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Figure 1. The aperture problem for an opaque object. (a) A camera is imaging an opaque moving object (gray). (b) When a vertical

edge is observed within the aperture (the white circular mask), we can resolve the horizontal component of the motion. (c) The vertical

component of the motion is ambiguous, because when the object moves vertically, no change is observed through this aperture. The
aperture problem for a refractive object. (d) A camera is viewing a stationary and planar background (white and red) through a moving

Gaussian-shaped glass (blue). (e) The horizontal motion is ambiguous, because the observed sequence is symmetric. That is, if the glass

moves in the opposite direction, the same sequence will be observed. (f) The vertical motion can be recovered, e.g. by tracking the observed

tip of the bump.

Abstract

When viewed through a small aperture, a moving image
provides incomplete information about the local motion.
Only the component of motion along the local image
gradient is constrained. In an essential part of optical flow
algorithms, information must be aggregated from nearby
image locations in order to estimate all components of
motion. This limitation of local evidence for estimating
optical flow is called “the aperture problem”.

We pose and solve a generalization of the aperture
problem for moving refractive elements. We consider a
common setup in air flow imaging or telescope observation:
a camera is viewing a static background, and an unknown
refractive elements undergoing unknown motion between
them. Then we are addressing this fundamental question:
what does the local image motion tell us about the motion
of refractive elements?

We show that the information gleaned through a local
aperture for this case is very different than that for optical
flow. In optical flow, the movement of 1D structure already
constrains the motion in a certain direction. However,
we cannot infer any information about the refractive
motion from the movement of 1D structure in the observed

sequence, and can only recover one component of the
motion from 2D structure. Results on both simulated and
real sequences are shown to illustrate our theory.

1. Introduction

Our visual system integrates many pieces of ambiguous

local information to achieve a global scene interpretation.

An example of a global percept inferred from such local

data is motion. We unambiguously see objects moving

coherently in the world, although the local motion signals

may be ambiguous. The local ambiguous motion signals

are studied under the name of the “aperture problem”.

The traditional form of the aperture problem focuses on

the motion of opaque objects. It describes the ambiguity

of the inferred motions when the observing local image

structures which only vary along one direction [3, 10, 4].

When the region of analysis–the aperture–becomes large

enough, the image is likely to have a two-dimensional

structure, and the motion ambiguity then disappears.

Conversely, when the aperture is too small, the ambiguity

is often present. This is illustrated in Figure 1(a,b,c)

for a vertical edge surface. The local observation only
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specifies the component of motion perpendicular to the edge

boundary. Hence, any information related to the component

of motion parallel to the edge is lost, which results in the

ambiguity.

However, in our world, it is not only opaque objects that

may move, but also refractive objects, such as glass or hot

air. The traditional aperture theory cannot be applied to

these objects, as they do not have their own images. But it

is still possible to perceive the motion of these objects when

they move against a textured background. This is because

when an inhomogeneous or uneven refractive object moves

in front of a background, the observed background will be

distorted. Observing this distortion can reveal the motion of

the refractive object.

While many motion estimation algorithms for refractive

objects have been proposed [6, 15, 17, 19, 22, 30, 31] (see

Section 1.1), a fundamental question remains unanswered:

what information about the world can we infer from local
distortions caused by refractive motion?

This topic cannot be addressed by the traditional aperture

problem. In fact, motion analysis of refractive objects based

on the traditional aperture problem can be quite misleading.

For example, consider a stationary vertical edge observed

through a small aperture. Assume a Gaussian-shaped glass

moves between this background and the aperture, as shown

in Figure 1(d). When the glass moves perpendicular to the

edge boundary, as in Figure 1(e), the observed boundary

first bulges to the left (t = 1,2,3), and then returns to

the original shape (t = 3,4,5). Due to the symmetry

in this observed sequence, reversing the motion of the

glass produces the same observation. Therefore, from the

observed sequence, we cannot infer whether the glass is

moving toward or away from the edge boundary. This

is opposite to the traditional aperture theory, which states

the component of the motion perpendicular to the edge

direction can be recovered (Figure 1(b)). On the other hand,

here we can recover the vertical motion of the glass, as in

Figure 1(f), by tracking the observed tip of the bump. This

is again contrary to the traditional aperture theory, which

observes that the component of the motion parallel to the

edge cannot be recovered (Figure 1(c)).

