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Abstract

Continuous-wave time-of-flight (ToF) cameras show
great promise as low-cost depth image sensors in mobile
applications. However, they also suffer from several chal-
lenges, including limited illumination intensity, which man-
dates the use of large numerical aperture lenses, and thus
results in a shallow depth of field, making it difficult to cap-
ture scenes with large variations in depth. Another short-
coming is the limited spatial resolution of currently avail-
able ToF sensors.

In this paper we analyze the image formation model for
blurred ToF images. By directly working with raw sen-
sor measurements but regularizing the recovered depth and
amplitude images, we are able to simultaneously deblur
and super-resolve the output of ToF cameras. Our method
outperforms existing methods on both synthetic and real
datasets. In the future our algorithm should extend easily to
cameras that do not follow the cosine model of continuous-
wave sensors, as well as to multi-frequency or multi-phase
imaging employed in more recent ToF cameras.

1. Introduction
Fast and high-quality depth-sensing cameras are highly

desirable in mobile robotics, human-machine interfaces,
quality control and inspection, and advanced automotive ap-
plications. Among the wide variety of depth-sensing tech-
nologies available (depth from stereo, structured lighting,
Lidar scanning, etc.), continuous-wave time-of-flight (ToF)
cameras have emerged as an efficient, low-cost, compact,
and versatile depth imaging solution.

The active light source required to produce these ToF im-
ages presents significant drawbacks, however. To create a
ToF image with high signal-to-noise ratio (SNR), the light
signal must be sufficiently intense to overcome sensor noise
and quantization effects. Factors determining the signal
strength include light source power, integration time, imag-
ing range, and lens aperture. In practice, light power is of-
ten limited for eye safety and energy considerations, and the

(a) Amplitude a (b) Depth z (c) HSV map

Figure 1: Simulated Buddha scene. The HSV map uses a
as value and z as hue. The value and hue visualizes the
magnitude and scaled phase of the complex-valued a◦g(z)
in Eq. (1), respectively.

integration time must be short enough to allow real-time op-
eration. Consequently, ToF systems typically use imaging
optics with large numerical aperture to make the best use
of available light. However, this also comes at a cost; large
apertures have a shallow depth of field and hence introduce
defocus blur in the raw ToF images. Due to the non-linear
image formation model of these cameras (see below), the
depth of field blur presents a significant problem for ToF-
cameras, generating artifacts such as “flying pixels” around
depth discontinuities as well as loss of texture detail.

In this paper, we address this problem by introduc-
ing a new computational method to simultaneously remove
defocus blur and increase the resolution of off-the-shelf
ToF cameras. We do this by solving a semi-blind decon-
volution problem, where prior knowledge of the blur kernel
is available. Unlike past ToF deblurring techniques, our ap-
proach applies sparse regularizers directly to the latent am-
plitude and depth images, and supports deblurring ToF im-
ages captured with multiple frequencies, phases or expo-
sures.

Continuous-wave ToF sensors are designed to have an
image formation model that is linear in amplitude a, but
non-linear in depth z, such that the captured raw sensor data
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is given as

a ◦ g(z) ≈ a ◦ ei(
4πf
c ·z), (1)

where ◦ represents component-wise multiplication of two
vectors, f represents the frequency of the continuous-wave
modulation, and c is the constant speed of light. The func-
tion g(z) can either be calibrated [12], or, more commonly,
is simply approximated by the complex-valued function
from Eq. 1 (“cosine model”) [10]. Fig. 1 shows a simulated
scene with visualization.

We aim to compute a solution to the following ill-posed
inverse problem introduced in [9]:

b = SK(z) (a ◦ g(z)) , (2)

where the complex-valued vector b represents the raw
ToF measurements, the real-valued matrix S is a downsam-
pling operator, and the real-valued matrix K(z) represents
the spatially-varying blur kernel for a given depth map z.
The problem is ill-posed because the matrix SK(z) is usu-
ally not invertible, and semi-blind because the matrix K(z)
is known at each depth z. In past work, S is assumed to be
the identity matrix.

It is important to note that Eq. (2) becomes the conven-
tional image deblurring problem when f = 0, such that
a◦g(z) = a. Estimating the amount of defocus blur from a
blurry amplitude map a is a particularly challenging prob-
lem in this case, requiring either multiple photos or special-
ized optics [19]. Unlike conventional cameras, ToF cameras
provide additional depth information that can be used to re-
cover the defocus blur kernel much more robustly [9].

