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Abstract

We focus on modeling human activities comprising mul-

tiple actions in a completely unsupervised setting. Our

model learns the high-level action co-occurrence and tem-

poral relations between the actions in the activity video.

We consider the video as a sequence of short-term action

clips, called action-words, and an activity is about a set

of action-topics indicating which actions are present in the

video. Then we propose a new probabilistic model relat-

ing the action-words and the action-topics. It allows us to

model long-range action relations that commonly exist in

the complex activity, which is challenging to capture in the

previous works.

We apply our model to unsupervised action segmentation

and recognition, and also to a novel application that detects

forgotten actions, which we call action patching. For evalu-

ation, we also contribute a new challenging RGB-D activity

video dataset recorded by the new Kinect v2, which con-

tains several human daily activities as compositions of mul-

tiple actions interacted with different objects. The extensive

experiments show the effectiveness of our model.

1. Introduction

We consider modeling human activities containing a se-

quence of actions (see an example in Fig. 1), as perceived

by an RGB-D sensor in home and office environments. In

the complex human activity such as warming milk in the ex-

ample, there are not only short-range action relations, e.g.,

microwaving is often followed by fetch-bowl-from-oven, but

there are also long-range action relations, e.g., fetch-milk-

from-fridge is strongly related to put-milk-back-to-fridge

even though several other actions occur between them.

The challenge that we undertake in this paper is: Can

an algorithm learn about the aforementioned relations in

the activities when just given a completely unlabeled set

of RGB-D videos?

Most previous works focus on action detection in a su-

pervised learning setting. In the training, they are given

Figure 1: Our goal is to automatically segment RGB-D videos

and assign action-topics to each segment. We propose a com-

pletely unsupervised approach to modeling the human skeleton

and RGB-D features to actions, as well as the pairwise action co-

occurrence and temporal relations. We then show that our model

can be used to detect which action people forgot, a new application

which we call action patching.

fully labeled actions in videos [23, 29, 31], or weakly su-

pervised action labels [9, 7], or locations of human/their

interactive objects [21, 35, 25]. Among them, the tempo-

ral structure of actions is often discovered by Markov mod-

els such as Hidden Markov Model (HMM) [34] and semi-

Markov [12, 32], or by linear dynamical systems [3], or by

hierarchical grammars [27, 37, 20, 39, 2], or by other spatio-

temporal representations [15, 26, 17, 19]. Most of these

works are based on RGB features and only model the short-

range relations between actions (see Section 2 for details).

Different from these approaches, we consider a com-

pletely unsupervised setting. The novelty of our approach

is the ability to model the long-range action relations in

the temporal sequence, by considering pairwise action co-

occurrence and temporal relations, e.g., put-milk-back-to-

fridge often co-occurs with and temporally after fetch-milk-

from-fridge. We also use the more informative human skele-

ton and RGB-D features, which show higher performance

over RGB only features for action recognition [18, 42, 22].
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In order to capture the rich structure in the activity, we

draw strong parallels with the work done on document mod-

eling from natural language (e.g., [6]). We consider an ac-

tivity video as a document, which consists of a sequence

of short-term action clips as action-words. And an activity

is about a set of action-topics indicating which actions are

present in the video, such as fetch-milk-from-fridge in the

warming milk activity. Action-words are drawn from these

action-topics and has a distribution for each topic. Then we

model the following (see Fig. 2):

• Action co-occurrence. Some actions often co-occur

in the same activity. We model the co-occurrence

by adding correlated topic priors to the occurrence

of action-topics, e.g., fetch-milk-from-fridge and put-

milk-back-to-fridge has strong correlations.

• Action temporal relations. Some actions often causally

follow each other, and actions change over time during

the activity execution. We model the relative time dis-

tributions between every action-topic pair to capture

the temporal relations.

We first show that our model is able to learn meaningful rep-

resentations from the unlabeled activity videos. We use the

model to temporally segment videos to segments assigned

with action-topics. We show that these action-topics are se-

mantically meaningful by mapping them to ground-truth ac-

tion classes and evaluating the labeling performance.

We then also show that our model can be used to de-

tect forgotten actions in the activity, a new application that

we call action patching. We show that the learned co-

occurrence and temporal relations are very helpful to infer

the forgotten actions by evaluating the patching accuracy.

We also provide a new challenging RGB-D activity

video dataset recorded by the new Kinect v2 (see examples

in Fig. 8), in which the human skeletons and the audio are

also recorded. It contains 458 videos of human daily activi-

ties as compositions of multiple actions interacted with dif-

ferent objects, in which people forget actions in 222 videos.

