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Abstract

In this paper, we present a computationally efficient and
non-parametric method for robust regression on manifolds.
We apply our algorithm to the problem of correcting mis-
labeled examples from image collections with ordered (e.g.,
real-valued, ordinal) labels. Compared to related methods
for robust regression, our method achieves superior denois-
ing accuracy on a variety of data sets, with label corrup-
tion levels as high as 80%. For a diverse set of widely-used,
large-scale, publicly-available data sets, our approach re-
sults in image labels that more accurately describe the as-
sociated images.

1. Introduction

Given the availability of images from the Web and in-
creasingly cheap sensors and storage, amassing large im-
age sets is relatively low-cost both in terms of effort and
computational resources. However, obtaining the associ-
ated labels, necessary for supervised learning, is often a
time-consuming, manual process that is becoming decreas-
ingly viable with the staggering increase in the size of im-
age collections. A recent trend is to acquire image labels via
crowdsourcing or co-located sensors. These approaches ef-
fectively automate the label collection process, allowing for
the rapid creation of labeled data sets at scales previously
impossible. However, label accuracy often suffers. For
example, Figure 1 shows representative images from two
publicly-available computer vision data sets (AMOS [14]
and Geofaces [13]) and the associated labels, including in-
stances of mislabeled images. The goal of this paper is to
correct mislabeled examples for image sets with ordered la-
bels. While there has been work that addresses the classi-
fication variant of this problem (i.e., categorical labels or
“tags”), there has not been much work for the problem of
denoising real-valued or ordinal labels.

In this paper, we present a method to address the prob-
lem of denoising ordered labels from natural image sets.
We take advantage of the fact that these data sets contain
semantically-related images whose relationship can be ex-
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Figure 1: Our method can be applied to image sets with
ordered labels (top: head pose estimates, bottom: cloudi-
ness estimates). For each image, we show the original label
(top) and predicted value from our method (bottom). The
examples in red highlight errors in the original labels.

ploited to learn a smooth function of the labels with respect
to the images. From this point of view, the problem can be
framed as robust regression in the high-dimensional domain
of images. Unlike traditional robust regression methods,
our method incorporates the observation that many natural
image sets, although embedded in high-dimensional spaces,
have only a few underlying causes of change that are usu-
ally semantically meaningful and correlated with the visual
concept described by the image labels. We further combine
this manifold assumption with sparse regularization, which
allows our method to learn the underlying dependency be-
tween images and labels even with very high rate of label
corruption. The contributions of this paper are:

e introducing the problem of ordered label denosing;

e an efficient, data-driven algorithm, based on the Hes-
sian regularizer, for high-dimensional robust regres-
sion; and

e providing more accurate labels for widely-used image
sets.
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2. Related Work

There has been a lot of work in the area of denoising
categorical labels (e.g., [7, 26]) and the general problem of
robust classification with mislabeled examples (e.g., [19]).
Our work, to our knowledge, is the first to consider this
problem in the context of regression, with ordinal or real-
valued labels. While most regression techniques are some-
what tolerant to noise, they are generally not designed to
handle large amounts of corruption found in the labels from
real-world images sets. The problem, and our proposed
approach are most closely related to robust regression and
manifold regularization, specifically for high-dimensional
ambient spaces.

Robust Regression The literature on robust regression is
vast, spanning approaches from M -estimation to more re-
cent methods designed to overcome the limitations of the
commonly-used least squares error measure (e.g., sensitiv-
ity to noise and outliers). Robust substitutes have been in-
vestigated, including least median of squares [24] and least
trimmed squares [2]. Least absolute deviation [27] has seen
increased interest with the growing prominence of sparse
representations and compressed sensing theory, with appli-
cations to vision and imaging problems, such as face recog-
nition [29]. Our method also incorporates sparsity as means
of discriminating between noisy and noise-free labels, but
additionally correlates the labels to the underlying manifold
structure commonly exhibited by natural image sets.

RANSAC Random Sample Consensus (RANSAC) and
its variants [8, 22] have been successfully applied to a vari-
ety of geometric vision problems, such as 3D reconstruction
from noisy feature matches [1, 25]. Most RANSAC meth-
ods are superlinear (and often exponential) in the number
of iterations as a function of the number of model parame-
ters. For geometric vision problems, the number of model
parameters is usually small (e.g., 7 for the fundamental ma-
trix). However, for our problem, the model parameters are
derived from a high-dimensional image space and the re-
lationship between the domain and range is unknown and,
in most cases, nonlinear. In comparison, our algorithm is
non-parametric, data-driven, and the time complexity is not
a function of the ambient space dimension.

