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Abstract

We present a novel Joint Online Tracking and Segmen-
tation (JOTS) algorithm which integrates the multi-part
tracking and segmentation into a unified energy optimiza-
tion framework to handle the video segmentation task. The
multi-part segmentation is posed as a pixel-level label as-
signment task with regularization according to the esti-
mated part models, and tracking is formulated as estimat-
ing the part models based on the pixel labels, which in
turn is used to refine the model. The multi-part tracking
and segmentation are carried out iteratively to minimize the
proposed objective function by a RANSAC-style approach.
Extensive experiments on the SegTrack and SegTrack v2
databases demonstrate that the proposed algorithm per-
forms favorably against the state-of-the-art methods.

1. Introduction
Recent advances in video segmentation aim to extract

target objects from the background with accurate bound-
aries using mainly offline approaches [24, 13, 21, 16, 26,
19, 27, 20]. Despite much demonstrated success, existing
methods are less effective for applications that entail on-
line processing. Examples abound, including video surveil-
lance, action recognition and human-computer interaction,
to name a few. Recently, some online video segmentation
methods are proposed, e.g., [7] and SPT [18]. The global
object appearance modeling without strong local constraints
in [7] and the target-independent proposals generation step
in SPT [18] may cause inaccurate segmentation results, es-
pecially in the scene with complex background or large mo-
tions.

Image segmentation aims to partition pixels based on
certain characteristics (e.g., color, intensity, or texture) in
the spatial domain, while tracking intends to partition pixels
based on the consistence properties in the temporal domain.
Clearly each task facilitates the other especially for online
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video segmentation, and both modules should be consid-
ered in the same framework. Thus, in this work, we pro-
pose a Joint Online Tracking and Segmentation (JOTS) al-
gorithm, which formulates the video segmentation task as
the online multi-part tracking and segmentation in a uni-
fied energy function. The online multi-part tracking pro-
vides effective sequential motion and structure constraints
for segmentation, while the multi-part segmentation gener-
ates accurate local appearance and location information to
facilitate tracking. The tracking and segmentation stages
are optimized iteratively by a RANSAC-style approach to
validate the results generated by each module for accurate
performance. The main steps of the proposed algorithm are
shown in Figure 1. As an example in Figure 1(c), the tar-
get multi-part model learned in the first two iterations fail to
fit the current pixels well (center locations of some models
are not located at the centroids of the pixels with the same
label). As the multi-part models fit pixels better through
tracking, the labeling error decreases. Meanwhile, more ac-
curate multi-part tracking is achieved as the labeling error
decreases.

The contributions of this work are summarized as fol-
lows. First, a novel joint online tracking and segmentation
algorithm is proposed for online video segmentation, where
the multi-part tracking and segmentation are integrated in a
unified energy objective function to achieve better perfor-
mance. Second, the minimization of the proposed energy
function is effectively solved by a RANSAC-style approach
with the α-expansion algorithm. Third, extensive experi-
ments on two benchmark datasets, i.e., SegTrack and Seg-
Track v2, against the state-of-the-art methods are carried
out to demonstrate the effectiveness of our method.

2. Related Work and Problem Context
Segmentation. Video segmentation has attracted much at-
tention due to its importance in vision problems. Numerous
algorithms have been proposed to address this problem us-
ing both past and future frames of an image sequence with
batch processing [24, 13, 21, 16, 26, 19, 27, 20]. While



Figure 1. Main steps (upper part) and corresponding example (lower part) of the proposed JOTS algorithm. (a) Initial multi-part model
construction. The yellow and green circles represent the center locations of the target and background parts respectively. (b) Spectral
matching for generating approximate target location. The green line represents the correspondence between the predicted coarse target
location and the center location in the previous frame, and the other lines denote some matches of target parts. (c) An example showing the
iterative optimization process. The parts of a target object are denoted with different colors. (d) Final segmentation result where the target
boundary is delineated by red pixels.

these methods generate promising results, they are not ap-
plicable to online vision tasks such as video surveillance,
action recognition, and human-computer interaction.

