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Abstract

Despite the promising performance of conventional
fully supervised algorithms, semantic segmentation has re-
mained an important, yet challenging task. Due to the lim-
ited availability of complete annotations, it is of great inter-
est to design solutions for semantic segmentation that take
into account weakly labeled data, which is readily available
at a much larger scale. Contrasting the common theme to
develop a different algorithm for each type of weak anno-
tation, in this work, we propose a unified approach that in-
corporates various forms of weak supervision – image level
tags, bounding boxes, and partial labels – to produce a
pixel-wise labeling. We conduct a rigorous evaluation on
the challenging Siftflow dataset for various weakly labeled
settings, and show that our approach outperforms the state-
of-the-art by 12% on per-class accuracy, while maintaining
comparable per-pixel accuracy.

1. Introduction
Semantic segmentation is one of the most fundamen-

tal challenges in computer vision, and conventional fully
supervised algorithms have demonstrated promising re-
sults [21, 10, 8, 33, 35, 36, 44, 19, 20, 45, 31]. However,
in order to train fully supervised systems, a set of training
examples with semantic labels for each pixel in an image
is required. Considering the recent performance improve-
ments obtained when employing millions of data points, it
is obvious that the size of the training data is one of the bot-
tlenecks for semantic segmentation. This is not astonishing
since labeling each pixels with a semantic category is a very
expensive and time-consuming process, even when utilizing
crowd-sourcing platforms such as MTurk.

Compared to the massive size of modern visual data – ev-
eryday, more than 300 million images are uploaded to Face-
book – only a tiny fraction is assigned accurate pixel-wise
annotations. For instance, in the ImageNet dataset [7], 14
million images are assigned with scene categories; 500,000
images are annotated with object bounding boxes; but only
4, 460 images are segmented at the pixel level [14]. The

Figure 1. Our semantic segmentation algorithm learns from vari-
ous forms of weak supervision (image level tags, bounding boxes,
partial labels), and produces pixel-wise labels.

reason for this difference is rather obvious: for almost any
given image we are quickly able to decide whether an ob-
ject is illustrated in a scene, but careful delineation is te-
dious. Therefore, certainly image tags, but sometimes even
bounding boxes, and occasionally partial labels in the form
of user scribbles are either easily collected or are even read-
ily available in large photo collections of websites such as
Flickr and Facebook.

In the absence of large pixel-wise annotated datasets, de-
velopment of visual parsing algorithms that benefit from
weakly labeled data is key to further improve the per-
formance of semantic segmentation. Supervision in the
form of partial labels has been effectively utilized in in-
teractive object segmentation via graph-cuts [3], random
walks [12], geodesic shortest path [2], and geodesic star
convexity [15]. Recursive propagation of segmentations
from labeled masks to unlabeled images has also been in-
vestigated [14]. An alternative form of weak supervision are
bounding boxes. Grabcut [27] has been a great success for
binary object segmentation, taking advantage of a bound-
ing box around the foreground object. Recent research has
extended this idea to semantic segmentation by building ob-
ject detectors from bounding boxes [41]. A more challeng-
ing setting is inference of a pixel-wise labeling, given only
image level tags. Encouraging results have been presented
for this weakly supervised semantic segmentation task by
connecting super-pixels across images, and jointly infer-
ring pixel labels for all images [38, 39, 37]. An alterna-
tive are Markov random fields with latent variables denoting
the super-pixels, and observed variables representing image
tags [43, 30].
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In this work, we propose a unified approach that takes
any form of weak supervision, e.g., tags, bounding boxes,
and/or partial labels, and learns to semantically segment im-
ages. We refer the reader to Fig. 1 for an illustration of the
problem. When compared to existing weakly labeled meth-
ods [39, 43], our approach is very efficient, taking only 20
minutes for learning, and a fraction of a second for infer-
ence. We conduct a rigorous evaluation on the challeng-
ing Siftflow dataset for various weakly labeled settings, and
show that our method outperforms the state-of-the-art by
12% in per-class accuracy [29], while maintaining a result
comparable in the per-pixel metric.