Our paper focuses on solving Eq. (2) to recover the de-
blurred amplitude and depth maps from a single blurry im-
age, captured with an off-the-shelf ToF camera. Because
this inverse problem is still an ill-conditioned problem, it’s
critical to choose appropriate regularizers to reflect prior in-
formation on the solution (i.e., sparse edges). Godbaz et
al. [9] proposed differential priors that operate on the com-
plex ToF image representing the cosine model, but it re-
mains unclear what a good regularizer should even look like
in this space. We instead choose to regularize our solution in
the amplitude and depth map space directly. This introduces
certain numerical challenges, because of the highly non-
linear relation between the depth components and the raw
ToF measurements (Eq. (1)). We relax this problem by split-
ting the optimization procedure into two parts, alternating
between optimizing for amplitude and depth. Our method
can seamlessly include a super-resolution component, help-
ing to overcome the limited sensor resolution in current gen-
eration ToF cameras. Unlike earlier approaches, our method
is also not inherently limited to the cosine model, and could
be easily extended to calibrated waveforms in the future.

Figure 2: (a) PMD-Digicam camera. (b) Scene setup for
PSF calibration.

2. Related work

Most existing ToF enhancement methods take as input
the naive depth map from the camera software, rather than
the raw complex-valued measurements. LidarBoost [22]
and KinectFusion [14] utilized captures from multiple view-
points to increase the depth resolution. Zhu et al. [24] ex-
plored the complementary characteristics of ToF and stereo
geometry methods and combined them to produce better-
quality depths. Other methods ([21, 15, 6]) used a high-
resolution RGB or intensity image to guide the upsampling
of the low-resolution depth map, based on the assumption
about the co-occurrence of image discontinuities in RGB
and depth data. These methods assume the scenes are all
in-focus, while in this paper we deal with the scenes de-
graded by defocus blur. Another, these methods require ad-
ditional hardware or multi-view captures, while as a com-
plementary our method uses single-view captures from a
single ToF sensor.

Godbaz et al. [8] proposed a two-stage method for para-
metric blind deconvolution of full-field continuous-wave
Lidar imaging. They estimate the lens parameters from
a pair of Lidar measurements taken at different aperture
settings, and then deconvolve these complex-domain mea-
surements (i.e., a ◦ g(z) in Eq. (2)), from which the final
depth map is computed. Godbaz et al. [9] applied the coded
aperture technique to extend the depth of field for full-field
continuous-wave Lidar imaging. The complex-domain Li-
dar measurement is iteratively deconvolved with a simple
Gaussian derivative prior, while at each iteration the blur
kernel of each pixel is updated according to the currently
estimated Lidar image. These two methods are close to ours
in the sense of directly working on the raw measurements.
In contrast to these methods which aim to deblur the com-
plex measurements, our approach directly estimates the la-
tent amplitude and depth from the degraded measurements.
This allows us to apply separate regularizations on the am-
plitude and depth, and also supports for the next generation
ToF cameras with multiple modulation frequencies, phases
and exposures [10, 16].

Single-frequency ToF cameras have limited unambigu-
ous distance range. Objects separated by the integer multi-



ples of the full range are indistinguishable. The next gener-
ation of ToF cameras use multiple modulation frequencies
and phases to reduce the ambiguity [10, 16]. The multi-
frequency/phase data can also help resolve “flying pixels”
(mixtures of foreground and background depth) at the ob-
ject boundaries, and suppress artifacts due to global illu-
mination [7]. The ToF data captured with single exposure
could be noisy or saturated due to scene properties such as
surface materials and reflectivity. Multiple exposures are
proposed to increase the dynamic range of the measure-
ments and remove those unreliable pixels [10, 11]. Our
algorithm adapts well to these cameras, since it directly es-
timates the latent amplitude and depth from raw measure-
ments that could come from multiple sequential captures.

3. Proposed algorithm
3.1. Algorithm overview

Given the raw measurements b from a single view, our
algorithm aims to remove optical lens blur and produce high
quality depth map z and amplitude map a. The latent depth
z and amplitude a are coupled in the measurements, thus
we solve them as a joint optimization problem.

