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Abstract

This paper presents a method for single target tracking
of arbitrary objects in challenging video sequences. Targets
are modeled at three different levels of granularity (pixel
level, parts-based level and bounding box level), which are
cross-constrained to enable robust model relearning. The
main contribution is an adaptive clustered decision tree
method which dynamically selects the minimum combina-
tion of features necessary to sufficiently represent each tar-
get part at each frame, thereby providing robustness with
computational efficiency. The adaptive clustered decision
tree is implemented in two separate parts of the tracking
algorithm: firstly to enable robust matching at the parts-
based level between successive frames; and secondly to se-
lect the best superpixels for learning new parts of the tar-
get. We have tested the tracker using two different track-
ing benchmarks (VOT2013-2014 and CVPR2013 tracking
challenges), based on two different test methodologies, and
show it to be significantly more robust than the best state-
of-the-art methods from both of those tracking challenges,
while also offering competitive tracking precision.

1. Introduction

After several decades of visual tracking research, even
the most sophisticated trackers are still prone to failure in
challenging scenarios, including clutter and camouflage in
one or more feature modalities, rapid and erratic target mo-
tion, occlusions, and targets which change their shape and
appearance over time. These problematic tracking condi-
tions predominantly lead to failures in three fundamental
parts of the tracking algorithm: 1) the model of the target
object’s visual appearance; 2) the mechanism for matching
model parts to image regions at each frame; 3) the mecha-
nism for continuously relearning or updating models of tar-
gets which change their appearance over time.

This paper presents a target tracking algorithm which

achieves state-of-the-art robustness by addressing each of
these three fundamental areas. We propose a flexible tar-
get representation which can adaptively exploit an arbitrary
number of different image features. Targets are modelled
at three different levels of granularity, including the level
of individual pixels, the level of parts, and a bounding box
level which encodes overall information about the target as
a whole. Cross-constraints between these different levels
during updates, enable continuous target model relearning
which is robust and stable.

The main contribution of the paper is an adaptive clus-
tered decision tree approach which dynamically selects the
minimum combination of features necessary to sufficiently
represent each target part at each frame, thereby provid-
ing robustness without sacrificing computational efficiency.
We show how this adaptive clustered decision tree can be
utilised in two separate parts of the tracking algorithm:
firstly to enable robust matching at the part-based level at
every frame; and secondly to select the best superpixels for
learning new parts of the target. During matching, the adap-
tive clustered decision tree is used to search the set of super-
pixels in the current frame, to find the best match to a target
part in the previous frame. During model updating, the de-
cision tree is used to search for the most suitable superpixel
from which to model a new target part, in order to replace
an old target part which has been detected as drifting.

We have carried out a principled evaluation using the lat-
est benchmarks, and comparing against the best other state-
of-the-art trackers. Results show that the proposed method
outperforms the best 4 trackers on both VOT 2013 and 2014
benchmark sets. It also significantly outperforms the 7 best
available methods on the CVPR2013 dataset wrt robustness,
while also achieving competitive tracking accuracy.

The rest of the paper is organized as follows. Re-
lated work is discussed in Sec. 2. The multi-level tar-
get model, and its initialisation, is introduced in Sec. 3.
Sec. 4 explains the adaptive clustered decision tree, and
shows how it is used for both target matching and model
updating at each successive frame. Sec. 5 presents and



discusses the experimental results of testing the tracker on
the VOT2013, VOT2014 and CVPR2013 benchmark video
datasets. Sec. 6 provides concluding remarks.

2. Related work
In this section, we review recent tracking algorithms in

terms of three primary components: target representation,
matching mechanism, and model update mechanism.