When there is ambiguity in refractive flow estimation,

estimated motion by existing algorithms will be incorrect.

For example, Figure 2 shows a sequence taken through the

upward hot air flow generated by the stove below. The

motion this hot air flow is estimated from two regions (red

rectangles) of this sequence, using the algorithm in [31].

When the background structure is vertical (parallel to the

direction of air flow), the algorithm can correctly recover

the air motion, as shown on the left. However, when

the background structure is horizonal (perpendicular to the

direction of air flow), the algorithm fails to find the correct

air motion, as shown on the right.

Figure 2. Revealing the aperture problem for refractive flow, see

text.

In this paper, we will offer a theory for the aperture

problem of refractive objects when it moves between a static

camera and a static and opaque background. Following the

tradition of the aperture problem, we choose the aperture

small enough so that the background within that aperture

is either uniform (purely black or white) or contains a

single straight edge. Due to the non-uniform refraction, the

observed shape through the aperture might be distorted. If

the distortion is strong enough so that we observe a curved

shape, we can recover the component of the motion parallel

to the background structure, but we cannot recover the

component perpendicular to it. Otherwise, we cannot infer

anything about the motion. This is similar to the example

shown in Figure 1. Results from both synthetic and real

videos are presented to support the theoretical claim.

1.1. Related Work

Motion estimation of refractive objects is well studied.

Two classic techniques used for refractive fluids are

Particle Image Velocimetry (PIV) [5, 24] and Schlieren

photography [16, 18, 25, 26, 27]. In PIV, the fluid motion is

measured by tracking those tiny particles pre-inserted into

the fluid. Schlieren photography is a technique to visualize

the refractive fluid by exploring the change of the refraction

index using a carefully tuned lens system. However, none of

them are based on natural videos and our paper only focuses

on motion estimation based on natural image sequences.

The technique whose setup is closest to that of our

theory is “Background Oriented Schlieren” (BOS, a.k.a.

Synthetic Schlieren) [14, 15, 17, 19, 21, 22, 30, 31, 9]. In

this technique, a camera observes a textured background

through a moving refractive fluid. The refractive fluid

is visualized by estimating the changes between frames.

While most of the works on BOS focus on visualizing the

fluid flow, there are a few works that also estimate the

fluid motion. Xue et al. [31] estimate the fluid motion by

tracking the distortion of the observed sequence over time.

Alterman [7] proposed to recover turbulence strength field

using linear tomography. However, we are not aware of any

theoretical analysis of local motion ambiguity for refractive

objects, and our paper tries to fill this gap.

In addition, there are a number of other works about
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imaging under refraction that are worth to mention. The first

line of work is reconstructing 3D shape of refractive objects

from either a sequence or multi-view images. Several

techniques are proposed to recover the surface of the water

by imaging it in front of a textured background [32, 20,

13, 8]. Moreover, Agarwal et al. proposed an algorithm to

recover both the motion of background and the shape of a

refractive object, assuming the refractive object is static and

background is moving [6]. Ben-Ezra and Nayar proposed

a method to reconstruct the 3D geometry of a refractive

object, assuming the refractive object and background are

static and the camera is moving with known speed [11].

The main difference of these works to ours is that they are

focusing on recovering the 3D geometry of the refractive

objects, not its motion, and some of them even assume that

refractive objects are static [6, 11].

The second set of papers study specular flow [1, 2, 12], to

recover the shape of reflective object (instead of refractive

object) from a sequence captured. Most of papers assume

that the reflective object is static, and either the camera,

background, or both, are moving. Because these works

are about reflective objects, the image formation model is

different than ours. In refraction, the angle between incident

light and the outgoing light is small and high order terms

can be ignored [31], thus it can be characterized as a 2D

warping field, while in reflection, such an approximation

fails and a more complicated formulation is needed.