(a, z) = argmin
a,z

||b− SK (a ◦ g(z)) ||22 + Φ(a) + Ψ(z) (3)

Eq. (3) shows the objective function we aim to minimize.
The quadratic term represents a data-fitting error, assuming
zero-mean Gaussian noise in the measurements. Φ(a) and
Ψ(z) represent regularizers for amplitude a and depth z re-
spectively. The algorithm alternatively estimates a and z,
and update the blur kernel matrix K at the end of each iter-
ation according to currently estimated z.

Sparse gradient priors [19] have been widely used in nat-
ural image deblurring, but are improper for depth where the
gradient could be non-zero for most pixels. The second-
order derivative or sparse Laplacian priors have been used
in surface denoising [3, 2, 23], but fail to model the discon-
tinuity at object boundaries and thus does not distinguish
the blurred and latent sharp depth. In this paper, we use
the second-order total generalized variation (TGV2, [5]) for
both the amplitude and depth, as shown in Eq. (4) and (5).

Φ(a) = min
y
λ1||∇a− y||1 + λ2||∇y||1 (4)

Ψ(z) = min
x
τ1||∇z− x||1 + τ2||∇x||1 (5)

The TGV2 prior automatically balances the first and
second order derivative constraints. Following Knoll et
al. [17], this can be intuitively understood as follows. In
flat regions of z, the second order derivative ∇2z is locally

Algorithm 1 Defocus Deblurring for ToF Depth Camera

Input: Raw measurements: b; modulation frequencies: f ;
upsampling ratio: r; number of iterations: N

Output: Estimated depth z and amplitude a
1: a = upsampling(magnitude(b), r)
2: z = upsampling(phase(b)/(4πf/c)), r)
3: for n = 1 to N do
4: K = updateKernel(z)
5: c = argmin

c
||b− SKc||22 + ρ||c− a ◦ g(z)||22

6: a = argmin
a

ρ||c− a ◦ g(z)||22 + Φ(a)

7: z = argmin
z

ρ||c− a ◦ g(z)||22 + Ψ(z)

8: end for

small, thus it benefits the minimization problem in Eq. (5)
to choose x = ∇z, and minimize the second order deriva-
tive ||∇x||1. While in the sharp edges of z (i.e., at ob-
ject boundaries), ∇2z is larger than ∇z, thus it benefits to
choose x as zero, and minimize the first order derivative
||∇z||1. Similar analysis applies for a as well. The parame-
ters λ1, λ2, τ1, τ2 define the relative weights of the first and
second order constraints. A modified version of TGV2 was
used in Ferstl et al. [6] for image guided depth upsampling.

a ◦ g(z) in Eq. (1) is highly nonlinear regarding to z. To
reduce the computation complexity in this nonlinear prob-
lem, the algorithm splits the data-fitting term in the objec-
tive (Eq. (3)) into a linear least square and a pixel-wise sepa-
rable nonlinear least square (LSQ), as in Eq. (6). The scalar
ρ defines the relative weight of the splitting term.

(a, z) = argmin
a,z,c

linear LSQ for c︷ ︸︸ ︷
||b− SKc||22 +

separable nonlinear LSQ for z︷ ︸︸ ︷
ρ||c− a ◦ g(z)||22

+ Φ(a) + Ψ(z)

(6)

Algo. 1 shows the high-level pseudocode of the proposed
method. The amplitude a and depth z are initialized as the
magnitude and phase of the complex-valued measurement
b, respectively, and upsampled by nearest-neighbor method
if superresolution wanted. Then the algorithm iteratively
updates the blur kernel matrix K, slack variable c, ampli-
tude a and depth z. The number of iterations N is typically
set as 10. Details of each subproblem are described in Sec-
tion 3.2 -3.5.

3.2. Kernel Update

The blur kernel is pre-calibrated at each pixel and sam-
pled depth. The algorithm updates K by a simple interpo-
lated lookup in the pre-calibrated table of kernels according
to the currently estimated depth z. The details of the cali-
bration procedure are explained in Section 4.



3.3. Slack Variable Update

The update of the slack variable c requires solving a lin-
ear least square problem (Algo. 1, Line 5). Since the result-
ing linear equation system is positive-definite, a number of
options for efficient solvers exist.