Choice of target representation is a crucial component
of any tracker. Two main streams of research can be dis-
tinguished. The first uses holistic (overall) target templates
for tracking, e.g. [22] and [24], itself derivative from the
fundamental ideas of [10]. However, such methods have
difficulty in handling significant appearance changes and
deformations of the target. Later work, [27] showed how
contextual information can be used to adaptively select in
favour of whichever part of the target model is most dis-
criminating in the current frame, but was still limited to
a simple holistic target model which did not itself update.
Later work, [18] [19] proposed patch-based approaches to
provide more flexibility for target matching. However, the
choice of geometric constraint for local patch movements
remains an open problem, while environmental clutter and
camouflage can often distract such local patches and cause
them to drift. [33] avoided complex geometric constraints
for patch motion, by treating the problem as a classification
of foreground and background superpixels. However, since
each superpixel is classified independently, this method re-
mains prone to failure with cluttered background scenes. In
contrast, our method also makes use of superpixels, but ex-
ploits them within a more robust cross-constrained multi-
level target model structure. More recent work [30] also
combined both global and local patch-based target models
together for a more robust representation. However, this
work fused multiple features in a homogeneous way, which
causes failures under conditions where one or more fea-
tures become less discriminating than others. In contrast,
our method achieves better results by adaptively selecting
in favour of whichever feature or feature combination is
most discriminating for each target part in each new frame.
Other recent work [21] simultaneously tracks, learns and
parses targets using a hierarchical and compositional And-
Or graph representation. However, the algorithm uses a rel-
atively fixed cell grid to quantize the AOG structure, which
may contain nodes with little semantic meaning. In con-
trast, our method links tree nodes directly to target super-
pixels, which are more likely to represent homogeneous and
meaningful parts of the target object. More recent work is
proposed in [17] which conducted tracking based on a tree-
structured target appearance model. They estimate the opti-
mal tree using a number of key frames, and employ a semi-
supervised manifold alignment technique to construct a tree
for all frames. However, this off-line tracker is not suit-

able for sequential tracking of targets which continuously
change their shape and visual appearance over time. In con-
trast, we propose a highly adaptive decision tree structure,
which is relearned for each target part at each new frame,
and this enables good results for videos with rapidly de-
forming targets.

To estimate the state of the target, the algorithm must
match observations from a candidate image region to the
target representation model. A single feature is not suf-
ficient to handle large appearance variations, and recent
works [25] [29] [28] [21] increasingly exploit combinations
of multiple features. One approach is to compute the likeli-
hood from all features and then multiply all values to esti-
mate the target state, e.g. [30]. However, in such schemes,
a poorly performing feature can damage tracking perfor-
mance, even when other features are highly discriminative.
Therefore, instead of treating all features with equal im-
portance, other methods, e.g. [8] [32] [29] [28], attempt to
identify and weight in favour of the most discriminative fea-
tures (or the most discriminative parts of a target model) at
each time step. Brasnett et al. [6] propose a scheme for
weighting in favour of the best performing features, and up-
dating these weights adaptively at each new frame. How-
ever, this method ignores feature saliency from the local
background regions. In contrast, recent works [29] and
[28] propose two different kinds of adaptive methods which
both successfully exploit contextual information for opti-
mally weighting the contributions from each feature online
during tracking. However, those methods use only a sim-
ple holistic target model which is insufficient to cope with
large target deformations and appearance changes. Pernici
et al. [25] propose a matching method which uses both the
target and context SIFT features. However, the matching
indices are obtained directly by a nearest neighbour search,
which might perform poorly when the target undergoes
rapid and significant deformations and appearance changes.
In contrast to the homogenoeus treatment of all features,
e.g. [30], our adaptive clustered decision tree approach can
adaptively select in favour of the most discriminative fea-
tures for matching each target part to each new frame. How-
ever, this adaptive feature selection is also embedded within
a cross-constrained multi-level target representation, which
enables much more robust matching and model updating
than the simple holistic target models of e.g. [29] or [28].