Last but not least, there are several techniques to

recover the undistorted background image from a distorted

sequence taken through turbulent flow [23, 29, 33, 28], but

we are not studying that problem.

2. Problem Definition
Image formation is modeled in the following way1.

Consider any planar and static background pattern f(x) and

a camera observing it through a refractive layer, as shown

in Figure 3. Denote observed images (over time) through

1Throughout the paper we denote a scalar as a, vector as a, matrix as

A, and a set as A. We let N (a) be a small neighborhood of a and denote

the 2D coordinate of a point on the image plane by the vector x = (x, y).
All vectors, if not specified, are column vectors.

the camera by g(x, t). For simplicity, let image coordinates

be such that the observed image on the camera plane is the

same as the background image when there is no refractive

object, that is g(x, t) = f(x).
Now we add a refractive object between the camera and

the background. This causes a distorted observation of the

background through the camera. We model this distortion

by an unknown warping field r(x, t) = (rx(x, t), ry(x, t)),
which depends on the shape and index of refraction of the

object. The distorted background captured by the camera

obeys the following identity (see Figure 3),

g(x, t) = f
(
x− r(x, t)

)
. (1)

To gear the theory toward the physics of the real world,

we leverage a few assumptions. Suppose the refractive

object consists of small regions of uniform light bending

power and each region moves with a constant speed u(x)
in a short time around t0, where x is the location of

this piece at time t0. Also suppose that the refraction

caused by each small region is constant over some small

time period. This assumption is referred to as refractive

constancy assumption2 in [31], and it approximates the

behavior of both both rigid and fluid refractive objects.

Based on this assumption, the warping field r can be

expressed as:

∀t ∈ N (t0) ; r(x, t) = r0(x− u(x)t), (2)

where r0 is the refractive field at time t0, i.e. r0(x) =
r(x, t0). By plugging Eq. 2 to Eq. 1, we obtain the image
formation equation3:

∀(x, t) ∈ N (x0, t0) ; g(x, t) = f(x− r0(x− ut)) . (3)

The motion estimation task is to recover the motion u
of the refractive object from the observed image sequence

g(x, t), without knowing either the background image f(x)
or the refractive field r0(x). Formally, given the observed

image sequence g(x, t) within a small space-time window

around (x0, t0), we want to find the solution space of the

refractive motion:

U = {u | ∃f, r0, ∀x, t ; g(x, t) = f(x− r0(x− ut))}. (4)

Ideally, |U| would contain a single element. Generally,

however, the observed sequence may be explained by

multiple motion vectors |U| > 1, meaning the problem

is ill-posed. Identifying such ambiguous cases and their

associated solution space U is the goal of this paper.

In the next section, we present a theory to improve our

understanding about such ambiguities.

2This assumption on refractive objects is analogous to the brightness

constancy of opaque objects, and it holds if the refractive angle is small.
3Since we assume u is constant within the aperture, we omit the spatial

index x of u(x).
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Figure 4. The aperture problem for opaque objects. A square

object (marked by gray) is moving to the top-right, and we are

trying to estimate the motion of this object from small apertures

(a)-(c). A smooth region is observed through aperture (a), and

we cannot get any information about the object motion, because

any motion direction (marked by blue arrows) can explain the

observation. A step edge is observed through (b), and we can infer

that object is either moving to top-left, top, or top-right (marked

by blue arrows). A “L shape” (2D structure) is observes through

(c), and we can fully resolve the object motion.

Also, we assume that the background is only a step

edge within the aperture (a spatiotemporal window around

(x0, t0)), that is4:

f(x) =

{
0, if nᵀx ≤ 0

1, otherwise
. (5)

where n is the direction of background gradient. For

simplicity, we use the following notation to denote the

black-and-white background pattern described in Eq. 5:

f(x) : nᵀx ≤ 0. (6)

Finally, we assume the refractive field is quadratic within

the aperture:

r0(x) = r+ Jx+
1

2

(
xᵀHxx
xᵀHyx

)
. (7)

where r ∈ R
2 is the constant term, J ∈ R

2×2 is the

Jacobian matrix of the refractive field r, and Hx, Hy ∈
R

2×2 are Hessian matrices of x and y components of it.