3.4. Amplitude Update

Algorithm 2 Update amplitude

Input: c, A, ρ, ρa, λ1, λ2, number of iterations: M
Output: Estimated amplitude a

1: for n = 1 to M do
2: a = argmin

a
ρ||c−Aa||22+λ1ρa||∇a−y−p1+u1||22

3: y = argmin
y

λ1||∇a− y − p1 + u1||22+

λ2||∇y − p2 + u2||22
4: p1 = argmin

p1

||p1||1 + ρa||∇a− y − p1 + u1||22
5: p2 = argmin

p2

||p2||1 + ρa||∇y − p2 + u2||22
6: u1 = u1 +∇a− y − p1

7: u2 = u2 +∇y − p2

8: end for

By substituting Φ(a) into the update rule for the ampli-
tude (Algo. 1, Line 6), we obtain the following optimization
problem

min
a,y

ρ||c−Aa||22 + λ1||∇a− y||1 + λ2||∇y||1, (7)

where A is a diagonal matrix composed of g(z). This prob-
lem is solved by the alternating direction method of multi-
pliers (ADMM [4]), as shown in Algo. 2. The a and y up-
dates are linear least squares problems. The p1,2-updates
are soft shrinkage problems and have closed form solu-
tions [4]. The number of ADMM iterations M is typically
set to 20. More details of each subproblem are provided in
the supplementary document.

3.5. Depth Update

In a similar fashion, we can substitute Ψ(z) into the up-
date rule for the depth (Algo. 1, Line 7), and obtain the
optimization problem

min
z,x

ρ||c−a ◦ g(z)||22+τ1||∇z−x||1+τ2||∇x||1 (8)

Once again, we apply the ADMM method to reduce this
problem into easier subproblems, as shown in Algo. 3. For
the sparse nonlinear least squares problem of updating z
(Algo. 3, Line 2), we use the Levenberg-Marquardt algo-
rithm [18, 20] with an analytical Jacobian for the cosine
model. To adapt our method to arbitrary (calibrated) wave-
forms, the only required change would be to replace this

Algorithm 3 Update depth

Input: c, a, ρ, ρx, τ1, τ2, number of iterations: M
Output: Updated depth z

1: for n = 1 to M do
2: z = argmin

z
ρ||c− a ◦ g(z)||22+

τ1ρx||∇z− x− q1 + v1||22
3: x = argmin

x
τ1||∇z− x− q1 + v1||22+

τ2||∇x− q2 + v2||22
4: q1 = argmin

q1

||q1||1 + ρx||∇z− x− q1 + v1||22
5: q2 = argmin

q2

||q2||1 + ρx||∇x− q2 + v2||22
6: v1 = v1 +∇z− x− q1

7: v2 = v2 +∇x− q2

8: end for

derivative estimate with a tabulated version based on the
calibration data. We use the cosine model for the experi-
ments in Section 5 for fair comparisons with previous work,
which makes the same assumption. Again, the q1,2 updates
are soft shrinkage problems, we useM = 20 iterations, and
all further details are provided in the supplementary docu-
ment.

4. Calibration

The blur kernel (PSF) pre-calibration for real measure-
ments is done by a similar approach to Heide et al. [13].
Fig. 2 shows the experiment setup. Printed random noise
patterns are attached on a flat white board, which is held on
a translation stage. The translation stage moves the white
board to place from 60cm to 160cm away from the camera,
with 1cm incremental. At each place, the camera captures
with large aperture (the same aperture used for real mea-
surements). Then, this process is repeated but with a small
aperture so that the scene is nearly in-focus. Next, the am-
plitude images of the two captures at each place are used to
estimate the PSF as a non-blind deconvolution problem.

5. Results

We test the proposed algorithm on both synthetic and
real datasets, and compare with two methods: the naive
method, which computes the amplitude and depth as the
magnitude and phase of the raw complex images respec-
tively; and Godbaz et al. [9], which alternatively updates
blur kernels and deconvolves the complex image with a
Gaussian prior.

Synthetic data. The results on a simulated Buddha
scene is shown in Fig. 3. The naive amplitude a and depth
z are blurry and contain strong noise and flying pixels. In
the visualized depth map, the flying pixels appear in dif-



(a) Estimated a, from left to right, by ground truth, naive method
(29.1dB), Godbaz method (31.9dB) and ours (34.5dB).

(b) Estimated z, from left to right, by ground truth, naive method
(36.2dB), Godbaz method (37.3dB) and ours (43.0dB).