For robust, general tracking, it is essential to continu-
ously update or relearn the target model to cope with ap-
pearance changes. An appropriate target model should en-
able the tracker to overcome errors in the relearning pro-
cess which might corrupt the target model, and support
long term tracking without drifting [22]. Early methods,
such as [24], updated the model at every frame as a sim-
ple linear combination of the previous model and the most
recent estimation of the target region in the current image



(sometimes referred to as an autoregressive update proce-
dure). Without additional methods for precise delineation
of the target parts, such update methods are likely to fail,
given sufficiently long tracking duration, due to accumu-
lated errors and noise during successive updates. In MIL [4]
and other trackers such as OB [12] and SB [13] updating
of the target model is performed by an evolving boosting
classifier that tracks image patches and learns the object
appearance. Interestingly, OB [12] can be regarded as a
non-Bayesian approximation to the simpler Bayesian ABC
method [27] but which enables continuous relearning of
the target model. However, online boosting requires that the
data be independent and identically distributed, which is a
condition not satisfied in most real video sequences, where
data is often temporally correlated [25]. A more robust up-
dating mechanism is achieved by [30], which forms a cross
constraint paradigm to stably constrain the relearning of a
two-layer target model - global (bounding region) and local
(parts based) models are used to constrain (and thereby sta-
bilise) each others’ online relearning. However, this method
(and most earlier methods e.g. [24]) updates target appear-
ance models at a fixed rate, regardless of the confidence
(or lack of) in current target observations. This problem
is compounded by the previously described problem, that
many methods, e.g. [30], combine the opinion of all fea-
tures with equal weight, which can lead to tracking failures
when one or more feature modalities are poorly discrimina-
tive compared to others. Like [30], we also employ a multi-
level cross-constraint approach to robustify online target re-
learning, however we achieve significantly improved per-
formance evaluation results over [30] by adaptively varying
the relearning rate, for each target part at each frame, based
on a current tracking confidence measure derived from con-
textual information.

3. Multi-level target model
In principle our method can be used with any combi-

nation of features, provided that feature values of pixels
in an image region can be associated with a model (e.g. a
histogram), and that a suitable likelihood function exists to
compare the similarity of such models for two such regions
(for proof of principle we use a metric based on Bhatta-
haryya distance [5] although others are also possible). In
the spirit of [2] and [34], our method initialises its target
model using only a given bounding box in the first frame.
The target is modeled hierarchically at three different levels
of granularity: the pixel (bottom) level, parts-based (mid-
dle) level, and the bounding box (top) level. Following the
logic of the model construction and the order of model up-
dating, this section first introduces the middle level model,
since the initial features are extracted from this level. Later,
we introduce the top level followed by the bottom level.

The top level (overall target appearance model) is com-

pared against a uniformly sampled set of candidate bound-
ing box locations, and the expectation operator is used to
provide a candidate bounding box region where the new
middle level model can be created. This candidate bound-
ing box is then segmented into superpixels, using the SLIC
superpixel segmentation method [3]. These superpixels are
then used to identify a set of suitable target parts to form
the middle level model consisting of M parts, each asso-
ciated with N features, i.e. {f i,mk }i=1...N,m=1...M where
f i,mk represents the mth feature of the ith part at kth frame.

Using superpixels as the basis for middle level feature
histograms (denoted as {hi,mk }i=1...N,m=1...M ) offers sev-
eral advantages over randomly selecting square “patches”
as in the previous method [30]. Firstly, a superpixel is
much more likely to correspond to a semantically mean-
ingful and homogeneous part of the target. In contrast, ran-
domly (or uniformly) selected patches are likely to contain
pixels from two or more dissimilar (e.g. in terms of colour)
parts of the target, which can lead to matching problems.
Secondly, when patches are randomly (or uniformly) se-
lected from an initial bounding box, many patches are likely
to contain information drawn from both target and back-
ground pixels, and this is also likely to negatively impact
tracking performance. In contrast, due to the homogeneous
nature of superpixels, the features extracted from these re-
gions are much more likely to include either purely target
pixels, or purely background pixels. Once tracking begins,
those patches which erroneously correspond to background
regions are rapidly detected and eliminated from the target
model, leaving only those patches which truly belong to tar-
get region pixels. We use the SLIC superpixel segmentation
method [3], because it offers the following advantages: the
number of superpixels can be known in advance, the super-
pixels have uniform size, the compactness can be defined
and the algorithm has high computational efficiency. Then,
the middle level model ζk is a set of N parts (small rectan-
gles), extracted from N superpixels denoted as:

ζk = {cik, h
i,m
k }i=1...N,m=1...M (1)

where cik are the image coordinates of the part i at the
frame k. Every part is represented by a set of his-
tograms, one histogram for each feature modality. I.e.
{hi,mk }i=1...N,m=1...M denotes a set of M ×N histograms
which model M different features in each of N different
middle level target parts, derived from N superpixels.