2. Related Work
Semantic segmentation: Semantic segmentation, some-
times called scene parsing, is widely studied in computer vi-
sion. A large variety of algorithms have been developed for
the fully supervised setting, requiring access to a fully la-
beled training set. Three types of approaches are very pop-
ular. Non-parametric methods [21, 8, 33, 35, 36, 44] build
pixel-wise potentials using nearest neighbors. These meth-
ods are motivated by the observation that similar semantic
pixels lie close in some feature space. The second set of
approaches frames semantic segmentation as an inference
task using Markov random fields (MRF) [19, 20, 45]. These
methods handle supervision at different levels (tags, bound-
ing boxes, scene types) by adding variables to the energy
function. The final set of effective methods are based on ob-
ject proposal [4, 9, 1, 11, 16], where class-independent seg-
ments are generated, and subsequently classified into differ-
ent categories using features computed on those segments.
These conventional methods tend to work well, given a suf-
ficient amount of fully labeled data. Unfortunately, such
pixel-wise labelings are very expensive and challenging to
obtain.

Co-segmentation: A large number of researchers have
therefore explored ways to make use of unlabeled or weakly
labeled data. One possibility is co-segmentation [28, 40,
23], where the task is to segment the shared foreground
from multiple images. This is a data driven approach based
on the assumption that common foreground objects look
alike, while differing significantly from the background.
Co-segmentation is further extended to the multi-class case
via discriminative clustering [18, 17], and the multi-object
case using subspace analysis [24].

Segmentation with tags: Weakly supervised semantic
segmentation and co-segmentation share the same motiva-
tion. Consider a case where one image is tagged with la-
bels for cow and grass, and another one is assigned the
categories for cow and road. It is reasonable to assume

that pixels which are similar in both images take on the
class label for cow, while the remaining image content may
take the other assigned categories. Researchers have at-
tempted to tackle this challenge by connecting super-pixels
across images, and jointly inferring pixel labels for all im-
ages [38, 39, 37, 22]. Alternatively, propagation via dense
image correspondences [29], or learning a latent graphical
model between tags and super-pixel labels [43] has been
considered. Promising results have been demonstrated,
even though training is expensive. Recent research [34] also
built a one-shot object detection algorithm with object tags.

Segmentation with semi-supervision: Another form of
weak annotation is semi-supervision. Hereby a user pro-
vides partial labels for some pixels within an image. This is
a convenient setting, as it is reasonably easy for annotators
to perform strokes which partially label an image. Such
a form of supervision has been effectively utilized in in-
teractive object segmentation with graph-cuts [3], random
walks [12], geodesic shortest path [2], geodesic star con-
vexity [15], and topological constraints [42].

Segmentation with bounding boxes: Also of interest for
weak supervision are bounding boxes. Among the biggest
successes is GrabCut [27], where a user provided bounding
box is employed to learn a Gaussian Mixture Model (GMM)
differentiating between foreground and background. Re-
cent work has extended this idea to semantic segmenta-
tion by building object detectors from multiple bounding
boxes [41]. [25] utilizes bounding boxes to locate objects
of interest, within a latent structured SVM framework. 3D
bounding boxes as a form of weak supervision have been
shown to produce human-level segmentation results [5].

In this work, we make a first attempt to employ all of
the aforementioned forms of weak supervision within a sin-
gle unified model. We then build an efficient learning al-
gorithm, which is parallelizable and scalable to large image
sets.

3. Unified Model for Various Forms of Weak
Supervision

In this paper, we address the problem of semantic seg-
mentation using various forms of weak supervision, like im-
age level tags, strokes (i.e., partial labels) as well as bound-
ing boxes. More specifically, we are interested in inferring
pixel-level semantic labels for all the images, as well as
learning an appearance model for each semantic class. The
latter permits prediction in previously unseen test examples.
Note that we never observe a single labeled pixel in most
of our settings. We formulate the task using a max-margin
clustering framework, where knowledge from supervision
is included via constraints, restricting the assignment of pix-



els to class labels. We obtain a unifying formulation that is
able to exploit arbitrary combinations of supervision.

3.1. Unified Model

Following recent research [39, 43], we first over-segment
all images into a total of n super-pixels. For each
super-pixel p ∈ {1, . . . , n}, we then extract a d dimen-
sional feature vector xp ∈ Rd. Let the matrix H =
[h1, . . . ,hn]

T ∈ {0, 1}n×C contain the hidden semantic
labels for all super-pixels. We use a 1-of-C encoding, and
thus a C-dimensional column vector hp ∈ {0, 1}C , with C
denoting the number of semantic classes and hc

p referring to
the c-th entry of the vector hp.