Manifold Regularization The manifold assumption is
often used for natural image sets to sidestep the issue of high
dimensionality in the image space. In addition to nonlin-
ear dimensionality reduction, the image manifold assump-
tion has been the basis for, among others, groupwise reg-
istration [30], semi-supervised learning [18, 15], and mani-
fold denoising [9]. In this paper, we do not explicitly learn
the underlying manifold parametrization, but leverage the

manifold structure of the input images to learn a smoothly-
varying label function using a corrupted set of examples.

Our method exploits the underlying manifold structure
of natural image sets and integrates sparse regularization
to formulate the problem of label denoising as an efficient
convex optimization. In the next section, we describe the
details of our approach and, in Section 4, show how our ap-
proach quantitatively and qualitatively outperforms repre-
sentative regression methods on a variety of regression and
ordered label denoising tasks.

3. Method

We are given inputs of N examples, X =
[x1,X2, - ,xn]T and associated (noisy) labels, y =
[y1,Y2, -+ ,yn]T. For clarity, in this section, the labels
are treated as one-dimensional real values; in Section 4, we
present extensions for ordinal and multi-dimensional labels.
For images, each example, x; € RD, corresponds to the D-
dimensional feature representation (e.g., raw pixel values,
bag of words, HOG) of image i. We assume that the im-
ages are samples drawn from (or near) a low-dimensional
manifold, M, embedded in RY; the labels are samples of
a function defined on the manifold; and the set of labels
is contaminated by outliers. The goal is to learn a smooth
function on the image manifold that recovers denoised la-
bels, .

3.1. Framework

Learning an unknown function on a manifold only de-
fined by samples is an ill-posed problem. We follow the
framework of regularized empirical risk minimization and
start with the following general optimization:

arg;nm R(f;X) + AL(f;y) (1)

where R regularizes the function on the manifold defined by
the samples, X, L is a loss function, and A is the trade-off
parameter. Many choices are possible for the two terms and
the space of possible functions. In this section, we describe
our choices, motivated by the problem of ordered label de-
noising for natural image collections.

3.1.1 Manifold Regularization

Many approaches to manifold regularization have been pro-
posed, which extend some notion of local linearity to a
global model of the manifold. One such approach is based
on the Hessian regularizer, which has been applied to, for
example, nonlinear dimensionality reduction [6] and semi-
supervised regression [6].

For a point on the manifold, the local Hessian functional
is defined on its associated tangent space as the Frobenius
norm of the Hessian matrix. This provides a coordinate
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system that is isometric to the manifold intrinsic coordi-
nate. The local measure is then averaged over the entire
manifold to provide a global measurement, which is an ex-
tension of the average Frobenius norm of the Hessian of a
function in Euclidean space to manifolds. Minimizing this
term leads to locally linear functions. Several properties of
the Hessian functional make it useful in our case: (1) it pro-
vides a data-driven way for manifold function regularization
that enables non-parametric regression; (2) it can handle ex-
trapolation better than other proposed manifold regularizers
(e.g., Laplacian) [11]. However, unlike [6], our goal is not
to explicitly learn a low-dimensional parametrization of the
manifold, but to estimate a function of the labels over the
images sampled from the manifold.

For an input point, x;, let \V; represent the neighborhood
of K nearest neighbors and zy) represent the coordinates
of x; € N; in the d-dimensional tangent space of x;, where

zz(-i) is defined as the origin. The local Hessian functional
estimates a second-order polynomial, f, near x; of the form:

N 1 .. N
f=1g;+JDz0 4 5Z(Z)TH(Z)Z(Z) )

where J(*) and H(® are the local Jacobian and Hessian ma-
trices, respectively, ; is the predicted label, and z(*) is the
d-dimensional tangent space coordinate. Equation 2 is lin-
ear with respect to J(?) and H®), Let P() denote the design
matrix on neighborhood, N, and each row of P® corre-
sponds to a neighboring point, x;:

[Zj1,- " +2jd:2j12j1,2j12Z52, * Zjd%;d] 3

where z;4 (superscript omitted for space) represents the d-
th dimension of zgi).
the labels at the local neighborhood, denoted by §(*), for
the unknown function, f, the least-squares solution for the
parameters of the local Jacobian and Hessian matrices is

given by:

Substituting the predicted values of

PO | | =90 —g1 &)

where H(®) represents the upper triangular portion of H(®),
1 is a K-length column vector of 1, and J (@) and H® are
converted to column vectors. Let PT represent the bottom
d + d(d + 1)/2 rows of the pseudo-inverse of the design
matrix and p] denote the 7-th row of PT.! We get the fol-
lowing expression for the approximation of local Hessian

IPT includes contributions from the y; term in Equation 4, and rows
in Pt corresponding to the diagonal elements of H® are scaled by 2 and
those corresponding to off-diagonal elements are scaled by v/2. These
details are omitted for clarity and space.