In [7], an integrated probabilistic model for online video
segmentation is proposed, which combines dynamics of im-
plicit shapes, topological shape constraints, adaptive ap-
pearance model, and layered flow. As only pixel-level in-
formation without local constraints is used to distinguish
between the foreground and background classes, it is likely
to include false positives especially for videos with cluttered
backgrounds. Li et al. [18] propose an unsupervised video
segmentation approach by associating a pool of object pro-
posals in consecutive frames. However, target-independent
proposals may render inaccurate segmentation results.

Tracking. Several tracking-by-segmentation methods [9,
12, 11, 28] have been developed in the literature. In [9],
a level-set formulation is presented to accurately extract
object boundaries for tracking. Godec et al. [12] ex-
tend the Hough forest classifier to the online setting and
integrate voting-based detection and GrabCut segmenta-
tion [23] methods for tracking. In [11], Duffner and Gar-
cia propose a fast adaptive method based on Hough trans-
form with pixel-based descriptors and segmentations (simi-
lar to [2]) to handle non-rigid deformation for object track-
ing. Zhong et al. [28] integrate segmentation with tracking
to alleviate the drifting problem based on structured label-
ing information using partial least squares regression anal-
ysis. The aforementioned methods focus on using segmen-
tation techniques to help tracking rather than extracting tar-
gets from the background accurately.

In addition to tracking-by-segmentation methods, part-
based tracking approaches [22, 25, 6, 15] have been pro-

posed in recent years. However, these methods mainly gen-
erate regions based on certain image properties, rather than
focus on objects of interest and thus the boundaries are less
accurate (i.e., some regions contain both foreground and
background pixels). One approach is to segment each frame
into superpixels and use a conditional random field algo-
rithm to separate foreground and background regions [22].
The tracking process is based on matching of color distribu-
tions for both classes. Wang et al. [25] propose a discrimi-
native appearance model based on superpixels in which the
probabilities of superpixels belonging to the foreground are
used to separate the target from the background. In [6],
Cai et al. design a dynamic graph based method to account
for non-rigid motion. Hong et al. [15] present a hierarchi-
cal appearance representation model for tracking based on
a graphical model that exploits shared information across
multiple quantization levels including pixels, superpixels,
and bounding boxes. The above-mentioned methods fo-
cus on tracking non-rigid moving targets with the help of
segmentation. As coarse mid-level segmentation based on
superpixels is used rather than fine details from low-level
pixels, the generated object boundaries are less accurate.

Recently, a tracking method based on temporal correla-
tion of superpixels [8] is developed. In contrast, the pro-
posed JOTS algorithm focuses on accurately segmenting
target objects from the background on the pixel level.

3. Problem Formulation
Given simple user annotation followed by the interac-

tive segmentation method [14] in the first frame, we first
segment a target object from the background, and then use
the SLIC algorithm [1] to generate the initial hypothesized
models, as depicted in Figure 1(a) (see also Section 5.3).



Let M = {M1, . . . ,Mk} be the k parts of a target object
with the label set {l1, . . . , lk}, where Mi = (Ai,Pi,Θi)
is the i-th model, Ai is the HSV histogram of the model,
Pi is the center location of the model, and Θi is the lo-
cation set of the pixels belonging to the model. We also
construct a model M′ = {M′1, . . . ,M′n} to describe the
pixels from the complex background with label l0 as out-
liers, where n is the number of parts in the background
model, and M′i = (A′i,P ′i,Θ′i) is the i-th part, A′i is the
corresponding HSV histogram, P ′i is the respective center
location, and Θ′i is the location set of the pixels belonging
to the model.

Different from previous works, which segment a target
object based on the given target model (e.g., appearance or
location models), the video segmentation task in this work
is formulated by multi-part tracking and segmentation in
a unified framework. That is, we optimize the pixel la-
bels f and the target multi-part model M simultaneously.
For each pixel p in the image, we assign it with a label
fp ∈ {l0} ∪ {l1, . . . , lk} indicating which part it belongs
to (i.e., multi-part segmentation) rather than merely iden-
tify it as the foreground or background in previous methods,
and optimize the target multi-part model M in the current
frame (i.e., multi-part tracking) simultaneously. After ob-
taining the label assignment of each pixel, the video seg-
mentation task for each frame is naturally completed.