Our objective is motivated by the fully supervised setting
and the success of max-margin classifiers. As the assign-
ments of super-pixels to semantic labels is not known, not
even for the training set, supervised learning is not possi-
ble. Instead, we take advantage of max-margin clustering
(MMC) [47, 46] which searches for those assignments that
maximize the margin. We therefore aim at minimizing the
regularized margin violation
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where W = [w1, . . . ,wC ] ∈ Rd×C is a weight matrix en-
coding the learned appearance model, wc ∈ Rd is the c-
th column of matrix W , and λ is a hyper-parameter of our
framework.

Note that in most semantic segmentation tasks the class
categories are distributed according to a power law. Hence,
instead of using a standard hinge loss for the margin vio-
lation ξ(wc;xp, h

c
p), we want to take into account the fact

that class labels typically occur in a very unbalanced way.
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amples (hc
p = 0) is bigger than the positive ones, this asym-

metric loss penalizes more if we incorrectly label a positive
instance. Note that if the matrix of super-pixel class assign-
ments H was known, the cost function given in Eq. (1) is
identical to a one-vs-all support vector machine (SVM).

We now show how to incorporate different forms of
weak supervision, i.e., tags, partial labels and bounding
boxes. To this end we add constraints to the program given
in Eq. (1). Thus, in general our learning algorithm reads as
follows:

min
W,H
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s.t. H1C = 1n, H ∈ {0, 1}n×C , H ∈ S,
(3)

where 1C is an all ones vector of length C, and 1n is
an all ones vector of length n. The parameter λ balances
the regularization term tr(WTW ) and the loss contribution
ξ(W ;xp,hp). Subsequently we describe the constrained
space S for each form of weak annotation.

3.2. Incorporating Weak Supervision

Importantly, for all forms of weak supervision discussed
subsequently, the set of constraints subsumed within S turns
out to be linear.

Image level tags (ILT): Considering image level tags
(ILT), each image i ∈ {1, . . . ,m} is assigned a set of cat-
egories, indicating which classes are present. However the
specific location of the class, i.e., the super-pixel is not spec-
ified in any way. Let the binary matrix Z ∈ {0, 1}m×C de-
note the image-level tag supervision: Zic = 1 if class c ∈
{1, . . . , C} is present in image i ∈ {1, . . . ,m}, and Zic = 0
otherwise. Let the binary matrix B be a super-pixel-image
incidence matrix of size n × m: Bpi = 1, if super-pixel
p ∈ {1, . . . , n} belongs to image i ∈ {1, . . . ,m}, and
Bpi = 0 otherwise. Given the binary matrices B and Z,
we incorporate tag-level supervision by adding two sets of
constraints. The first set expresses the fact that if a tag is
not assigned to an image, super-pixels in that image can not
be assigned to that class. This fact is encoded via

H ≤ BZ. (4)

The second set of constraints encodes the fact that if an im-
age tag is present, at least one super-pixel should take that
class as its label. Such a statement is described with

BTH ≥ Z. (5)

To explain how these constraints work in practice, let us
demonstrate the details using a toy example. Suppose we
have m = 2 images, each partitioned into 2 super-pixels,
i.e., n = 4. Let the number of classes of interest C = 3.
We further assume the first image is tagged with categories
{1, 2}, while the second one is assigned labels {2, 3}. Then
our matrices look as follows:

B =




1 0
1 0
0 1
0 1


 , Z =

�
1 1 0
0 1 1

�
, BZ =




1 1 0
1 1 0
0 1 1
0 1 1


 .

Note that the product BZ ‘copies’ the image-level tags
for super-pixels belonging to that particular image. Due to
the less than or equal to constraint and the restriction to a
binary matrix H , these super-pixels can not take classes
which are not assigned to an image. Similarly, suppose
we are given the following class assignment matrix H , then
BTH counts how many instances are labeled for each class



within each image, making sure that at least one super-pixel
takes on a required class-label:

H =




0 1 0
1 0 0
0 0 1
0 1 0


 , BTH =

�
1 1 0
0 1 1

�
.