Figure 3: Results on simulated Buddha scene with 0.5%
white noise. Our method significantly reduce the blurriness
and suppress noise in both a and z, and reducing the flying
pixels at object boundaries. PSNR of the results are pro-
vided in the brackets.

ferent color than the foreground and background surface at
the boundaries. Godbaz et al. method is highly sensitive to
noise. Their result to some extent reduces the blurriness, but
contains obvious noise, ringing artifacts and flying pixels.
The proposed method significantly reduces the blurriness
and flying pixels, and suppress the noise in both the ampli-
tude a and depth z. The results are compared with ground
truth data. Our approach produces much higher PSNR than
the other methods.

In Fig. 4, we show the PSNR values of our estimated a
and z at each iteration (i.e., n in Algo. 1).

Real data. We captured real datasets using the Digicam
camera from PMDTechnologies (Fig. 2) with a 6-15mm and
f/1.4 lens. 30MHz modulation frequency and 300 microsec-
ond exposure time are used, and a single frame is captured
for each scene. We crop out the pixels near image bound-
aries and the typical resolution of input images is 250×180
pixels. The pre-calibrated PSFs have a width of 5-11 pixels
at depths between 0.6 and 1.6m.

In Fig. 5 we show the photographs of the captured
scenes. The results and comparisons are shown in Fig. 6, 9
and 12, and cropped regions are shown in Fig. 7, 10 and 13.
In Fig. 8, we show the mesh geometry color-coded accord-
ing to surface normal to better illustrate the depth results.
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Figure 4: PSNR of our estimated amplitude a and depth z
on the Buddha scene at each iteration.

(a) Camel (b) Character

(c) Board

Figure 5: RGB Photos of the real scenes.

Please zoom in for better views.
Similarly as in the synthetic example, Godbaz et

al. method is unable to handle noise (which is common
in low-end ToF cameras), and fails to recover sharp scene
features. Our method produces much higher quality ampli-
tude and depth, in term of suppressing the noise, recover-
ing sharp features and reducing flying pixels. We also run
our algorithm with 2x superresolution (i.e., upsampling ra-
tio r = 2 in Algo. 1), and show that we achieve even better
results with superresolution in our joint optimization frame-
work. We use bicubic interpolation for the downsampling
operator S. In Fig. 11, we show our results with different
upsampling ratios, and observe that little more details are
recovered beyond 4x upsampling for our dataset.

We tune the parameters to generate results of compared
method and ours. For our results, ρ (in Algo. 1), ρa (in
Algo. 2) and ρx (in Algo. 3) are fixed as 0.125, 10 and 10 re-
spectively. In Algo. 2, λ1 is typically set as 0.001 or 0.002,
and λ2 as 20 or 40 times λ1. In Algo. 3, τ1 is typically set
as 0.0005 or 0.001, and τ2 as 20 or 40 times τ1.



(a) Real part of b (b) Imaginary part of b

(c) Naive a (d) Naive z

(e) Godbaz a (f) Godbaz z

(g) Our a (h) Our z

(i) Our a with superresolution (j) Our z with superresolution

Figure 6: Results on the Camel scene. In (a-b) the red color
indicates positive values and blue negative in the raw mea-
surements. The cropped regions are shown in Fig. 7.

We run our highly unoptimized Matlab code with a sin-
gle core on an Intel i7 2.4GHz CPU. The running time is
reported taken the Character scene as an example. During
the total 10 iterations in Algo. 1 with no superresolution,
our code took 80 seconds for updating the slack variable c
(Sec. 3.3), 16 seconds for the amplitude (Sec. 3.4), and 347
seconds for the depth (Sec. 3.5). We believe the code can
be further accelerated by choosing more efficient solvers for
some subproblems or running on GPU. For example, the
current Levenberg-Marquardt Matlab solver used in Algo. 3
can be replaced with much more efficient ones [1].

Figure 7: Two insets of the results on the Camel scene in
Fig. 6. From left to right shows the naive method, Godbaz
et al. method, ours, and ours with superresolution.

(a) Naive z (b) Godbaz z

(c) Our z (d) Our z with superresolution

Figure 8: Mesh visualization for the Camel scene in Fig. 6.
The color indicates the surface normal in horizontal direc-
tion, i.e., blue indicates left-faced surface and red the oppo-
site.

