HDGA score when
HDGA is trapped into unsatisfactory solutions early due to
the occurrence of the cycling behavior. This empirical ob-
servation further validates Theorem (1) which is based on

Table 1: Evaluation on 30 pairs of real image data.

Method RRWHM  HGAGM TSM HDGA HADGA
Accuracy 55.38% 56.60 % 47.78%  55.44% 54.86%
Score 66.43 70.98 67.03 63.06 70.75

Time(S) 0.19 0.14 0.10 0.02 0.05

Assumption (1), and makes this assumption more compre-
hensible than they appear in the theoretical statement.

5. Conclusion and Future Work

This paper proposes an adaptive linearized mechanism in
discrete domain that gradually modifies the affinity tensor to
avoid the so-called “m-circle” degenerating case, which is
also uncovered by this work. The future work is devoted
to extend the discrete method to its continuous counterpart,
in the hope of devising more effective hyper-graph match-
ing methods especially for accuracy. We also would like
to expand graph matching applications in scenarios such as
facial analysis [19, 18] and saliency detection [35, 31].

Appendix: Proof of Theorem 2

Now we present Lemma 1 and Lemma 2 and prove their
establishment. These two lemmas directly establish Theo-
rem 2, which is the main result of this paper.

Let (py,Ps; .- P,,) denote the m-circle sequence that

HDGA

HIPFP HADGA

e o
S

N
=

relative score
relative score

15 15 15

5 10 5 10 5 10
iteration number iteration number iteration number

Figure 5: Solution path for normalized score of the original
objective as a function of the number of iterations for three
methods: 30 tests on CMU Hotel spaced by 50 frames. Red
denotes for iterations when stoping criterion is satisfied.
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Figure 6: The dimension-spread idea illustration regarding
Lemma 1, Lemma 2: HADGA converges to a fixed point.

HDGA (Alg.1) converges to, where each p,€{0, 1}"2 by
its definition is the vectorized permutation matrix of n un-
equal base vectors: p,=[el ,... el |7, The elements in
{es}7_,€{0,1}™ are all zero except at the s-th position be-
ing 1. Given a fixed d, the sub-parts {p? £ p,(nd —n+1:
nd)}7_,€{0,1}" in the sequence {p,}72, also form a se-
quence (pf,pg,...,p%), and the total number of these se-
quences is n. One such sequence is illustrated by the green
rectangle in Fig.6 which is the starting point for later proof.

The technical details are left in the constructive proof of
Lemma 1 and 2. We first conceptually describe our key idea
termed as dimension-spread as illustrated in Fig.6. Given
n above defined sequences {(p{, p4,...,p%,)}7_;, we can
rewrite them to a more compact scalar form (5¢, j¢, ..., 5%,)
where each integer j¢€[1,n] represents 1’s position in p?.
Assume the largest multiplicity by Definition 2 over all
{4, 74, ..., 53)¥n_, is gy=max{qq}7_, € [1,m] where
qa is the multiplicity of (j¢,7¢,...,5%). Lemma 1 first
shows how to increase the multiplicity by qr=q; + 1, and
further to m by distorting the affinity tensor H. In other
words, (py,Ps;,---,P,,) Will converge w.rt. its sub-part
(p%,p5,...,pk,). This step is visualized by the horizon-
tally expanding green rectangle in Fig.6. Then Lemma 2
shows how to further enforce convergence for the whole
(P1, P25 s P,y,) to a fixed point in permutation space. Thus
Lemma 2 establishes Theorem 2. This step is shown in
Fig.6 by the vertically expanding orange rectangle.

Lemma 1. For the n m-tuple {(j{, j4, ..., j%)}1_, derived
from the m-circle sequence (py,ps,...,P,,) generated by
HDGA, by distorting the affinity tensor by HADGA, the
largest multiplicity qj, can increase to m. In other words,
the sub-part (p¥,p5, ..., pk) converges to a fixed point.

Proof For the k-th sub-part (p%,p5,...,p~,) associated
with the largest multiplicity g, in its scalar form, sup-
pose jf = jb = ... = jf;k =+ jt’;ﬁl---jf; without
loss of generality. We further suppose the element 1 in
the first g; sub-parts pf,p5, ..., pf, is at position a, ie.

jt =345 = =jb =a, and jF ., = b Such settings
indicate the first g +1 solutions out of the m consecutive
ones assign node & in Gy to node a in G, and the (gx+1)-
th solution assigns node k to node b (for a#b). Accord-
ingly, for the (g, +1)-th solution p,, , ;, suppose it assigns
node [ to node a, i.e. jék L1=a (for l[#a). Note swapping
from {l<a,k<>b} to {I<>bk<>a} for p,, q will increase
the multiplicity from q to g+1 w.r.t. (p¥, p5, ..., pk,), while
the current affinity tensor H disallows this swapped configu-
ration as the score in Eq.2 will be smaller which contradicts
the condition that the relaxed objective score is at its peak
and stops climbing for the given m-circle sequence. We
compare the function score difference before and after this
swapping: in general, 2n?™~2 terms in the objective func-
tion that relate to the mapping k<+a or [<->b in the (qi+1)-
th solution will be affected. On the other hand, the new
configuration for the g;+1 solutions having the same match
k<sa will cover n2(m~2%~1) terms. Thus a loose bound
for the score decrease is 2n?™~2 given the tensor H’s ele-
ment is within [0,ay, ]. In order to make the swapping be-
comes score ascending instead of decreasing, we perturb H

by H = H+ oy H* ™ and set oy, 11 > iZi:L_qia_"l).
Remember that in each iteration the Hungarian method in
HDGA will return the global optimal solution, thus the
swapping will be realized using the perturbed H. Repeat
such perturbation from ¢ to m step by step along the same
sub-part (p¥, p5, ..., p¥,) until gz=m, which establishes the

statement in Lemma 1. O

Lemma 2. For the m-circle (py,ps, ...,p,,) generated by
HDGA, if it converges to a fixed point regarding the sub-
part (p¥,p5, ....,pk ), then by distorting the affinity tensor H
by HADGA, (p1,P5, ---sP.,) Will converge to a fixed point in
the permutation matrix space.

Proof Given the k-th sub-part sequence whose multiplic-
ity is m in its scalar form i.e. j¥ = j& = ... = jk = q,
it assigns node k in one graph to node a from the other.
Suppose the largest multiplicity of the rest n-1 sub-parts i.e.
{3t,58,., d Yi—1 4x is . Disturbing the affinity tensor
byH=H + uqHHqJr1 will not affect the fixed configu-
ration k<»a while increases ¢ to g+1 by Lemma 1. This is
because swapping out one of the m number of k<+a will not
increase the score after adding H?"!, thus the node match-
ing for k<>a will keep unchanged. Repeat the above step
until the multiplicity of each sub-part sequence reaches m,
which establishes the statement in Lemma 2. O
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