Semi-supervision: In the semi-supervised setting, we are
given class labels for only a subset of the super-pixels. This
is a useful setting, as users can simply scribble on an image,
and label a subset of the super-pixels. This form of super-
vision is easily framed using an equality constraint for each
super-pixel that is labeled, i.e.,

HΩ = ĤΩ, (6)

where Ω ⊆ {1, . . . , n} corresponds to the set of annotated
super-pixels and the matrix ĤΩ ∈ {0, 1}|Ω|×C refers to the
user-specification.

Bounding boxes: Including the bounding box annotation
follows the ILT case and adds additional restrictions. Note
that the ILT setting, is equivalently phrased using a single
bounding box of size corresponding to the image dimen-
sions. Several tags are given for this bounding box. Here,
we extend this setting to allow for smaller bounding boxes,
each of which is assigned a single tag. Following the con-
straint given in Eq. (5) we can thus treat each box as a sub-
image and enforce

(Bpos)THpos ≥ Zbox, (7)

where Hpos corresponds to label variables for super-pixels
entirely inside the bounding boxes that were provided. In
addition, Bpos

p,j = 1 if super-pixel p is entirely inside box j,
and 0 otherwise. Further, Zbox is the binary label matrix for
bounding boxes: Zpos

j,c = 1, if c is the class of bounding box
j and 0 otherwise. Note that (Bpos)THpos ≥ Zbox forces
the model to assign at least one super-pixel to the bounding
box class c. The matrix Hneg

c refers to label variables (for
class c) of super-pixels which are partially inside the bound-
ing boxes. A constraint of the form Hneg

c ≤ 0 encodes that
those ‘negative’ super-pixels should not take the bounding
box class c. This is typically a reasonable constraint, as we
assume our bounding box to be tight. However, due to the
fact that our super-pixels suffer from under segmentation,
we do not use negative constraints Hneg

c ≤ 0 in our exper-
imental evaluation. To make it robust to under segmenta-
tion, in practice we use super-pixels which are 80% inside
the bounding boxes to define Bpos.

Unlabeled examples: We make use of unlabeled exam-
ples by simply incorporating them in the objective. Note
that no constraints are added as no supervision is available.

Algorithm 1 Learning to Segment

1: Input: X,S
2: Initialize: compute Z(S), B(S), H ← BZ;
3: for iter= 1 → max iter do
4: Fix H solve for W independent of classes (1-vs-all

linear SVM);
5: Fix W infer super-pixel labels H in parallel w.r.t im-

ages (small LP instances);
6: end for
7: return W,H;

3.3. Learning via Alternate Optimization

During learning, we jointly optimize for the feature
weight matrix W encoding the appearance model, and the
semantic labels H for all n super-pixels as specified by the
program given in Eq. (3). Note that all forms of supervi-
sion considered in this paper can be incorporated via linear
constraints. Nonetheless, Eq. (3) is generally a non-convex
mixed integer programing problem, which is challenging to
optimize. Investigating the program given in Eq. (3) more
closely, we observe that our optimization problem is how-
ever bi-convex, i.e., it is convex w.r.t. W if H is fixed, and
convex w.r.t. H if W is fixed. Further, our constraints are
linear and they only involve the super-pixel assignment ma-
trix H . For optimization we therefore employ an alternating
procedure, where we iterate the two steps of optimizing H
and W for fixed values of W and H respectively. We refer
the reader to Alg. 1 for an outline of the proposed learning
algorithm.

It is easy to see that for a fixed class assignment matrix
H , the resulting optimization task is equivalent to the fully
supervised setting, where the labels are obtained from the
current estimate of H . In our formulation this decomposes
into C different 1-vs-all SVMs which can be trained in par-
allel.

When optimizing w.r.t. the assignment matrix H for a
fixed appearance model W , we need to solve a constrained
optimization problem where both the objective and the con-
straints are linear. In addition, H is required to be binary,
resulting in an integer linear program (ILP). Such optimiza-
tion problems are generally NP-hard. However, we will
show that in our case we can decompose the problem into
smaller tasks that can be optimally solved in parallel via an
LP relaxation. This LP relaxation is guaranteed to retrieve
an integer solution, and thus an optimal integral point.