0 1 2 3 4 5 6 7 8

Figure 2: Distribution of the mislabeled examples. For a
data set of outdoor images with cloudiness metadata (mea-
sured in okta from 0-8), the confusion matrix shows the dis-
tribution of the input label (columns) with manual annota-
tions (rows).

functional:

O =3 (ply®)

T &)
— y(i)TB(i)y(i)

where
BY =" ()" (B]) 6)
s
The global Hessian estimator is the sum of the local esti-
mators over all the input points. Let B denote the sparse
N x N version of B() where B(Y) = B(") at the locations
corresponding to points in A; and 0 otherwise. So,

N
B=) B® (7
i=1

and the global regularizer of the manifold function can be
obtained in the quadratic form, yTBy.

3.1.2 Loss Function

Modeling the noise of labels associated with large image
collections can be difficult. Labels can be obtained from
automated algorithms, co-located sensors, or crowdsourc-
ing; each of which introduces different types of error. In
our work, we observed that much of this data was cor-
rupted nearly uniformly and not necessarily biased toward
the ground truth. For example, consider the AMOS data
set [14], which provides weather metadata associated with
images captured from globally-distributed webcams. One
label is cloud okta, a cloudiness measure that ranges from
clear (0) to cloudy (8). Figure 2 shows a confusion matrix of
the cloudiness values between the AMOS labels and manual
annotations for a representative subset of 1000 images. This
pattern of roughly uniformly distributed noise is consistent
with research into labels obtained via crowdsourcing (e.g.
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Amazon Mechanical Turk) where “bad” users tend to pro-
vide information uncorrelated with the correct answer [23].

This suggests that the commonly-used L2 error measure
is not well-suited to the problem, as it often results in poor
performance for non-normal noise distributions [27]. The
L1 norm, however, is robust to high variance in noise and
implicitly promotes sparsity in the residual error. This is
the desired behavior, since sparsity in the residual error
allows for soft subset selection of “good” labels and de-
emphasizes the contribution of labels with extreme noise.
In Section 4.1, we compare the performance of our method
using both L1 and L2 loss.

3.2. Optimization

Combining the Hessian regularization term with the L1
loss, we are left with the following optimization:

argmin YTBY + Ay -yl @®)
v

In order to efficiently solve Equation (8) for the denoised
labels, ¥, we show that the global Hessian estimator, B, is
positive semidefinite (PSD).

Proof. First, the local Hessian estimator, B®, is PSD. In
Equation 6, each term in the summation can be represented
as the product of a matrix and its transpose, which is PSD.
Next, we show that the sparse variant of the local estimator,
B(i), is PSD. Let v be a column vector of length N, so

N N _
viBOy = Z Z Bl(:ivwm

=1 m=1

Since B is a sparse matrix that contains the same ele-
ments of B(®) at the intersections of rows and columns cor-
responding to A;, the above equation is reduced to a sum of

K2 terms:
VBOV =3 3 By,
leN; meN;
=vTBOv >0

where v is a K-length column vector of elements from v
at positions ;. Therefore, B is PSD. Finally, we get the
global Hessian estimator, B, is PSD since it is the sum of
the N sparse local PSD matrices, {B®}Y . O

Therefore, Equation (8) is a convex quadratic program
with L1 regularization. Performing Cholesky decomposi-
tion on B, we get B = ATA and are left with:

argmin  [|AF[|3 + A9 -y ©)
¥y
where A is a sparse N x NN upper triangular matrix. This
convex optimization can be solved using standard algo-
rithms, or using more efficient solvers specialized for large-
scale, sparse L1-regularized least squares problems [16].

3.3. Algorithm

Given a set of images and (noisy) labels, our method,
Hessian-Regularized Robust Regression (H3R), outlined in
Algorithm 1, returns denoised labels.