The top level of the target model is denoted as =k which
includes overall information about the bounding box region:

=k = {Ck, H
B,m
k , HF,m

k }m=1...M (2)

where Ck are the bounding box image coordinates (re-
computed at each new frame from the distribution of parts in
the middle level model) at frame k. The background feature



histograms {HB,m
k }m=1...M are the histograms for each

of M different feature modalities, extracted from a ring-
shaped local background region defined by enlarging the
target’s bounding box by a scale factor. {HF,m

k }m=1...M

are a set of foreground histograms, in each of M feature
modalities which are computed by combining information
from the middle level parts models as:

HF,m
k =

1

N

N∑
i=1

hi,mk (3)

where hi,mk indicates the histogram of themth feature in the
ith middle level part.

The bottom level comprises individual pixels, each as-
sociated with its RGB value and an assigned likelihood.
This likelihood is computed using the top level foreground
and background histograms via simple Bayesian reasoning.
Let fm(x) be the value of the mth feature at pixel location
x. Furthermore, let Hm

k (fm(x)) denote a special function,
which takes as argument the feature value fm(x) at image
location x, and outputs a probability corresponding to the
value of the relevant bin in the histogram Hm

k , which de-
notes a histogram of features of type m in image frame k.

According to the statistics of the mth feature modal-
ity, the likelihoods of a pixel corresponding to foreground
or background regions are now P (x|F ) = HF,m

k (fm(x))

and P (x|B) = HB,m
k (fm(x)) where the symbols F and

B (and superscripts HF and HB) denote foreground and
background information respectively.

In any particular feature modality, the overall probability
of a particular pixel representing the tracked object can be
computed as

Pm
k (F |x) = λP (x|F )

λP (x|F ) + (1− λ)P (x|B)
(4)

where λ represents the expected ratio of the size of the tar-
get to the size of the image region being searched, in pixels.
Typically, the search area and bounding boxes are continu-
ally scaled to ensure an approximately constant value of λ.
Note that it is trivial to extend the formulation of Eq. 4 to
include arbitrarily many feature modalities.

4. Tracker propagation and matching
An overall schematic for the tracker is shown in Fig. 1.

The tracker is first propagated by information matching at
the top level, which generates a candidate image region for
the middle level. Next, this candidate region is segmented
by [3] into equally sized superpixels. We next propose
a continuously-adaptive clustered tree method, which effi-
ciently finds the best correspondences for matching middle
level target model parts from the previous frame, onto newly
segmented superpixels in the new frame. The continuously

adaptive clustered tree method is efficient in that it adap-
tively makes use of the minimum number of features for
matching each target part at each image frame. Finally, to
cope with target deformation and appearance changes, the
appearance of old target parts (middle level patches) can
be adaptively updated, or severely drifting patches can be
temporarily switched off altogether, and replaced by new
patches. In such cases, a new kind of adaptively clustered
decision tree is used to choose the most suitable superpixels
for forming the new parts.

Figure 1. Block diagram of tracking process. 1- tracker propaga-
tion by foreground information matching at the top level; 2- mid-
dle (super-pixel) level matching with clustered decision tree; 3-
update the top level model; 4- feed back the bottom (pixel) level
information; 5- re-sample drifting parts at the middle level.

4.1. Top level propagation

The top level is propagated using a set of uniformly dis-
tributed samples to represent the posterior density function
of the target, with associated weights. The same as [24],
the overall target position is estimated by using the expec-
tation operator over the set of samples, whose weights are
computed by the foreground feature matching.