3. Aperture Theory for Refractive Motion
The “aperture problem” describes the intrinsic ambiguity

of perceiving the motion of an object through a local

observation. Such ambiguity depends on the complexity

of the structure observed through an aperture. This section

presents a theory for characterizing the ambiguity space

(Eq. 4) for the refractive motion.

The aperture problem for surface motion. In order

to provide some context, we first review the traditional

aperture problem for surface motion. The traditional

aperture problem studies the motion of an opaque object

4The general equation of linear background should be nᵀx + c ≤ 0.

For simplicity, we ignore the bias term c. See the supplementary material

for the full derivation.
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Figure 5. The ambiguity in motion estimation when only the first

order structure is observed. A sequence is captured under the setup

shown in (a), and cross sections along the y-direction under two

different settings are shown in (b) and (c).

observed through a small aperture. The associated

ambiguity of recovering motion is demonstrated in Figure 4.

If the observed region is totally plain, as in Figure 4(a), then

we cannot infer the motion of the object, and the solution

space5 of motion U is R2 velocity space. If only a straight

edge (first order structure) is observed within the aperture,

as shown in Figure 4(b), we can only resolve the component

of the motion that is perpendicular to this edge, and the

solution space U is a line in R
2 velocity space. Finally,

if a higher order structure is observed within the aperture

(in Figure 4(c)), the ambiguity is fully resolved. This is

summarized in the middle row of Table 1.

The refractive aperture problem. For refractive motion,

we still discuss its ambiguity under three different classes

of local observations: flat regions, first order structure (the

boundary is a straight edge), and second order structure (the

boundary is a conic curve).

When the background is totally plain, no matter how

refractive object moves, we observe no change in the

captured sequence. Therefore, 1. Observing a plain pattern
(pure black or pure white) does not reveal any information
about object’s motion.

The other two cases are more complicated, and in the

following two sections we will show that: 2. the movement
of a 1D structure in the observed sequence still does not
reveal any information about object’s motion, and 3. the
movement of a 2D structure in the observed sequence
reveals the motion in only one direction.

3.1. First Order Observation

When a first order structure is observed, no information

about refractive motion can be recovered. To illustrate this,

consider the example shown in Figure 5. A camera is

imaging a static edge-shaped background through a moving

prism. The prism is oriented in the way that it has no

variation along the x-direction. Therefore, the motion in

5With the abused of notation, here we also denote the solution space of

the traditional aperture problem as U .



Table 1. Comparison between the traditional aperture problem and the refractive aperture problem. U is the set of all possible solutions to

object motion (either opaque objects or refractive objects) from the input sequence, and u∗ is the ground truth motion.

The observed image

sequence through

the aperture
Constant

First order structure

(a straight edge)

Second order structure

(a conic curve)

The traditional

aperture problem

U = R
2 (No information) U is a line in R

2 U = {u∗}

The refractive

aperture problem

U = R
2 (No information) U = R

2 (No information) U is a line in R
2

x-direction does not affect the observed sequence, which is

similar to the traditional aperture problem.

In addition, the magnitude of the motion along the y-

direction is also lost. To see that, consider a cross section

along the y-direction (Figure. 5(b,c)). The projection of

the background boundary moves from A to B due to the

change of refraction.6 The magnitude and the direction of

this observed motion (red arrow in Figure 5) is related to

both the motion of the refractive object and the angle of the

prism. The same observed motion might be due to either

a large motion of the prism and a small refraction (small

angle) as in Figure 5(b), or to a small motion and a large

refraction (large angle) as in Figure 5(c). Since both the

motion and the shape of the refractive object are unknown,

there is no way to resolve this ambiguity. Therefore, the

ambiguity space U of refractive motion is the whole velocity

space R
2.