They are performed by different subjects in different envi-

ronments with complex backgrounds.

In summary, the main contributions of this work are:

• Our model is completely unsupervised and non-

parametric, thus being more useful and scalable.

• Our model considers both the short-range and the long-

range action relations, showing the effectiveness in the

action segmentation and recognition, as well as in a

new application action patching.

• We provide a new challenging RGB-D activity dataset

recorded by the new Kinect v2, which contains videos

of multiple actions interacted with different objects.

2. Related Work

Most previous works on action recognition are super-

vised [21, 9, 26, 23, 29, 35, 7, 24]. Among them, the linear

models [34, 12, 32, 3] are the most popular, which focus on

modeling the action transitions in the activities. More com-

plex hierarchical relations [27, 37, 20, 39] or graph rela-

tions [2] are considered in modeling actions in the complex

activity. Although they have performed well in different ar-

eas, most of them rely on local relations between adjacent

clips or actions that ignore the long-term action relations.

There also exist some unsupervised approaches on action

recognition. Yang et al. [43] develop a meaningful repre-

sentation by discovering local motion primitives in an unsu-

pervised way, then a HMM is learned over these primitives.

Jones et al. [13] propose an unsupervised dual assignment

clustering on the dataset recorded from two views.

Different from these approaches, we use the richer hu-

man skeleton and RGB-D features rather than the RGB ac-

tion features [38, 14]. We model the pairwise action co-

occurrence and temporal relations in the whole video, thus

relations are considered globally and completely with the

uncertainty. We also use the learned relations to infer the

forgotten actions without any manual annotations.

Action recognition using human skeletons and RGB-D

camera have shown the advantages over RGB videos in

many works. Skeleton-based approach focus on propos-

ing good skeletal representations [31, 33, 36, 42, 22].

Besides of the human skeletons, we also detect the hu-

man interactive objects in an unsupervised way to pro-

vide more discriminate features. Object-in-use contextual

information has been commonly used for recognizing ac-

tions [18, 19, 25, 39]. Most of them depend on correct ob-

ject tracking or local motion changes. They lost the high-

level action relations which can be captured in our model.

Our work is also related to the topic models. LDA [6]

was the first hierarchical Bayesian topic model and widely

used in different applications. The correlated topic mod-

els [4, 16] add the priors over topics to capture topic corre-

lations. A topic model over absolute timestamps of words

is proposed in [40] and has been applied to action recog-

nition [10]. However, the independence assumption of dif-

ferent topics would lead to non smooth temporal segmen-

tations. Differently, our model considers both correlations

and the relative time distributions between topics rather than

the absolute time, which captures richer information of ac-

tion structures in the complex human activity.

3. Overview

We outline our approach in this section (see approach pi-

pline in Fig. 2). The input to our system is RGB-D videos

with the 3D joints of human skeletons from Kinect v2.

We first decompose a video into a sequence of overlapping

fixed-length temporal clips (step (1)). We then extract the

human skeleton features and the human interactive object

features from the clips (introduced in Section. 3.1), which

show higher performance over RGB only features for action

recognition [18, 42, 22].
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Figure 2: The pipeline of our approach. Training (blue arrows) follows steps (1), (2), (3), (4). Testing (red arrows) follows steps (1), (3),

(5). The steps are: (1) Decompose the video into a sequence of overlapping fixed-length temporal clips. (2) Learn the action-dictionary

by clustering the clips, where the cluster centers are action-words. (3) Map the clips to the action-words in the action-dictionary to get

the action-word representation of the video. (4) Learn the model from the action-word representations of training videos. (5) Assign

action-words in the video with action-topics using the learned model.

In order to build a compact representation of the action

video, we draw parallels to document modeling in the natu-

ral language [6] to represent a video as a sequence of words.

We use k-means to cluster the clips to form an action-

dictionary, where we use the cluster centers as action-words

(step (2)). Then, the video can be represented as a sequence

of action-word indices by mapping its clips to the nearest

action-words in the dictionary (step (3)). And an activity

video is about a set of action-topics indicating which ac-

tions are present in the video.

We then build an unsupervised learning model (step (4))

that models the mapping of action-words to the action-

topics, as well as the co-occurrence and the temporal re-

lations between the action-topics. Using the learned model,

we can assign the action-topic to each clip (step (5)), so that

we can get the action segments, the continuous clips with

the same assigned topic.