4.2. Middle level matching with adaptive clustered
decision tree

After propagating the top level to give a candidate
bounding box region, this is further enlarged to form a
broader search region, which we then segment into super-
pixels, [3]. These superpixels now provide a pool of candi-
date loctions in the new image for matching to middle-level
target parts (patches) in the previous image. This matching
is performed using our proposed adaptive clustered decision
tree method. Typically, a decision tree’s structure will be
obtained offline by training, which would be unsuitable for
tracking targets with dynamic appearance. Instead, we pro-
pose a fully adaptive clustered tree which is relearned online
for each new target part in each new image, by explicitly
considering foreground and background information.

The proposed adaptive clustering decision tree method is
illustrated in Fig. 2. The objective of the decision tree is to



Figure 2. Clustered decision tree. Each tree-level represents a fea-
ture modality (e.g. color, motion etc.). The feature values of super-
pixels form leaves on a tree-level. If any two leaves are sufficiently
similar in feature value then they are merged into a cluster. A new
tree-level (using the next feature modality) is then used to try to
disambiguate the members of such clusters. The tree continues
growing (by adding more tree-levels of more features), until all
target parts have been assigned to a unique choice of superpixel.
Any remaining unmatched parts are assumed to have become oc-
cluded and are temporarily switched off.

find the corresponding superpixel which best matches each
middle level target part, while adaptively selecting the min-
imum combination of features needed to do this robustly in
each frame. The first tree-level is initialised by selecting a
primary feature from the set of all features, and labelling
all superpixels as individual leaves. First, each leaf is com-
pared against the part in the middle level target model for
which a match is sought.

arg max
(iP ,ic)

B(hiP ,m
k , hic,mk ) s.t.

B(hiP ,m
k , hic,mk ) > 0

(5)

where iP indicates the part in the middle level target model,
ic is the candidate leaf and B(, ) is the similarity metric.
Next, the remaining candidate leaves are compared to the
selected leaf, denoted as is, for similarity in the primary
feature modality. Similar leaves are grouped into a cluster
when:

B(his,mk , hic,mk ) > Tm
k (6)

where B(his,mk , hic,mk ) is the similarity metric for mth fea-
ture histogram between a selected leaf is and the other can-
didate leaf ic and Tm

k is a clustering threshold.
Note Tm

k has an important effect on the extent to which
each feature is used in the mid-level part matching proce-
dure. High values of Tm

k reduce the amount of clustering
on the respective tree-level, ensuring that most superpixels
will be represented as individual leaves, i.e., the algorithm
will distinguish most superpixels using this feature alone.
In contrast, low values of Tm

k make it likely that this tree-
level will grow many clusters, with the effect that the over-
all algorithm will make less use of this particular feature for

matching, and will rely on later feature modalities (deeper
levels on the tree) to provide discrimination. In other words,
the choice of Tm

k can actually be regarded as a measure of
confidence in the discriminating ability of a particular fea-
ture.

Consequently, we would like to set high values of Tm
k

for those features that are highly discriminatory in the cur-
rent frame, and low values of Tm

k for poorly performing
features (e.g., those modalities for which the target is cam-
ouflaged against the background in the present frame). We
therefore propose a method by which Tm

k is continuously
relearned for each feature at each frame, based on evaluat-
ing the feature’s discriminating ability relative to the current
contextual information. Tm

k is computed online as:

Tm
k = exp{

−B2(HF,m
k , HB,m

k )

σ2
m

} (7)

where HF,m
k and HB,m

k are the top level foreground and
background histograms defined in Eq. 2, and Eq. 7 is there-
fore a measure of similarity between the target and the local
background (i.e. a measure of camouflage) in the respective
feature modality. B(, ) is the same similarity metric as in
Eq. 5.