Mathematical derivation Now we will illustrate this

ambiguity mathematically. Because only a first order

structure is observed through the aperture, we can drop

the second order term7 in r. Plugging the equation of

background Eq. 5 and the equation of refractive field Eq. 7

into the image formation Eq. 3 (constant terms are omitted

for simplicity):

g(x, t) : xᵀ(I − Jᵀ)n− nᵀr+ nᵀJut (8)

where I is the 2× 2 identity matrix.

Eq. 8 is an equation of a line w.r.t. variable x. Note that

unknowns in Eq. 8 are r, J , n, and u. It is easy to show that

for any motion vector u, we can design r, J , and n such that

6Notice that the observed motion of image boundary on the image plane

(marked by the red arrow) does not necessarily have the same direction as

the motion of the refractive object (marked by the blue arrow).
7Second order term in r can be ignored because otherwise a curved

pattern would have been observed instead of a straight edge.

they satisfy this line equation and hence generate the same

observed sequence for the boundary (see supplementary

material for detailed proof). Moreover, the speed of line

is proportional to nᵀJu, which shows the same observed

movement can either due to a large refraction (large J) and

a small motion (small u), or a small refraction (small u) and

a large motion (large u). Therefore, we cannot recover any

information about refractive motion u in this case.

3.2. Second Order Observation

For a refractive object, when we observe a second order

through the aperture, we can only recover the motion in one

direction. That means, the solution space U for the motion

is reduced to a line in R
2 velocity space.

To illustrate this, we revisit the Gaussian-shaped glass

example discussed in the introduction.

First it is impossible to recover its the component

of the motion perpendicular to the background structure.

Figure 6(a) illustrates this ambiguity. Two different

Gaussian glasses move towards opposite directions (the

left column of Figure 6(a)). Due to the refraction,

the background boundary moves away from its original

location, and such distortion is illustrated by the red arrow

in Figure 6(c). Also, one glass is a complementary

of the other, so that they will bend the light passing

towards opposite directions. Because the shapes of glasses

are complementary and the motions of glasses are also

opposite, the observed distortion within the aperture are

actually similar (the right column of Figure 6(a)). Thus

it is hard to infer the motion of the glass from observed

distortion. The cause of this ambiguity is similar to the case

of first order observation.

On the other hand, when the glass moves parallel to the

background structure (Figure 6(b)), the observe boundary

moves at the same speed as the glass. Now the movement

of observed boundary does not depend on the shape of the
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Figure 6. Ambiguity in motion estimation when a second order structure is observed, see text.

glass. Thus, we can infer the component of the glass motion

that is parallel to the background structure by tracking the

tip of the observed boundary (the red dot in Figure 6(c)).

Mathematical derivation Now we will explain the cause

of such ambiguity. For simplicity, we assume that the

Jacobian and Hessian of the refractive field are scalar

matrices, which is true when the refractive object have

a centroid-symmetric shape (like Gaussian-shape glasses

shown in Figure 6). We will present the refractive flow

equation for general case at the end of this section.

In the simplified case, the refractive field r can be

represented as:

r0(x) = r+ jx+
1

2

(
hxx

ᵀx
hyx

ᵀx

)
, (9)

where J = jI,Hx = hxI,Hy = hyI
8. Then the image

formation Eq. 3 becomes (plugs Eq. 5 and Eq. 9 into Eq. 3):

g(x, t) : −h

2
xᵀx+(hut+n−jn)ᵀx+jnᵀut+d− h

2
uᵀut2,

(10)

where n = [nx, ny], h = hxnx + hyny , and d = −nᵀr.

Eq. 10 is an equation of a circle a(t)xᵀx+q(t)ᵀx+1 =
0, and we can get its parameters a(t) and q(t) by circle

fitting: ⎧⎨
⎩
a(t) = − h

2(jnᵀut+d−h
2 u

ᵀut2) ,

q(t) = hut+n−jn
jnᵀut+d−h

2 u
ᵀut2 .

(11)

Note that except a(t) and q(t), all other variables in Eq 11

are unknown, and our task is to recover the fluid motion u.