Our objective in Eq. (3) is a min-max function with re-
spect to H . Due to the dependence of µc, defined in the
loss function given in Eq. (2), on the assignment matrix
H , this problem is extremely challenging. However we
found the solution obtained by simply dropping µc during
learning to work very well in practice, as shown in the ex-



perimental section. In addition it drastically simplifies the
loss-augmented inference required during learning. Solv-
ing for the assignment matrix H after dropping µc dur-
ing learning is then equivalent to finding the maximum a-
posteriori (MAP) prediction within the label space. To see
this, note that picking the class with maximum wT

c xp yields
the smallest hinge-loss ξ. For instance, if wT

c xp < 0, set-
ting hc

p = 0 returns the smaller hinge-loss ξ. Similarly, if
wT

c xp > 0, letting hc
p = 1 yields a smaller loss ξ. Thus

we want to pick a super-pixel class assignment H which
maximizes the score while remaining feasible:

max
H

tr((XTW )TH)

s.t. H1C = 1n, H ∈ {0, 1}n×C , H ∈ S.
(8)

Hereby we combine the data into the matrix X =
[x1, . . . ,xn] ∈ Rd×n. The trace objective function is equiv-
alent to a linear sum, hence we can divide it into a sum of
super-pixel instances. The constraint H1C = 1n is also
separable by super-pixel instances. But the weak super-
vision (including tags, semi-supervision, bounding boxes)
constraints act within a single image. Hence, taking it all
together, the entire constraint space is separable by images.
This nice property permits to separate the ILP into much
smaller sub-programs, which reason about each image in-
dependently and can be solved in parallel. We can further
reduce the size of the individual ILPs by removing the vari-
ables referring to tags not relevant for a particular image.

Importantly, our program has the additional property
that the coefficient matrix for the constraints is totally uni-
modular. As a consequence we can solve each ILP exactly
using a linear programming relaxation which is tight. This
tightness is reflected in the following proposition. We re-
fer the reader to the supplementary material for a complete
proof.

Proposition 3.1. Relaxing the integrality constraints in
Eq. (8) and using a linear programming solver gives the
integral optimal solution for our constraint set S .

Proof. (Sketch) The main idea of the proof is to show that
the coefficient matrix of the linear programming relaxation
is totally unimodular. By [13]: If the coefficient matrix A is
totally unimodular and the right-hand side b is integral, then
linear programs of the form {min cTx | Ax = b,x ≥ 0}
have an integral optimum, for any cost vector c. Hence, the
LP relaxation gives the optimal integral solution.

3.4. Inference

We experiment with two inference strategies. Given a
learned appearance model W , our first strategy predicts us-
ing the standard 1-vs-all rule. We refer to this setting as
“Ours (1-vs-all).” Our second strategy makes use of a tag
predictor to create additional constraints for the test images.

Method Supervision per-class per-pixel
Liu et al. [21] full 24 76.7
Farabet et al. [10] full 29.5 78.5
Farabet et al. [10] balanced full 46.0 74.2
Eigen et al. [8] full 32.5 77.1
Singh et al. [33] full 33.8 79.2
Tighe et al. [35] full 30.1 77.0
Tighe et al. [36] full 39.3 78.6
Yang et al. [44] full 48.7 79.8
Vezhnevets et al. [38] weak (tags) 14 N/A
Vezhnevets et al. [39] weak (tags) 22 51
Rubinstein et al. [29] weak (tags) 29.5 63.3
Xu et al. [43] weak (tags) 27.9 N/A
Ours (1-vs-all) weak (tags) 32.0 64.4
Ours (ILT) weak (tags) 35.0 65.0
Ours (1-vs-all + transductive) weak (tags) 40.0 59.0
Ours (ILT + transductive) weak (tags) 41.4 62.7

Table 1. Comparison to state-of-the-art on the SIFT-flow dataset.
For [39], we report the per-pixel number from [37]. Note that our
approach while only using tags as supervision and thus never ob-
serving a single pixel labeled, is able to perform almost as well
as the state-of-the-art in the fully supervised setting. This is a re-
markable fact. Furthermore we outperform the state-of-the-art in
the weakly label case by more than 10%.

Method Supervision per-class per-pixel
Shotton et al. [32] full 67 72
Yao et al. [45] full 79 86
Vezhnevets et al. [38] weak (tags) 67 67
Liu et al. [22] weak (tags) N/A 71
Ours (ILT + transductive) weak (tags) 73 70

Table 2. Comparison to state-of-the-art on the MSRC dataset.