The unsupervised action-topic assignments of action-

words are challenging because there is no annotations dur-

ing the training stage. Besides extracting rich visual fea-

tures, we well consider the relations between action-topics.

Different from previous works, our model can capture

long-range relations between actions e.g., put-milk-back-

to-fridge is strongly related to fetch-milk-from-fridge with

pouring and drinking between them. We model all pair-

wise co-occurrence and temporal casual relations between

occurring action-topics in the video, using a new probabilis-

tic model (introduced in Section 4). Specifically, we use a

joint distribution as the correlated topic priors. They esti-

mate which actions are most likely to co-occur in a video.

And we use a relative time distributions of topics to capture

the temporal causal relations. They estimate the possible

temporal ordering of the occurring actions in the video.

Figure 3: Examples of the human skeletons (red line) and the ex-

tracted interactive objects (green mask, left: fridge, right: book).

3.1. Visual Features

We describe how we extract the visual features of a clip

in this sub-section. We extract both skeleton and object fea-

tures from the output by the Kinect v2 [1], which has an im-

proved body tracker and higher resolution of RGB-D frame

than the Kinect v1. The skeleton has 25 joints in total. Let

Xc = {xc
1, x

c
2, · · · , x

c
25} be the 3D coordinates of 25 joints

of a skeleton in the current frame. We first compute the

cosine of the angles between the connected parts in each

frame: αi = pi+1 · pi/|pi+1| · |pi|, where pi = xi+1 − xi

is the body part. The change of the joint coordinates and

angles can well capture the human body movements. So

we extract the motion features and off-set features [42] by

computing their Euclidean distances D(, ) to previous frame

fx
c,c−1, f

α
c,c−1 and the first frame fx

c,1, f
α
c,1 in the clip:

fx
c,c−1 = {D(xc

i , x
c−1
i )}25i=1, f

α
c,c−1 = {D(αc

i , α
c−1
i )}25i=1;

fx
c,1 = {D(xc

i , x
1
i )}

25
i=1, f

α
c,1 = {D(αc

i , α
1
i )}

25
i=1.

Then we concatenate all fx
c,c−1, f

α
c,c−1, f

x
c,1, f

α
c,1 as the hu-

man features of the clip.

We also extract the human interactive objects based on

the human hands, motion detection and edge detection. The

interactive objects can help discriminate the different hu-

man actions with similar body motions such as fetch-book

and turn-on-monitor. To detect the interactive objects, first

we segment each frame into super-pixels using a fast edge

detection approach [8] on both RGB and depth images. The

image segmentation provides richer candidate super-pixels
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Figure 4: The graphic model of LDA (left) and our model (right).

rather than pixels to further extracting objects. Second we

use a moving targets detection approach [28] to detecting

foreground mask by removing the unnecessary steady back-

grounds. Third we consider the interactive objects should

be close to tracked human hands. Combining above three

facts, we extract features from the image segments with

more than 50% in the foreground mask and within a dis-

tance to the human hand joints in both 3D points and 2D

pixels (see examples in Fig. 3). Then we extract six ker-

nel descriptors from these image segments: gradient, color,

local binary pattern, depth gradient, spin, surface normals,

and KPCA/self-similarity, which have been proven to be

useful features for RGB-D scene labeling [41]. We con-

catenate the human features and the object features as the

final feature vector of a clip.

4. Learning Model

In order to incorporate the aforementioned properties of

activities for patching, we present a new generative model

(see the graphic model in Fig. 4-right and the notations in

Fig. 5 and Table 1). The novelty of our model is the ability

to infer the probability of forgotten actions in a complex

activity video.

Consider a collection of D videos (documents in the

topic model). Each video consists of Nd action-words

{wnd}
Nd

n=1 mapped to the action-dictionary. Consider K la-

tent action-topics, znd is the topic assignment of each word,

indicating which action-topic the action-word wnd belongs

to in the video. Then continuous action-words with the

same topic in a video consist an action segment, and the

segments assigned with the same topic from different videos

consist an action-topic segment cluster.

The topic model such as LDA [6] has been very common

for document modeling from language (see graphic model

in Fig. 4-left), which generates a document using a mixture

of topics. To model human actions in the video, our model

introduces co-occurrence and temporal structure of topics

instead of the topic independency assumption in LDA.

Table 1: Notations in our model.