6. Discussion
Regularization strategy. To verify the benefit of di-

rectly regularizing and solving the latent amplitude and
depth, we replaced the Gaussian derivative prior in God-
baz et al. [9] with the TGV2 prior on the complex image,
and solved the complex image using ADMM framework.
The result on the Camel scene is shown in Fig. 14. Even
though the prior weight is high enough to over-smooth the
amplitude, the estimated depth still contains strong noise
compared to Fig. 6. This demonstrates the high quality of
our results is to a large part owed to the approach of regu-
larizing z and a directly.

Joint deblurring and superresolution. To show the
advantage of our joint deblurring and superresolution from
ToF raw measurements, we compare with the results of su-
perresolution after deblurred by each method. Two exam-
ple insets are shown in Fig. 15. Our jointly deblurred and



(a) Real part of b (b) Imaginary part of b

(c) Naive a (d) Naive z

(e) Godbaz a (f) Godbaz z

(g) Our a (h) Our z

(i) Our a with superresolution (j) Our z with superresolution

Figure 9: Results on the Character scene. The cropped re-
gions are shown in Fig. 10.

super-resolved depth and amplitude preserve sharp features
and reduce flying pixels better than the others.

Multiple frequencies, phases and exposures. The lat-
est generation of ToF cameras uses multiple frequencies
or phases in order to reduce range ambiguity and improve
depth resolution. Multiple exposures could be used to in-
crease the dynamic range of the raw measurements and re-

Figure 10: Two insets of the results on the Character scene
in Fig. 9. From left to right shows the naive method, Godbaz
et al. method, ours, and ours with superresolution.

Figure 11: We run the proposed algorithm on an inset of the
Character scene with different upsampling ratios. From left
to right shows the result of naive method, and ours with 1x,
2x, 4x, 6x superresolution respectively. We observed that
little more details are recovered beyond 4x upsampling.

move artifacts due to lack of reflection or over-saturation
in one shot. The proposed algorithm well adapts for these
cameras since the latent amplitude and depth is solved di-
rectly from the raw measurements, which could come from
different captures and put together in the data-fitting term.

Defocus level. The pixel width of current ToF sensor is
approximately 45µm, compared with RGB sensors which
have approximately 5µm pixel size. As the ToF sensor res-
olution increases as the technology matures, the defocus ef-
fect in ToF imaging is expected to be more obvious and
the importance of deblurring ToF images will become more
pronounced.

Limitations and future work. Both the proposed
method and the compared Godbaz et al [9] assume white
Gaussian noise in the raw measurements. This noise model
is inaccurate due to the non-linear image formation model,
typically relatively low light conditions, as well as ambient
light canceling in ToF imaging [10], which amplifies shot
noise. As a future work we would like to study more accu-
rate noise models for ToF cameras.

7. Conclusion
In this paper we proposed an effective method to simulta-

neously remove lens blur and increase image resolution for
ToF depth cameras. Our algorithm solves the latent ampli-
tude and depth directly from the raw complex images, and



(a) Real part of b (b) Imaginary part of b

(c) Naive a (d) Naive z

(e) Godbaz a (f) Godbaz z

(g) Our a (h) Our z

(i) Our a with superresolution (j) Our z with superresolution

Figure 12: Results on the Board scene. The cropped regions
are shown in Fig. 13.

separate priors are used for each to recover sharp features
and reduce flying pixels and noise. We show our algorithm
significantly improves the image quality on simulated and
real dataset compared with previous work. Unlike previous
approaches, our method is not fundamentally limited to the
cosine model for continuous-wave ToFcameras, which has
been shown to be inaccurate for many systems (e.g. [12])

Figure 13: Two insets of the results on the Board scene in
Fig. 12. From left to right shows the naive method, Godbaz
et al. method, ours, and ours with superresolution.

(a) Estimated a (b) Estimated z

Figure 14: Experiment results using the TGV2 prior on
the complex images. The estimated amplitude is over-
smoothed while the depth is still highly noisy.

(a) (b) (c) (d) (e)

Figure 15: The top row shows depth results, and bottom
amplitude. From left to right: (a) naive method; (b) naive
method + post-superresolution; (c) Godbaz et al. + post-
superresolution; (d) our deblurred + post-superresolution;
and (e) our jointly deblurred and superresolved. The TGV2

prior is used for all post-superresolution. These two scenes
are from Fig. 7 and 10.

and should adapt to multi-frequency, multi-phase or multi-
exposure ToF cameras.
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