To reduce the computational complexity, we only assign
the labels to the pixels near the predicted target location
at the current frame, which is determined by the previous
multi-part model M. The video segmentation problem is
formulated as follows:

{M∗, f ∗} = argmin
M,f

E (M, f |M), (1)

where E (M, f |M) is obtained from the segmentation
stage that integrates both multi-part tracking and segmen-
tation into a unified energy function. M∗ and f ∗ are the
multi-part model and the pixel labeling result in the cur-
rent frame, respectively. To solve (1), we first obtain the
predicted target location using the dynamic structure graph
matching method [6]. Specifically, we first use the SLIC al-
gorithm [1] to generate multiple candidate parts in the cur-
rent frame, and use the spectral matching technique [17]
to find the matches between the parts in the previous target
model and the candidate parts, as shown in Figure 1(b). The
coarsely estimated target location is computed based on the
votes of the matched parts. Finally, we set the bounding
box centered at the coarsely estimated target location with
η larger (empirically set as 1.8) than the target size in the
previous frame as the segmentation region.

In the segmentation region, the optimal labels f ∗ for
each pixel and the optimal multi-part model M∗ in the
current frame are obtained by minimization the energy
E (M, f |M). A RANSAC-style method is proposed to

obtain the solution in two steps: 1. the pixel labels are as-
signed with the current estimated multi-part model by the
α-expansion algorithm [4]; 2. the target parts are tracked
according to the pixel appearance likelihood and motion
consistency with the current labeling. These two steps are
iterated until reaching the minimal energy of the objec-
tive function such that the multi-part tracking facilitates the
multi-part segmentation, and vice versa. After the iterative
optimization, we update the multi-part model based on the
optimal labeling and output the final segmentation result
(See Figure 1(d)). The proposed optimization process is
described in the following section.

4. Joint Online Tracking and Segmentation
We compute the solution {M∗, f ∗} by minimizing

E (M, f |M) in (1). For the clarity of presentation, we
omit M in the following equations. The objective energy
E (M, f ) includes both multi-part tracking and segmenta-
tion information with a regularization term, that is

{M∗, f ∗} = argmin
M,f

E (M, f ) = argmin
M,f

{
D(f ,M)

+
∑

(p,q)∈N

Vp,q(fp, fq) + H (f ,M)
}
, (2)

where D(f ,M) is the data term based on the current label-
ing f and multi-part model M, Vp,q(fp, fq) is the smooth
term describing the interactions between neighboring pix-
els, and H (f ,M) is the regularization term of D(f ,M)
to avoid overfitting [3, 10] by enforcing constraints of the
models in pixel labeling.

4.1. Data Term
The spatio-temporal continuity of two aspects, i.e., target

appearance and location, provides effective information for
the online video segmentation task. If the pixel p is labeled
as li, we expect that the pixel has small energy of belonging
to the part modelMi in both aspects. The data term in (2)
is defined as

D(f ,M) =
∑
p∈S

Dp(li,Mi)

=
∑
p∈S

(
α1 · Φa(ρp;Ai) + α2 · Φl(`p;Pi)

)
, (3)

where Dp(li,Mi) is the data energy of the pixel p labeled
as li, S is the pixel set in the segmentation region, α1, α2 are
weight parameters, Φa(ρp;Ai), and Φl(`p;Pi) are the en-
ergy terms based on appearance and location, respectively.
In this formulation, Φa(ρp;Ai) is the appearance energy in-
duced by the appearance likelihood of a pixel p belonging
to the modelMi, which is computed as the bin value of the
pixel in the HSV histogram Ai. In addition, Φl(`p;Pi) is
the location energy induced by the location likelihood of a
pixel p based on the displacement from the center location



Pi, computed by the product of two single Gaussian models
in the vertical and horizontal.

Similarly, the data energy of a pixel belonging to the
background (i.e., outlier) is described by appearance as well
as location, and defined by the minimal energy of all back-
ground sub-models, i.e., Dp(fp,M′) = minj Dp(fp,M′j).