Symbols Meaning

D number of videos in the training database;

K number of action-topics;

Nd number of words in a video;

wnd n-th word in d-th document;

znd topic-word assignment of wnd;

tnd the normalized timestamp of of wnd;

tmnd = tmd − tnd the relative time between wmd and wnd;

π:d the probabilities of topics in d-th document;

v:d the priors of π:d in d-th document;

φk the multinomial distribution of the word from topic k;

µ,Σ the mutivariate normal distribution of v:d;

θkl the relative time distribution of tmnd, between topic k, l;

Figure 5: Notations in a video.

Basic generative process. In a document d, the topic

assignment znd is chosen from a multinomial distribution

with parameter π:d, zdn ∼ Mult(π:d), where π:d is sam-

pled from a prior. And the word wnd is generated by a topic-

specific multinomial distribution φznd
, wdn ∼ Mult(φzdn),

where φk ∼ Dir(β) is the word distribution of topic k,

sampled from a Dirichlet prior with the hyperparameter β.

Topic correlations. First we consider correlations be-

tween topics to model the probabilities of co-occurrence of

actions. Let πkd be the probability of topic k occurring in

document d, where
∑K

k=1 πkd = 1. Instead of sampling

it from a fix Dirichlet prior with parameter α in LDA, we

construct the probabilities by a stick-breaking process:

πkd = Ψ(vkd)
k−1
∏

l=1

Ψ(vld), Ψ(vkd) =
1

1 + exp(−vkd)
,

where 0 < Ψ(vkd) < 1 is a classic logistic function, which

satisfies Ψ(−vkd) = 1−Ψ(vkd), and vkd serves as the prior

of πkd. The vector v:d in a video are drawn from a mutivari-

ate normal distribution N(µ,Σ), which captures the corre-

lations between topics. In practice, v:d = [v1d, · · · , vK−1,d]
is a truncated vector for K − 1 topics, then we can set

πKd = 1 −
∑K−1

k=1 πkd =
∏K−1

k=1 Ψ(−vkd) as the proba-

bility of the final topic for a valid distribution of π:d.

Relative time distributions. Second we model the rel-

ative time of occurring actions by taking their time stamps

into account. We consider that the relative time between

two words are drawn from a certain distribution according

to their topic assignments. In detail, let tnd, tmd ∈ (0, 1)
be the absolute time stamp of n-th word and m-th word,

which is normalized by the video length. tmnd = tmd− tnd
is the relative time of m-th word relative to n-th word (the

green line in Fig. 5). Then tmnd is drawn from a certain

distribution, tmnd ∼ Ω(θzmd,znd
), where θzmd,znd

are the

parameters. Ω(θk,l) are K2 pairwise topic-specific relative
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Figure 6: The relative time distributions learned by our model on

training set (the blue dashed line) and the ground-truth histogram

of the relative time over the whole dataset (the green solid line).

time distributions defined as follows:

Ω(t|θk,l) =

{

bk,l ·N(t|θ+k,l) if t ≥ 0,

1− bk,l ·N(t|θ−k,l) if t < 0,
(1)

An illustration of the learned relative time distributions

are shown in Fig. 6. We can see that the distributions we

learned can correctly reflect the order of the actions, e.g.,

put-back-to-fridge is after pouring and can be before/after

microwaving, and the shape is mostly similar to the real dis-

tributions. Here the Bernoulli distribution bk,l/1−bk,l gives

the probability of action k after/before the action l. And

two independent normal distributions N(t|θ+k,l)/N(t|θ−k,l)

estimate how long the action k is after/before the action l1.

Then the order and the length of the actions will be captured

by all these pairwise relative time distributions.

5. Gibbs Sampling for Learning and Inference

Gibbs sampling is commonly used as a means of statis-

tical inference to approximate the distributions of variables

when direct sampling is difficult [5, 16]. Given a video,

the word wnd and the relative time tmnd are observed. In

the training stage, given a set of training videos, we use

Gibbs sampling to approximately sample other hidden vari-

ables from the posterior distribution of our model. Since

we adopt conjugate prior Dir(β) for the multinomial dis-

tributions Φk, we can easily integrate out Φk and need not

to sample them. For simplicity and efficiency, we estimate

the standard distributions including the mutivariate normal

distribution N(µ,Σ) and the time distribution Ω(θkl) by the

method of moments, once per iteration of Gibbs sampling.

And as in many applications using the topic model, we use

fixed symmetric Dirichlet distributions by setting β = 0.01.