Considering:

−dq(0)/dt

2a(0)
= u+ ηn, (12)

where η is an unknown scalar defined as η = − j(1−j)nᵀu
dh .

Note that LHS of Eq. 12 is known. Therefore, we
can recover the motion perpendicular to the background

8I is the 2× 2 identity matrix.

gradient n, but cannot recover the motion parallel to the
background gradient n, because the scalar η in front of n is

unknown. Note . Moreover, let n⊥ be the unit vector that is

parallel to the background structure (so it is perpendicular

to n). Then by multiplying9 n⊥ on both sides of Eq. 12, we

get the simplified refractive flow equation:

−nᵀ
⊥
dq/dt

2a
= nᵀ

⊥u. (13)

It is easy to show that −dq/dt
2a is the speed of the center

of the observed circular boundary. Thus the simplified

refractive flow equation Eq. 13 shows that the motion

of the observed image boundary and the motion of the

refractive object have the same projection on the direction

of background structure n⊥. Thus we can get the

component of refractive motion that is parallel to the

background structure by tracking the observed boundary.

This equation also shows that is we cannot recover

the component of the motion perpendicular to background

structure10. This is different from the traditional aperture

problem, where it is the component of the motion parallel

to the background structure that cannot be estimated.

In a general setup, the Jacobian and Hessian of the

refractive field are not scalar matrices, and we have the

following refractive flow equation (see the supplementary

material for the proof).

Proposition 1 (Refractive flow equation (general)) At
each time point t, we fit a conic curve xᵀAx+qᵀx+1 = 0
to the observed boundary within the aperture, where
A ∈ R

2×2 and q ∈ R
2 are the coefficients of this curve.

Then the motion u satisfies the equation,

−qᵀ
⊥
dq/dt

2
=

(
Aq⊥

)ᵀ
u, (14)

where q⊥ is a vector perpendicular to q. Moreover, we
cannot recover the motion along with the vector RAq⊥ just
from the observation, where R is the 90◦ rotation matrix.

9We consider n⊥ as a known variable, as it we can recover the direction

of n⊥ from the observation, since q(0) = d−1(1− j)n and n⊥ ⊥ n.
10Although we only show Eq. 13 is a necessary condition that u is a

solution of the refractive flow problem, it is also a sufficient condition. See

the supplementary material for the proof of the sufficiency.
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Figure 7. Experiments on three magnifying lenses. (a) Setup. (b)

Captured sequence with different lens and background.

The ambiguous direction RAq⊥ in the general refractive

flow equation is along the vector connecting the center of

the aperture o to the center of the observed conic curve

o′. This is illustrated in Figure 6(c) where the blue arrow

indicating the vector
−→
o′o aligns with the red arrow showing

the direction of observed distortion due to the refraction.

When the refraction effect is mild, this ambiguous

direction also approximately equals to the direction of

background structure rotated by the Hessian H of refractive

field. Note that this ambiguous direction is not always

aligned with the background gradient11. In Figure 6(c), they

are happened to be aligned because H is a scalar matrix.

4. Experiments
In this section, we present experiments that verify

the ambiguity theory. Please refer to our website

(http://people.csail.mit.edu/tfxue/RefractiveAperture/) for

the full sequences and results.

First order observation First, the experiment shown

in Figure 7 confirms the claim that by observing a first

order structure, it is impossible to infer the motion of a

refractive object. In this experiment, a camera views a black

and white background through a moving magnifying lens

(Figure 7(a)). The lens is mounted on a motorized travel

stage, so we can control the speed of the lens. We take

three sequences with different backgrounds, lens shapes,

and lens speeds, each one corresponding to a column of

Figure 7(b). In all these three sequences, a background

11We define H = Hxnx +Hyny .
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… …

Background
t=1

t=100
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Figure 8. Experiments on two lenses with significant radial

distortion. (a) In both of two sequences, background only contains

vertical structure, and both lens are moving to the right. (b) In both

of two sequences, background only contains horizontal structure,

and both lens are moving to the left.

with vertical boundary is used, but in the first one, the black

region is on the right and in the second and the third one,

the black region is on the left. The first lens moves to the

right, and second and third lenses move to the left. Also,

the third one moves faster than the first two. However, the

sequences observed through each small aperture (marked by

red rectangle) are quite similar, meaning it is impossible to

recover the horizontal motion of lens from the observation

through the aperture, which is consistent with our theory.
‘

Second order observation In the previous experiment,

the aperture is chosen to be very close to the center of

the lens, so its refractive field is approximately linear in

this region. Thus radial distortion is hardly observed (the

observed boundary is a straight line).