Algorithm 1 Hessian-Regularized Robust Regression

Input: images, X; labels, y;
Qutput: denoised labels, ¥
1: Estimate subspace dimension, d, and neighborhood
size, K
2: for all x; € X do
3:  Find V;, the K-nearest neighbors of x;
4:  Perform PCA on neighborhood, A, to obtain d-
dimensional tangent space coordinates
s:  Construct design matrix, P() (Eq. 3)
6:  Compute local Hessian estimator (Eq. 6)
7: Construct global Hessian estimator, B (Eq. 7)
8: Solve for y (Eq. 9)

For our method, the intrinsic dimension of the method,
d, and the neighborhood size, K, can be provided using
prior knowledge or estimated directly from the data. In Sec-
tion 4.1, we describe the implementation details for H3R.

4. Evaluation

We evaluate the performance of H3R for ordered label
denoising on a diverse set of labeled image collections and
compare the results against the following regression meth-
ods.

e K -NN: The label of each point is estimated as the av-
erage labels of its K nearest neighbors in the data set,
where K is set to the same value used by our method.

e Radial basis function network (RBFN) [20]: The neu-
ral network contains v/N hidden layer nodes with ker-
nel width equal to the average distance to the 2-nearest
cluster centers.

e RANSAC [22]:*> The threshold for inliers is set to the
10% of the label dynamic range and maximum number
of iterations is set to 107.

e ¢ support vector regression (SVR) [4] with the radial
basis kernel. The kernel width is set to the average Eu-
clidean distances of the input, and the inlier threshold,
€, is set to the 10% of the label dynamic range.

e Kernel Supervised PCA (KSPCA) [3]: for both the in-
put data and labels, the radial basis kernel is used with
the kernel width set to the average Euclidean distance.

2The linear model of RANSAC learns D + 1 parameters, where D is
the dimensionality of the input. To make the problem tractable, for image
data, we applied PCA to preserve 80% of the variation, which resulted in
an input dimensionality of ~20 across the data sets. Higher-order models
were computationally prohibitive.
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Data Sets We used labeled data sets with known ground
truth. For each, the labels are normalized to [0, 1].

e Swiss Roll, commonly used to evaluate machine learn-
ing algorithms, consists of 5000 points randomly sam-
pled from a 2D manifold embedded in 3D. For each 3D
example, the real-valued label is defined as sine of the
geodesic distance to the center point on the manifold.

e Paper Boy Statue [21] consists of 840 images of a rigid
object on a turntable platform captured from a camera
on an elevating arm. The images are captured every
6 degrees of rotation from 0-354 and every 6 degrees
of elevation from 6-84. Each image is cropped and
subsampled to 32 x 20, represented as a pixel inten-
sity vector, and noise was added to the elevation and
rotation angles. To account for the cyclic rotation pa-
rameter, we take the values as cylindrical coordinates
(r = 1) and convert to a 3D Euclidean parametrization.
Results are reported as rotation and elevation angles.

e Digit [15] consists of 10,000 images of the digit “1”,
with four degrees of variations: horizontal translation,
vertical translation, rotation and thickness. Each image
is represented as a vector of raw pixel values.

4.1. Implementation Details

For H3R, the intrinsic manifold dimensionality, d, neigh-
borhood size, K, and trade-off parameter, A can be provided
if prior knowledge is available. However, these values can
be directly estimated from the data, leaving no free parame-
ters to the system. To estimate the intrinsic manifold dimen-
sionality, d, we apply local PCA on a neighborhood of 20
points from a small set of randomly selected examples and
set d as the value corresponding to the ’elbow point’ of the
residual variance curve. The number of nearest neighbors,
K, is loosely related to the manifold intrinsic dimension.
‘We found that the method was robust to the value of K, and
empirically determined that K = 5d. For the regulariza-
tion parameter, A, we use the L-curve method [10] to select
a value in the range [101°,105]. The algorithm is imple-
mented in Matlab and we use //-Is package [16] for L1-
regularized least squares optimization. The computation of
the algorithm is dominated by the optimization step. On a
standard PC, with an input of 1,000 samples, our method
takes less than 5 seconds, on average.

Loss Function To evaluate the choice of loss function in
our method, we performed manifold regression using the
Swiss Roll data set (Figure 4) corrupted by commonly-used
artificial noise models. Table 1 shows the root-mean-square
error (RMSE) values of the predicted output from H3R. The
order of noise models (left to right) represents moderate to
high noise levels, and across all of the settings, the L1 norm
outperforms the choice of L2, often by a wide margin. For
the remaining experiments, we use the L1 loss with H3R.