In the Gibbs sampling updates, then we need to sample

the topic assignment znd and the topic prior v:d. We can do

a collapsed sampling as in LDA by calculating the posterior

1Specially, when k = l, If two words are in the same segments, we

draw t from a normal distribution which is centered on zero, and the vari-

ance models the length of the action. If not, it also follows Eq. (1) indi-

cating the relative time between two same actions. We also use functions

tan(−π/2 + πt)(0 < t < 1), tan(π/2 + πt)(−1 < t < 0) to feed t to

the normal distribution so that the probability is valid, that summits to one

through the domain of t.

distribution of znd:

p(znd = k|π:d, z−nd, tnd) ∝ πkdω(k, wnd)p(tnd|z:d, θ),

ω(k, wnd) =
N−nd

kw + β

N−nd
k +Nβ

, (2)

p(tnd|z:d, θ) =
∏

m

Ω(tmnd|θzmd,k)Ω(tnmd|θk,zmd
),

where N is the number of unique word types in dictionary,

N−nd
kw denotes the number of instances of word wnd as-

signed with topic k, excluding n-th word in d-th document,

and N−nd
k denotes the number of total words assigned with

topic k. z−nd denotes the topic assignments for all words

except znd.

Note that, in Eq. (2), πkd is the topic prior generated

by a joint distribution giving which actions are more likely

to co-occur in the video. ω(k, wnd) is the word distri-

bution for topic k giving which topic the word is more

likely from. And p(tnd|z:d, θ) is the time distribution giv-

ing which topic-assignment of the word is more causally

consistent to other topic-assignments.

Due to the logistic stick-breaking transformation, the

posterior distribution of v:d does not have a closed form. So

we instead use a Metropolis-Hastings independence sam-

pler [11]. Let the proposals q(v∗:d|v:d, µ,Σ) = N(v∗:d|µ,Σ)
be drawn from the prior. The proposal is accepted with

probability min(A(v∗:d, v:d), 1), where

A(v∗:d, v:d) =
p(v∗:d|µ,Σ)

∏Md

n=1 p(znd|v
∗

:d)q(v:d|v
∗

:d, µ,Σ)

p(v:d|µ,Σ)
∏Md

n=1 p(znd|v:d)q(v
∗

:d|v:d, µ,Σ)

=

Md
∏

n=1

p(znd|v
∗

:d)

p(znd|v:d)
=

K
∏

k=1

(
π∗

kd

πkd

)
∑Nd

n=1
δ(znd,k),

which can be easily calculated by counting the number of

words assigned with each topic by znd. Here the function

δ(x, y) = 1 if only if x = y, otherwise equal to 0. The time

complexity of the sampling per iteration is O(N2
dKD).

Given a test video, we fix all parameters learned in the

training stage and only sample the topic assignments znd
and the topic priors v:d.

5.1. Action Segmentation and Recognition

After we learn the topic-assignment of each action-word,

we can easily get the action segments by merging the con-

tinuous clips with the same assigned topic. Also the as-

signed topic of the segment indicate which action it is and

these segments with the same assigned topic consist an

action-topic segment cluster.

5.2. Action Patching

We also apply our model in a new significant applica-

tion, called action patching. It reminds people of forgot-

ten actions by output a segment containing the forgotten ac-

tion from the training set (illustrated in Fig. 7). It is more

challenging than conventional similarity search, since the
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Figure 7: Illustration of action patching using our model.

Given a test video, we infer the forgotten topic from all miss-

ing topics in each segmentation point (t1, t2 as above) using the

learned co-occurrence and temporal relations of the topics. Then

we select the top segment from the inferred action-topic’s segment

cluster by ranking them using a frame-wise similarity score.

retrieved target is not shown in the query video. Therefore,

learning the action co-occurrence and the temporal relations

is important in this application.

Different from existing models on action relations learn-

ing, our model learns all the pairwise relations rather than

only the local and the past-to-future transitions. This is very

useful to patching, since those actions occurred with a rela-

tively large time interval with or actions occurred after the

forgotten actions are also helpful to detect it, e.g., a put-

back-book might be forgotten as previously seen a fetch-

book action before a long reading, and seen a leaving action

indicates he really forgot to put-back-book.