To illustrate the ambiguity when the refractive field has

non-negligible second-order component, we now use two

thick lenses and pick the aperture away from the lens center,

so that a significant radial distortion is observed, as shown

in Figure 8. Lens 1 has a longer focal length, so that its

refractive field has a weaker second order component than

that of lens 2.

First, we move these lenses perpendicularly to the

background structure (Figure 8(a)). Although they move at

different speeds, the observed sequences are quiet similar.

This indicates that it is hard to recover the horizontal

component of the motion. Next, we move them parallel
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Glass speed 
(cm/s) 2.00 -2.00

(a) Motion of the glass is perpendicular
to the background structure

Background
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t=100

… …
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Glass 1 Glass 2

Glass speed 
(cm/s) 2.00 -2.00

(b) Motion of the glass is parallel
to the background structure

Background

… …

Lens
t=1

t=100

Figure 9. Experiments on 3D-printed Gaussian-shaped glasses.

to the background structure (Figure 8(b)). Now the

observed boundary moves together with the lenses, and

to generate two similar sequences, these two lenses must

move in the same speed. This experiment shows that we

can recover the component of the motion parallel to the

background structure, but not the component of the motion

perpendicular to it, which is again consistent with our

theory.

3D-printed glasses. We also illustrate the ambiguity

using Gaussian-shaped glasses, similar to the synthetic

experiment shown in Figure 6. We 3D-printed two 3D

Gaussian-shaped glasses shown in the first row of Figure 9

and captured four sequences using the same setup as

described in Figure 6. We also get the same result

as described in Figure 6, that is, the component of the

motion perpendicular to the background is hard to estimate

(Figure 9(a)), but the component of the motion parallel to

the background can be recovered (Figure 9(b)).

Hot air from a candle. At last, we verify our theory

by two sequences captured through hot air generated by a

burning candle, as shown in Figure 10. The background

texture consists of patterns from two color channels. The

blue channel of the background is fully-textured, from

which we can correctly recover the upward air motion

(Figure 10(b,d)), and we consider the recovered motion

from this channel as the ground truth. Here we use

the algorithm in [31] to calculate the motion of air flow

from input sequences. The red channel of background

contains texture only in one direction (Figure 10(a,c)).

When the texture in red channel is perpendicular to the

Input Sequence

Red channel Blue channel

Estimated 
air motion

(a)

Red channel Blue channel

Input Sequence

Estimated 
air motion

Estimated 
air motion

Estimated 
air motion

(b) (c) (d)

Figure 10. Experiments on hot air generated by a candle.

direction of air motion (Figure 10(a)), the estimated motion

is incorrect (different from the ground truth motion in

Figure 10(b)), and when the background texture is parallel

to the direction of air motion (Figure 10(c)), the estimated

motion is roughly correct (similar to the ground truth

motion Figure 10(d)).

5. Conclusion

In this paper, we analyzed the ambiguity in refractive

motion estimation. Many techniques have been proposed

to estimate refractive motion from a natural sequence,

but none of them discusses the intrinsic ambiguity of the

refractive motion estimation from local image information.

We analyzed the motion of an unknown refractive object

against a stationary background. We studied the constraints

that the first and second observation impose on refractive

motion. We found that the first order structure in the

observed image reveals no information about refractive

motion, and the second order structure only reveals the

motion in one direction. The derived refractive flow

equation also reveals which direction of refractive motion

cannot be estimated. Experiments on both solid and fluid

refractive objects are shown to verify our theory.
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