Lap. | Gauss. | Unif. | S&P
L1 ] 0.067 | 0.090 | 0.013 | 0.014
L2 ] 0.068 | 0.136 | 0.112 | 0.197

Table 1: RMSE of H3R on the Swiss Roll data using L1
or L2 loss. Noise was generated using the Laplacian (b =
0.05), Gaussian (o = 0.5), uniform additive ([—1, 1], 50%
corruption), and salt & pepper (50%) noise models.
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Figure 3: RMSE values for the predicted labels on the Swiss
Roll (a), Paper Boy Statue (b,c), and Digit (d-f) data sets
with varying label corruption rate. (The results for vertical
translation for the Digit data set closely followed that for
horizontal translation.)

4.2. Robust Regression

For randomly-selected subsets of examples of varying
size, the labels are corrupted by adding uniform noise in
the range [—1, 1]. Each method is provided the (corrupted)
labeled data as input. For multi-dimensional labels, each
label is predicted independently for consistency across the
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(a) Ground truth (3D) (b) Ground truth (2D) (c) Input
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Figure 4: For the Swiss Roll (50% label corruption), the
color in each plot indicates the manifold function value. For
clarity, (b) to (i) are plotted using 2D manifold coordinates.

methods. Figure 3 shows the results of these experiments,
reported as the average RMSE in the predicted values from
10 repeated trials.

Experiment Summary Across all of the experiments,
H3R returns the closest predicted values, even at corrup-
tion rates as high as 80%. In all but two cases, RANSAC
performed poorly. This is expected as RANSAC requires a
pre-specified model and the linear model is not a reasonable
choice for these experiments, as the relationship between
the input and labels is nonlinear in most cases. While the
remaining methods should be better-suited to nonlinear re-
gression, for the problem of estimating the elevation of the
camera for the Paper Boy Statue, RANSAC returned the
next best predictions. In aggregate, SVR, KSPCA, K-NN,
and RBFN showed similar performance with little consis-
tency in relative performance across the experiments.

Manifold Regression The Swiss Roll data allows for both
the manifold and function defined on the manifold to be
easily visualized. Figure 4 shows the ground truth, cor-
rupted input, and regression results from each method for
an trial with 50% corruption rate. This is a 3D problem

(Figure 4(a)); however, for clarity, the graphs in Figure 4
are plotted using 2D manifold coordinates. K-NN locally
smooths the label noise, but the global model remains dis-
continuous and noisy. RBFN, SVR and KSPCA all learn
smooth functions on the manifold, however, the recovered
function deviates substantially from ground truth. The re-
sult from H3R closely matches the ground truth (RMSE =~
0), and remains nearly perfect up to corruption rates of 60%.

Image Manifold Regression Figure 5 shows the output
from each method at 50% label corruption for the Paper
Boy Statue data set. As shown in the top (ground truth)
row, the images are sampled from a smoothly varying func-
tion of rotation and elevation. Most of the other methods
include misplaced images, which indicate incorrect predic-
tions for rotation, elevation, or both. While H3R returned
the best predictions for both rotation and elevation, there
were differences in the patterns of results. The change in
elevation appears to be approximately linear, as RANSAC
outperformed the nonlinear approaches (except for H3R)
and was able to achieve low error rates (RMSE ~ 5°) up to
50% corrupted labels. This was not the case for the nonlin-
ear transformation represented by turntable rotation, where
RANSAC was the worst performer. However, for these dif-
ferent transformations, our method learned different accu-
rate smooth functions on the same image manifold.

Similar results are observed with the Digit data. Figure 6
shows results for an experiment with 50% label corruption.
Each group shows the images sorted by the listed parameter,
with the remainder fixed. So, in the ideal case, there should
only be a single smoothly varying transformation (e.g., ro-
tation) across each row. Non-smooth changes from left to
right or auxiliary changes from other transformations indi-
cate an inaccurate prediction. The visual results align with
the quantitative results. This is a challenging 4-dimensional
prediction; H3R is the top-performer for each of the modes
of image variability and returns low errors (RMSE < 0.05)
at corruption rates up to 80%. This demonstrates the ability
of our method to learn a variety of different functions on
image manifolds.

4.3. Ordered Label Denoising

We consider the problem of denoising ordered labels
from real-world, large-scale, publicly available data sets
used as computer vision benchmarks. Due to space con-
straints, we only include the top three related methods
(RBEN, SVR and KSPCA) for comparison. As opposed
to quantitative measures of error, we interpret these results
by visual inspection as ground truth is unavailable.