Our model infers the forgotten action using the probabil-

ity inference based on the dependencies. After assigning the

topics to the action-words of a query video q, we consider

adding one additional action-word ŵ into the video in each

segmentation point ts. Then the probabilities of the miss-

ing topics km in each segmentation point can be compared

following the posterior distribution in Eq. (2):

p(zŵ = km, tŵ = ts|other) ∝ πkmdp(ts|z:d, θ)
∑

w

ω(km, w),

s.t. ts ∈ Ts, km ∈ [1 : K]−Ke,

where Ts is the set of segmentation points (t1, t2 in Fig. 7)

and Ke is the set of existing topics in the video (fetch-

book,etc. in Fig. 7). Thus [1 : K] − Ke are the miss-

ing topics in the video (turn-off-monitor,etc. in Fig. 7).

p(ts|z:d, θ), ω(km, w) can be computed as in Eq. (2). Here

we marginized ŵ to avoid the effect of a specific action-

word. Note that, πkd gives the probability of a missing

topic in the video decided by the correlation we learned in

the joint distribution prior, i.e., the close topics have higher

probabilities to occur in this query video. And p(ts|z:d, θ)
measures the casual consistency of adding a new topic.

Then we rank the pair (km, ts) using the above score

and select the top ones (three in the experiments). The seg-

ments with the selected topics km in the training set con-

sist a candidate patching segment set. Finally, we select

the top one from the candidates to output by comparing

their frame-wise distances. In detail, we consider that the

front and the tail of the patching segment fpf , fpt should

be similar to the tail of the adjacent segment in q before ts
and the front of the adjacent segment in q after ts: fqt, fqf .

At the same time, the middle of the patching segment fpm
should be different to fqt, fqf , as it is a different action for-

gotten in the video.2 So we choose the patching segment

with the maximum score: ave(D(fpm, fqf ),D(fpm, fqt))−
max(D(fpf , fqt),D(fpt, fqf )), where D(, ) is the average

pairwise distances between frames, ave(, ),max(, ) are the

average and max value. If the maximum score is below a

threshold or there is no missing topics (i.e.,Ke = [1 : K])
in the query video, we claim there is no forgotten actions.

6. Experiments

6.1. Dataset

We collect a new challenging RGB-D activity dataset

recorded by the new Kinect v2 camera 3. Each video in the

dataset contains 2-7 actions interacted with different objects

(see examples in Fig. 8). The new Kinect v2 has higher

resolution of RGB-D frames (RGB: 1920 × 1080, depth:

512 × 424) and improved body tracking of human skele-

tons (25 body joints). We record 458 videos with a total

length of about 230 minutes. We ask 7 subjects to perform

human daily activities in 8 offices and 5 kitchens with com-

plex backgrounds. And in each environment the activities

are recorded in different views. It composed of fully anno-

tated 21 types of actions (10 in the office, 11 in the kitchen)

interacted with 23 types of objects. We also record the au-

dio, though it is not used in this paper.

In order to get a variation in activities, we ask partici-

pants to finish task with different combinations of actions

and ordering naturally. Some actions occur together often

such as fetch-from-fridge and put-back-to-fridge while some

are not always in the same video (see more examples on our

website). Some actions are in fix ordering such as fetch-

book and put-back-book while some occur in random order.

Moreover, to evaluate the action patching performance, 222
videos in the dataset has action forgotten by people natu-

rally and the forgotten actions are annotated.

6.2. Experimental Setting and Compared Baselines

We evaluate in two environments ‘office’ and ‘kitchen’.

In each environment, we split the data into a train set with

most full videos (office: 87, kitchen 119) and a few for-

gotten videos (office: 10, kitchen 10), and a test set with a

few full videos (office: 10, kitchen 20) and most forgotten

videos (office: 89, kitchen 113). We compare seven unsu-

pervised approaches in our experiments. They are Hidden

2Here the middle, front, tail frames are 20%-length of segment center-

ing on the middle frame, starting from the first frame, and ending at the

last frame in the segment respectively.
3The dataset and tools are released at http://watchnpatch.cs.

cornell.edu
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(a) turn-off-monitor (b) take-item

(c) fetch-from-fridge (d) fill-kettle

Figure 8: Action examples in our dataset. The left is RGB frame

and the right is depth frame with human skeleton (yellow). The

full action classes are shown on our website.

Markov Model (HMM), topic model LDA (TM), correlated

topic model (CTM), topic model over absolute time (TM-

AT), correlated topic model over absolute time (CTM-AT),

topic model over relative time (TM-RT) and our causal topic

model (CaTM), that is the correlated topic model over rel-

ative time. All these methods use the same human skele-

ton and RGB-D features introduced in Section 3.1. We

also evaluate HMM and our model CaTM using the pop-

ular features for action recognition, dense trajectories fea-

ture (DTF) [38], extracted only in RGB videos4, named as

HMM-DTF and CaTM-DTF.