If any candidate superpixel is both i) distinct enough
from others that it forms its own leaf and does not lie inside
a cluster (e.g. S6 or SN in Fig. 2) and ii) strongly matches
the target part, satisfying Eq. 5, then the decision tree ceases
growing and the middle level target part is labeled as match-
ing that candidate superpixel. Once all the middle level su-
perpixels have been matched to new locations in the current
image, their distribution is used to output a new bounding
box position, and the top level target models are updated
accordingly. Occasionally, some parts in the model will fail
to find a strongly matching candidate superpixel, even after
exhausting all possible image features (corresponding to all
possible tree-levels). In such cases, it is inferred that the
part is no longer visible and it is switched off. Other meth-
ods in the literature (e.g. [30]) remove unmatched patches,
and thus permanently lose parts of the model during occlu-
sions, which cannot later be recovered. In contrast, our pro-
posed approach of temporarily switching off the unmatched
parts provides a powerful tracking memory that automati-
cally handles occlusion situations without the need for spe-
cial additional occlusion routines.

4.3. Model updating

For robust tracking, it is necessary to continuously up-
date the target model as it changes its appearance with time.
The proposed tracker does this via two mechanisms: adapt-
ing the old bottom and top level target models, and adding
new models of new middle level parts.

At each frame, we examine all middle level parts and de-
tect those which are drifting (moving too far from the target



centroid), with a method adapted from [35] which exam-
ines the marginal distributions of parts locations. To replace
the drifting parts, we select those superpixels in the current
frame which are most likely to represent target parts. A
second kind of adaptive clustered decision tree is used to
perform this selection as follows. We first use the primary
feature histogram, hi,mk , to initially rank all unmatched su-
perpixels according to:

Rank = sort(si,mk , descend) (8)

where si,mk is a priority score of ith candidate superpixel of
feature m computed as:

si,mk =

Ni
p∑

x=1

Pm
k (F |x)/N i

p (9)

where Pm
k (F |x) is the likelihood, computed from Eq. 4, of

the pixel at image location x, for all N i
p pixels inside the ith

candidate superpixel.
This ranked list can be regarded as the leaves on the

first tree-level (first feature) of an adaptive clustered deci-
sion tree structure as described in the previous section for
matching. Next, leaves (superpixels) with similar priority
score are clustered when they satisfy the below constraint:

‖si,mk − sj,mk ‖ < λrankσ
m
all (10)

where λrank is a pre-defined parameter while σm
all is the

standard deviation of all superpixels’ expected likelihoods.
Once again, a cluster on a tree-level suggests that the fea-

ture modality for this tree-level is not sufficiently discrimi-
nating to achieve a robust ranking. Therefore, a secondary
feature is chosen and used to rank all constituent superpix-
els within the cluster, forming a second tree-level on the
tree. The tree is grown (by adding successive tree-levels,
using successive features), until a unique ranking has been
assigned to all superpixels. Then, the highest ranked n su-
perpixels are chosen in order to initialise n new parts. These
new parts replace the n old parts which were identified as
drifting.

For the non-drifting parts (those that were matched
strongly onto superpixels in the new frame) the target
“parts” or “patch” models are updated according to new ob-
servations. Note that any kind of target model relearning
is potentially dangerous, since even small tracking errors
can easily cause background pixels to be learned into the
target model, leading to instability with exponentially in-
creasing errors. Early colour particle filter work [24] and
recent state-of-the-art patch-based methods [30] perform
model relearning at a fixed update speed. In contrast, we
continuously recompute individual update speeds for each
middle level part at each frame. Our premise is that parts
can be relearned rapidly when there is a high confidence

in their matching, whereas the relearning rate should be re-
duced under conditions of uncertainty. We therefore update
each part, using a continuously relearned parameter µi,m

k :

hi,mk = (1− µi,m
k )hi,mk−1 + µi,m

k hi,mobs (11)

µi,m
k = B(hi,mk−1, h

i,m
obs ) (12)

where hi,mk is the mth feature histogram of the ith part at
frame k, while hi,mobs is the mth feature histogram of the
matched superpixel in the new frame. Again, B(.) is a sim-
ilarity metric for the mth feature as described in Eq. 5.

At each frame, once all middle level parts have been ei-
ther switched off, updated, or replaced, then the top (global)
level target model is updated according to Eq. 3, as de-
scribed in Sec. 3.