Weather from Images The Archive of Many Outdoor
Scenes (AMOS) [14, 12] is a repository of millions of im-
ages captured from globally-distributed webcams. In addi-
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ground truth
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Figure 5: Each row shows images evenly sampled along a smoothly varying function of rotation and elevation. The top row
shows the desired result; mismatches in subsequent rows indicate errors in denoising.

Horizontal translation Vertical translation Rotation Thickness

ground truth
RANSAC
K-NN
RBFN
SVR
PO 7 1111 TR 7T TENNAM 77 s 711101109
H3R

Figure 6: Each row shows images sorted by the predicted label. For each group, the specified (normalized) transformation
should smoothly vary from O to 1, with the other labels fixed to 0.5. Non-smooth changes from left to right or auxiliary
changes from other transformations indicate an incorrect prediction.

tion to images, AMOS provides associated weather meta-
data. While some of these parameters (e.g., air pressure,
wind velocity) do not affect the appearance of the images,
others, such as measures of cloud cover, can be important
for methods in outdoor scene analysis. Some algorithms
use clouds as a visual cue, while others assume cloud-
less imagery. Cloud okta, collected with AMOS images,
is a measure of cloudiness from clear (0) to cloudy (8).
These weather values are estimated from the closest weather

stations, which may be far enough to be under different
weather conditions from where the image is captured. This
results in inaccurate labels, rendering cloudiness-based fil-
tering unreliable.

Each AMOS image is represented using the 16-
dimensional bag-of-colors feature [28], and the images are
grouped by the originating webcam. Figure 7 shows repre-
sentative results from various scenes. Those boxed in red
are examples where the original label does not appear to

11



221

RBFN 0.3 0.7
SVR 0.8 3 9 2 7 0.6 3 0
KSPCA 0.4 53 23 0.6 2.0
H3R 0.8 13 2.0 0.8 25

7 8 7 0
4.3 2.4 6.3 8.0 6.6
3.6 4.7 6.4 8.0 73

Figure 7: Each image shows the original cloudiness label, which ranges, from 0 (clear) to 8 (cloudy). For each method, the
predicted value is shown. Clearly mislabeled (input or predicted) values are indicated by the red text and boxes.

Figure 8: For each row, the images are shown with the (input or predicted) head pose estimate. Clearly mislabeled examples

are highlighted by red boxes.

match the cloud level depicted in the scene. The 2"¢ ex-
ample shows a case where RBFN, SVR and KSPCA incor-
rectly changed a seemingly accurate label. The 4** example
shows a challenging scene that was both originally misla-
beled and not corrected by any of the approaches. Overall,
each of the methods improved upon the original labels, with
H3R providing predictions that most closely matched visual
appearance of the scene.

Face Pose Estimation Many widely used data sets for
face analysis, including PubFig [17] and GeoFaces [13],
rely on the same algorithm to annotate faces extracted from
images collected from the Web or social networking sites.
One of the provided parameters is an estimate of the pose of
the face as one of five quantized directions: -90, -45, 0, 45,
90. This parameter would be used to, for example, retain
only front-facing subjects.

Figure 8 shows the results of an experiment with 1,000
randomly selected images from GeoFaces. Each facial im-
age patch is represented using HOG [5] features with a cell
size of 50 x 50 and 9 orientation bins. The first row shows
sample faces with the associated pose estimate. Each of the
subsequent rows show the same subset of images sorted by
the denoised head pose estimate. The red boxes indicate
examples where the pose estimate does not visually match
the direction the subject is facing. RBFN, SVR and KSPCA

all improved upon the original labels and performed simi-
larly in terms of the number of mislabeled predictions, even
though the errors occurred in different regions of the la-
bel space. H3R outperformed each of the competing ap-
proaches, resulting in no grossly mislabeled examples.

5. Conclusions and Future Work

We presented an algorithm for robust regression on im-
age manifolds and applied it to the problem of ordered label
denoising for natural image sets. While the bulk of the al-
gorithms and data sets for supervised learning in computer
vision address classification, or categorization problems,
there are important problems that rely on ordered output,
such as articulated pose estimation and biomedical shape
variation analysis, in addition to the examples presented in
this paper. Our work is one of the first to address this un-
derserved area. Our non-parametric and computationally
efficient algorithm implicitly allows for the interpretation
of ordered labels as a perceptually meaningful organization
of the associated images and outperforms related regression
methods on a variety of denoising tasks, including image
collections with complex, multidimensional labels and over
70% label corruption. In the future, we plan to investi-
gate large-scale adaptations, such as hierarchical decompo-
sitions, to apply this approach to Internet-scale image col-
lections.
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