In the experiments, we set the number of topics (states

of HMM) equal to or more than ground-truth action classes.

For correlated topic models, we use the same topic prior in

our model. For models over absolute time, we consider the

absolute time of each word is drawn from a topic-specific

normal distribution. For models over relative time, we use

the same relative time distribution as in our model (Eq. (1)).

The clip length of the action-words is set to 20 frames,

densely sampled by step one and the size of action dic-

tionary is set to 500. For patching, the candidate set for

different approaches consist of the segments with the in-

ferred missing topics by transition probabilities for HMM,

the topic priors for TM and CTM, and both the topic pri-

ors and the time distributions for TM-AT, TM-RT, CTM-AT

and our CaTM. Then we use the same ranking score as in

Section 5.2 to select the top one patched segments.

6.3. Evaluation Metrics

We want to evaluate if the unsupervised learned action-

topics (states for HMM) are semantically meaningful. We

first map the assigned topics to the ground-truth labels for

evaluation. This could be done by counting the mapped

frames between topics and ground-truth classes. Let ki, ci
be the assigned topic and ground-truth class of frame i.

The count of a mapping is: mkc =
∑

i
δ(ki,k)δ(ci,c)∑

i
δ(ci,c)

, where
∑

i δ(ki, k)δ(ci, c) is the number of frames assigned with

topic k as the ground-truth class c and normalized by the

number of frames as the ground-truth class c:
∑

i δ(ci, c).
Then we can solve the following binary linear programming

4We train a codebook with the size of 2000 and encode the extracted

DTF features in each clip as the bag of features using the codebook.

to get the best mapping:

max
x

∑

k,c

xkcmkc,

s.t. ∀k,
∑

c

xkc = 1, ∀c,
∑

k

xkc ≥ 1, xkc ∈ {0, 1},

where xkc = 1 indicates mapping topic k to class c, other-

wise xkc = 0. And
∑

c xkc = 1 constrain that each topic

must be mapped to exact one class,
∑

k xkc ≥ 1 constrain

that each class must be mapped by at least one topic.

We then measure the performance in two ways. Per

frame: we compute frame-wise accuracy (Frame-Acc), the

ratio of correctly labeled frames. Segmentation: we con-

sider a true positive if the overlap (union/intersection) be-

tween the detected and the ground-truth segments is more

than a default threshold 40% as in [27]. Then we compute

segmentation accuracy (Seg-Acc), the ratio of the ground-

truth segments that are correctly detected, and segmenta-

tion average precision (Seg-AP) by sorting all action seg-

ments output by the approach using the average probability

of their words’ topic assignments. All above three metrics

are computed by taking the average of each action class.

We also evaluate the patching accuracy (P-Acc) by the

portion of correct patched video, including correctly output

the forgotten action segments or correctly claiming no for-

gotten actions. We consider the output action segments by

the algorithm containing over 50% ground-truth forgotten

actions as correctly output the forgotten action segments.

6.4. Results

Table 2 and Fig. 9 show the main results of our exper-

iments. We first perform evaluation in the offline setting

to see if actions can be well segmented and clustered in

the train set. We then perform testing in an online setting

to see if the new video from the test set can be correctly

segmented and the segments can be correctly assigned to

the action cluster. We can see that our approach performs

better than the state-of-the-art in unsupervised action seg-

mentation and recognition, as well as action patching. We

discuss our results in the light of the following questions.

Did modeling the long-range relations help? We stud-

ied whether modeling the correlations and the temporal re-

lations between topics was useful. The approaches consid-

ering the temporal relations, HMM, TM-RT, and our CaTM,

outperform other approaches which assume actions are tem-

poral independent. This demonstrates that understanding

temporal structure is critical to recognizing and patching

actions. The approaches, TM-RT and CaTM, which model

both the short-range and the long-range relations perform

better than HMM only modeling local relations. Also, the

approaches considering the topic correlations CTM, CTM-

AT, and our CaTM perform better than the corresponding

non-correlated topic models TM, TM-AT, and TM-RT. Our

CaTM, which considers both the action correlation priors
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Table 2: Results using the same number of topics as the ground-

truth action classes. HMM-DTF, CaTM-DTF use DTF RGB fea-

tures and others use our human skeleton and RGB-D features.