4.4. Handling occlusions

The proposed tracker utilises a memory which memo-
rises the latest tracker state, including all middle level part
models. As described in Sec. 4.2, partial occlusion is han-
dled by temporarily switching off poorly matching middle
level parts, but retaining these in memory and reacquir-
ing them once occluded target parts reappear in later video
frames. If a large proportion of parts (defined by a thresh-
old parameter) remains unmatched after the matching pro-
cedure of Sec. 4.2, then the tracker is regarded as being in a
special state of full occlusion.

In the full occlusion state, all target model updating (at
all model levels) is switched off, and the propagation scope
(candidate image region surrounding the estimated target
bounding box) is enlarged. The tracker returns to the normal
(non-occlusion) state once a sufficient proportion of middle
level parts are again matched strongly to candidate super-
pixels.

5. Experiments

We have tested the performance of our tracker on the
sequences from the publicly available datasets VOT 2013,
VOT 2014 and CVPR 2013 benchmark dataset [2], [34],
which together comprise 70 sequences in total. More de-
tails of the datasets can be found from the webpages of [2]
and [1].

5.1. Implementation

The proposed adaptive clustered decision tree structure
is designed to handle, in principle, arbitrarily many features
in a robust and efficient manner. For proof of principle,
we have implemented a tree with just two tree-levels (ex-
ploiting just two feature modalities), however this already
delivers strongly competitive performance on benchmark



Table 1. Values of key algorithmic parameters
Section Equation Value

Initialization λ in Eq. 4 0.1

Decision tree
σ2
m in Eq. 7 0.05

λrank in Eq. 10 0.1
Occlusion the ratio of unmatched parts 40%

Table 2. VOT challenge results: comparing against best 4 trackers

VOT 2013 (16 sequences)
Ours PLT13 [15] LGT++ [35] EDFT [11] FoT [31]

Fail. 0 0 1.53 14 22
Acc. 0.59 0.58 0.57 0.58 0.63

VOT 2014 (25 sequences)
Ours PLT14 [15] DGT [7] DSST [9] SAMF [20]

Fail. 1 4 25 29 32
Acc. 0.52 0.56 0.58 0.62 0.61

test data. For both adaptive clustering tree structures (mid-
dle level parts matching Sec. 4.2, and new parts learning
Sec. 4.3), we use simple colour histograms as a primary
feature histogram, with the commonly used Bhattacharyya
metric as a matching likelihood measure. For the secondary
feature, we use a simple motion measure, where candi-
date superpixels are assigned high matching likelihoods if
they imply a small frame-to-frame motion for the part being
matched. The tracking algorithm has been implemented on
an Intel Core i5-3570 CPU, using Matlab code (linked also
to some C++ components). This unoptimised implementa-
tion, on an old PC, achieves near-to-real-time performance
of 8 fps (varying somewhat with different test videos). The
key parameters initialised in the first frame are listed in the
Tab. 1.

5.2. Evaluation

We first evaluate our tracker using the ICCV2013 and
ECCV2014 ”VOT challenge” [2] testbeds. Tab. 2 compares
the performance of our tracker against the best 4 VOT track-
ers, out of around 30 trackers that those challenges evalu-
ated. The results are shown in terms of robustness (the total
number of failure instances) and accuracy (percentage over-
lap between trackers output bounding box and ground truth
bounding box) averaged over all frames.

For the robustness, our tracker has zero failures in
VOT2013 and only one failure in VOT2014. The next
best algorithm is PLT which also achieved zero failures in
VOT2013. However, note that the version of PLT tested
in VOT2013 used a fixed bounding box size. Therefore
this algorithm was unable to adapt to targets which change
their size during tracking. Since most objects in most test
sequences luckily stayed roughly the same size, this rigid
constraint helped the algorithm to achieve a high robustness
score. For VOT2014, a different version of PLT was sub-
mitted, which did enable adaptation to changing target size.
In this case, PLT’s robustness worsened to four failures.