Give the tag predictions we perform inference on the test set
by minimizing Eq. (8) with the ILT constraints described in
Eq. (4). Note that we do not employ the constraints pro-
vided in Eq. (5) as our tag classifier might be wrong. We
refer to this setting as “Ours (ILT).”

3.5. Transductive Learning

In the standard setting, we learn the weights of the ap-
pearance model matrix W using the training set images. We
also experiment with a transductive setting which exploits
the test images as well. Note that the test set can be used
by incorporating the images as unlabeled examples or by
using a tag classifier and adding the constraints detailed in
Eq. (4) for the test images. We refer to this setting as “Ours
(1-vs-all + transductive)” and “Ours (ILT+transductive)” re-
spectively.

4. Experimental Evaluation
4.1. Dataset and Super-pixel/feature Extraction
Dataset: To illustrate the performance of our model, we
conduct a rigorous evaluation on the Siftflow data set [21],
which has been widely studied [21, 10, 8, 33, 35, 36, 44, 38,
39, 43]. The Sift-Flow data contains m = 2688 images and



Original Image Ground Truth Ours Original Image Ground Truth Ours

unlabeled sky mountain road tree car sign person field building

Figure 2. Sample results from “Ours(ILT+transductive)”. Note gray regions in the second and fifth column are not labeled in ground truth.
Best viewed in color.

C = 33 classes in total. The data set is very challenging
due to its large scale and its heavily tailed class frequency
distribution. A few ‘stuff’ classes like ‘sky,’ ‘road,’ ‘sea,’
and ‘tree’ are very common, while the ‘things’ classes like
‘sun,’ ‘person,’ and ‘bus’ are very rare. We use the standard
split of 2488 training images and 200 testing images pro-
vided by [21], and randomly sampled 20% of the training

set to tune our parameter λ. To further evaluate the capacity
of our algorithm, we also test it on the MSRC dataset [32],
which has m = 591 images and C = 21 classes. We report
both the per-class and per-pixel accuracy.

Super-pixel segmentation: For each image, we compute
the Ultrametric Contour Map (UCM) [1], and threshold it
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Figure 3. Per-class (first and third column) and per-pixel accuracy (second and forth column) with respect to super-pixel label (first two
columns) and bounding box (last two columns) sample ratio.
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Figure 4. Per-class (first and third column) and per-pixel accuracy (second and forth column) from “Ours(1-vs-all)” with respect to number
of iterations (first two columns) and λ (last two columns). The accuracy is reported on the validation set.

at 0.4 to extract super-pixels. UCM produces a few tiny
super-pixels, which create noise during learning. To allevi-
ate this issue we adopt a local search algorithm [26] which
merges similar adjacent tiny super-pixels. On average this
procedure results in 14 regions per image. We use the same
super-pixel segmentation for all the reported experiments.

Super-pixel feature extraction: For each super-pixel, we
first extract R-CNN [11] features within the bounding box
as well as within the masked box. These two sets of features
– 8192 dimensional in total – capture the local context and
the shape of the super-pixel. To take into account global
context and super-pixel size/location, we further replace the
bounding box with the whole image to compute additional
features. That is, we compute R-CNN features for the whole
image, as well as the masked image. This gives another
8192 dimensional feature vector. After concatenation, we
obtained a d = 16884 dimensional feature vector xp for
each super-pixel p.

4.2. Evaluation on Various Weak Superpvisons
Training with tags only: We first evaluate our algorithm
on the standard weakly supervised semantic segmentation
setting. During training, we are only given image level
tags, and at test time, we infer pixel-wise labels without
tags. We first investigate the feature weights we learned
using Alg. 1 via the 1-vs-all inference approach. For each
super-pixel, we simply pick the class with maximum poten-
tial from xTW . As shown in Tab. 1, this simple approach

tagged “Ours(1-vs-all)” achieves 32.0% per-class accuracy
and a 64.4% per-pixel accuracy, outperforming the state-
of-the-art. Motivated by recent work [38, 43], we trained
a 1-vs-all linear SVM ILT classifier with R-CNN features
extracted from the whole image. We then feed the classi-
fier output into our inference detailed in Eq. (8), and predict
the labels for super-pixels for the testing images. We refer
to this setting via “Ours (ILT).” It further improves the per-
class accuracy to 35.0%, and the per-pixel metric to 65.0%.