‘office’ Seg-Acc Seg-AP Frame-Acc P-Acc

(%) Offline Online Offline Online Offline Online

HMM-DTF 15.2 9.4 21.4 20.7 20.2 15.9 23.6

HMM 18.0 14.0 25.9 24.8 24.7 21.3 33.3

TM 9.3 9.2 20.9 19.6 20.3 13.0 13.3

CTM 10.0 5.9 18.1 15.8 20.2 16.4 13.3

TM-AT 8.9 3.7 25.4 19.0 18.6 13.8 12.0

CTM-AT 9.6 6.8 25.3 19.8 19.6 15.5 10.8

TM-RT 30.8 30.9 29.0 30.2 38.1 36.4 39.5

CaTM-DTF 28.2 27.0 28.3 27.4 37.4 34.0 33.7

CaTM 30.6 32.9 33.1 34.6 39.9 38.5 41.5

‘kitchen’ Seg-Acc Seg-AP Frame-Acc P-Acc

(%) Offline Online Offline Online Offline Online

HMM-DTF 4.9 3.6 18.8 5.6 12.3 9.8 2.3

HMM 20.3 15.2 20.7 13.8 21.0 18.3 7.4

TM 7.9 4.7 21.5 14.7 20.9 11.5 9.6

CTM 10.5 9.2 20.5 14.9 18.9 15.7 6.4

TM-AT 8.0 4.8 21.5 21.6 20.9 14.0 7.4

CTM-AT 9.7 10.0 19.1 22.6 20.1 16.7 10.7

TM-RT 32.3 26.9 23.4 23.0 35.0 31.2 18.3

CaTM-DTF 26.9 23.6 18.4 17.4 33.3 29.9 16.5

CaTM 33.2 29.0 26.4 25.5 37.5 34.0 20.5

Figure 9: Online segmentation Acc/AP varied with the number of

topics in ‘office’ dataset.

and the temporal relations, shows the best performance.

How successful was our unsupervised approach in

learning meaningful action-topics? From Table 2, we can

see that the unsupervised learned action-topics can be se-

mantically meaningful even though ground-truth semantic

labels are not provided in the training. In order to qualita-

tively estimate the performance, we give a visualization of

our learned topics in Fig. 10. It shows that the actions with

the same semantic meaning are clustered together though

they are in different views and motions. In addition to the

one-to-one correspondence between topics and semantic ac-

tion classes, we also plot the performance curves varied

with the topic number in Fig. 9. It shows that if we set the

topics a bit more than ground-truth classes, the performance

increases since a certain action might be divided into mul-

tiple action-topics. But as topics increase, more variations

are also introduced so that performance saturates.

RGB videos vs. RGB-D videos. In order to compare

the effect of using information from RGB-D videos, we

also evaluate our model CaTM and HMM using the pop-

ular RGB features for action recognition (CaTM-DTF and

Figure 10: Visualization of the learned topics using our model.

For better illustration, we decompose the segments with the same

topic into different modes (shown two) and divide a segment into

three stages in time. The clips from different segments in the same

stage are merged by scaling to the similar size of human skeletons.

HMM-DTF in Table 2). Clearly, the proposed human skele-

ton and RGB-D features outperform the DTF features as

more accurate human motion and object are extracted.

How well did our new application of action patch-

ing performs? From Table 2, we find that the approaches

learning the action relations mostly give better patching per-

formance. This is because the learned co-occurrence and

temporal structure strongly help indicate which actions are

forgotten. Our model capturing both the short-range and

long-range action relations shows the best results.

6.5. Sharing the Learned Topics
In order to make our learned knowledge useful to robots,

we also share the learned topics to RoboBrain [30], a large-

scale knowledge engine for robots. Our learned action top-

ics are represented as nodes in the knowledge graph for

robots and these nodes are connected with edges of our

learned co-occurrence and temporal relations.

7. Conclusion
In this paper, we presented an algorithm that models the

human activities in a completely unsupervised setting. We

showed that it is important to model the long-range relations

between the actions. To achieve this, we considered the

video as a sequence of action-words, and an activity as a set

of action-topics. Then we modeled the word-topic distribu-

tions, the topic correlations and the topic relative time dis-

tributions. We then showed the effectiveness of our model

in the unsupervised action segmentation and recognition, as

well as the action patching. For evaluation, we also con-

tributed a new challenging RGB-D activity video dataset.
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