Note that the accuracy scores can sometimes be mislead-
ing. In the VOT testing methodology, ground truth is used
to re-initialise trackers (with perfect accuracy) after every
tracking failure. Therefore, trackers which fail very often
will show high accuracy scores, even if they are not “good”
trackers. Hence, the accuracy score is meaningful mainly
when comparing two trackers which have the same robust-
ness score. In VOT2013 our accuracy is better than the only
other algorithm (PLT) which shares the same robustness,
while in VOT2014 no other tracker was able to achieve the
same robustness.

For more extensive comparison, we also combine the
VOT test sequences with all those from the CVPR 2013
tracking benchmark data set [34]. Using this 70-sequence
dataset, we compared our method against the publicly avail-
able trackers which have showed strong performance in ei-
ther the VOT or the CVPR tracking challenges, namely:
Struck [14], SCM [36], LGT++ [35], CSK [16], IVT [26],
L1 [23], and PF [24]. Since this dataset contains instances
of full occlusions, the evaluation is conducted without re-
initialization after tracking failures. We show the results as
trade-off curves as suggested by [34].
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Figure 3. The success ratio versus overlap threshold curve in 70
sequences.

As shown in Fig. 3, our tracker achieves significantly
better robustness in accuracy ranges up to 0.4. We as-
sert that robustness is the most important of these metrics:
firstly, these methods are intended for highly deformable
targets (e.g. people) for which it is hard to meaningfully in-
terpret the “accuracy” of a rectangular bounding box which
includes many non-target pixels even during good perfor-
mance; secondly, provided that a tracker is robust, accuracy
can always be further improved by incorporating additional
prior knowledge about a specific target [9].

To further evaluate the performance, we also show the
trade-off curves for those test videos identified in the bench-
mark challenges as containing the categories of: significant
target deformations, Fig. 4; severe illumination changes,
Fig. 5; and occlusions, Fig. 6. Our tracker significantly



outperforms the other methods in highly deformed targets
tracking. We attribute to the flexibility of the clustered de-
cision tree approach to online model relearning. The tracker
also achieves competitive results in illumination change and
occlusions scenarios. We attribute the strong performance
under illumination changes to the robustness of the cross-
constrained multi-level target model. We attribute the re-
sults of the occlusion tests to the generality and adapt-
ability of the proposed method. When a method is de-
signed to be robust against dramatic target appearance and
shape changes, it may not always be possible to distin-
guish between appearance changes and occlusions, hence
our method sacrifices some accuracy in favour of robustness
in such circumstances.
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Figure 4. The success ratio versus overlap threshold curve in 19
sequences with deformation.
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Figure 5. The success ratio versus overlap threshold curve in 18
sequences with illumination change.

Fig. 7 shows examples of our method handling vidoes
which feature extremely deforming targets (e.g. gymnast)
and very strong clutter (e.g. diver).
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Figure 6. The success ratio versus overlap threshold curve in 22
sequences with occlusion.

Figure 7. Visualization of results on sequences: Iceskating, Div-
ing, Gymnastics, showing extreme target deformations and signif-
icant clutter.

6. Conclusion

In this paper, we have proposed a multi-level target
model, and an adaptive clustered decision tree method for
both matching and relearning middle level target parts at
successive image frames. The resulting tracking algorithm
significantly outperforms the best 4 algorithms from each
of the VOT2013 and VOT2014 benchmark tracking chal-
lenges, and outperforms 7 state-of-the-art trackers within
the additional CVPR2013 benchmark tracking data set. The
method is particularly robust against challenging tracking
conditions of large target deformation, rapid illumination
changes, and occlusions. The adaptive decision tree: 1)
is generated online, overcoming the overfitting of offline
generated classifiers; 2) efficiently exploits only the min-
imum number of features needed for each target part at
each frame; 3) adaptively weights in favour of the most dis-
criminating features, responding dynamically to changing
amounts of camouflage in different feature modalities. The
future work will evaluate incorporating additional feature
modalities, which is expected to improve the performance.
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