Training with tags (transductive): As provided in
Tab. 1, using the transductive setting we achieved a 41.4%
per-class accuracy, which outperforms the state-of-the-art
by 11.9%. We also note that using this transductive setting
without the tag classifier achieves 40.0% per-class accuracy,
which further demonstrates that ILT are very helpful in in-
ferring pixel-wise labels. As shown in Tab. 2, the result-
ing performance on MSRC in perClass/perPixel accuracy is
73%/70% using cross validation. In contrast [38] reports
67%/67%. We present qualitative results in Fig. 2. The
presented approach performs well for ‘stuff’ segments like
‘sky,’ ‘mountain,’ and ‘road’ which have a fairly reliable
super-pixel segmentation and a discriminative appearance
model. We are also able to obtain correct labels for ‘things’
classes (e.g., ‘cars’ and ‘person’).

Training with semi-supervision: We next evaluate the
semi-supervised setting where a subset of the super-pixels
is labeled in addition. We focus on the 1-vs-all inference
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Figure 5. Failure cases. Best viewed in color.

setting. Strokes are simulated by randomly labeling su-
perpixes from the ground truth using a sampling ratio of
{0.1, 0.2, 0.3, 0.4, 0.5}. Due to the randomness we repeat
our experiments 10 times and report the mean and standard
deviation in the first two plots of Fig. 3. Note that both the
per-class and the per-pixel accuracies improve consistently
when more super-pixels are observed. Furthermore, the per-
pixel accuracy increases almost linearly with the sampling
ratio.

Training with bounding boxes: Next we evaluate the
bounding box setting. Again we focus on the 1-vs-all in-
ference setting. We consider bounding boxes for ‘things’
classes: {bird, boat, bus, car, cow, door, moon, person,
pole, sign, streetlight, sun, window} and simulate this set-
ting by randomly picking bounding boxes around connected
segments from ground truth annotations. Due to the ran-
domness we repeat our experiments 10 times and report the
mean and standard deviation in the last two plots of Fig. 3.
We improve the per-class accuracy by 1% even with only
10% of ‘things’ boxes, which translates to approximately
0.05 boxes per image. We also observe the improvement
is less significant, when more boxes are added. This is due
to the quality of our super pixels, which suffer from under
segmentation.

4.3. Model Behavior
Number of iterations: During training, we iterate be-
tween learning the feature weights and inferring super-pixel
labels. To study how the performance changes with respect
to the number of iterations, we evaluate the weights learned
after each iteration using the 1-vs-all rule, and plot the ac-
curacy on the validation set in Fig. 4. We observe that the
per-class/per-pixel accuracy quickly improves for the first 4
iterations, and starts to converge after 8 iterations. In all our
experiments, we report the performance after 10 iterations.

Performance with respect to λ: To evaluate how our al-
gorithm behaves w.r.t. λ, we plot the accuracy of “Ours(1-
vs-all)” for all λ in {2−14, ..., 2−3} in Fig. 4. We used a
weighted sum of the per-pixel and per-class accuracy to find
the best lambda on the validation set. All experiments use
this fixed value of λ = 2−9.

Running time: As we discussed in the optimization, both
tasks of learning W and inferring H can be parallelized.
On our machine with 12 threads, each iteration takes about
1 ∼ 2 minutes, resulting in less than 20 minutes for training
on the full Siftfow dataset. Inference takes < 0.01s per
image after super-pixel segmentation and feature extraction.

Failure cases: We present failure cases in Fig. 5. Super-
pixel under segmentation is a common failure mode, where
small ‘things’ segments (top left in Fig. 5) are challenging to
obtain by UCM. Extreme shading changes (top right in Fig.
5) pose challenges just like cluttered textures (bottom left in
Fig. 5). As shown on the right hand side of Fig. 5 our model
may also get confuse classes that co-occur frequently. For
instance, we accidentally labeled building segments as win-
dow, and vice versa. This is expected as only tags are used
for learning.

5. Conclusion
In this paper, we introduced a unified semantic segmen-

tation approach to handle weak supervision in the form of
tags, partial labels and bounding boxes. Our approach is
efficient in both training and testing. We demonstrated the
effectiveness of our approach on the challenging Siftflow
dataset and show that the presented method outperforms the
state-of-the-art by more than 10%. Our method provides a
natural way to make use of readily available weak labeled
data at a large scale, and hence offers a potential to build a
base of visual knowledge [6] using for example data from
the Internet.
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