4.2. Smooth Term
Intuitively, if the two adjacent pixels have similar appear-

ance, the same label is assigned to them with small energy.
On the other hand, the motions of targets from background
are usually distinct, especially at the object boundaries (i.e.,
motion discontinuity). These appearance and motion cues
provide effective information to distinguish the target ob-
jects and background pixels. Based on these factors, the
smooth term Vp,q(fp, fq) in (2) is defined as

Vp,q(fp, fq) = I(fp 6= fq) ·
(
α3 ·∆c(p, q) +α4 ·∆f (p, q)

)
,

(4)
where I(·) returns 1 if its argument is true, and 0 otherwise,
and ∆c(p, q) and ∆f (p, q) are the Euclidean distance be-
tween the two adjacent pixels p and q in the RGB color
space and optical flow field [5] respectively. In the above
formulation, α3, α4 are the weight parameters.

4.3. Regularization Term
To avoid the overfitting problem [10, 3], we regularize

the data term. The regularization term in (2) consists of
three factors: 1. Area: it encourages all the used models
with the similar size; 2. Profile: it penalizes the incomplete
and irregular models in pixel labeling; 3. Complexity: it
penalizes the number of models used in pixel labeling.

H (f ,M) =

k∑
i=1

I
(
∃p : fp = li

)
·
(
α5 ·Ha(f ,Mi)

+ α6 ·Hp(f ,Mi) + α7 ·Hc(f ,Mi)
)
, (5)

where I(·) returns 1 if its argument is true, and 0 otherwise,
Ha(f ,Mi), Hp(f ,Mi) and Hc(f ,Mi) are the area, pro-
file, and complexity regularization terms of the part model
Mi respectively. In this formulation, α5, α6, and α7 are the
corresponding weights. For all the background sub-models,
we set H (f ,M′i) = 0, where i = 1, · · · , n. These regular-
ization terms are described as follows.

Area. The model with large area does not handle large ob-
ject deformation well. On the other hand, the model with
small area is susceptive to background noise. Hence, we
define the area regularization term as

Ha(f ,Mi) =
∣∣∣|Θi| −

1

k

k∑
j=1

|Θj |
∣∣∣, (6)

where |Θj | represents the number of pixels inMj .

Profile. As some target parts may be occluded when large
deformation occurs, the object extent and center location
may not be estimated accurately. To encourage the new
models and suppress the inaccurate ones, we define the pro-
file regularization term as

Hp(f ,Mi) = ∆p(Pi, Ci) · Ω
(
∀p ∈ Bi,∆p(`p, Ci)

)
, (7)

where Pi and Ci are the center location of the part model
Mi and the region constructed by the pixels labeled as li,
respectively. ∆p(·, ·) is the Euclidean distance function to
calculate the distance between two points in the 2D image
plane. In addition, `p is the location of pixel p, and Bi is the
boundary pixel set of the region constructed by the pixels
labeled as li. Ω(·) is the variance function to calculate the
distance variance of the boundary pixels.

Complexity. The constant complexity regularization term
is used to penalize labeling results with large number of tar-
get models, i.e., Hc(f ,Mi) = 1.

5. Energy Minimization
The energy minimization problem in (2) is challenging

as the objective function involves two sets of variables. We
optimize f and M alternatively in spirit similar to [10, 3]
with multi-part tracking and multi-part segmentation.

An initial multi-part model M[0] is obtained from the
optimal models in the previous frame. Clearly incorrect
models may be contained in M[0]. In the multi-part seg-
mentation stage, pixel labels f [0] are computed by the α-
expansion algorithm with the regularization term and a
small set of reliable models in M[0] are selected. In the
multi-part tracking stage, the selected models are improved
by re-estimating the HSV histogram and location models
with the energy function (9). Next, we add some hypoth-
esized part models based on the current labeling to ex-
pand the multi-part model M[1]. These two stages are re-
peated to generate a series of labelings f [0], f [1], f [2], · · ·
and multi-part model set M[0],M[1],M[2], · · · until the
energy in (2) is no longer reduced (See Figure 1(c)). Thus
the energy is minimized to obtain the optimal labeling f ∗

and multi-part model M∗.
The energy function E (M, f ) is non-negative with a

natural lower bound of 0. Meanwhile, the energy is non-
increasing over the iterations to ensure the convergence of
this optimization process. We present some examples in
Figure 2 to show how the energy is iteratively reduced.
Meanwhile, as the overall energy is decreased, the corre-
sponding intersection-over-union overlap score of the JOTS
algorithm increases, which demonstrates the effectiveness
of our energy minimization method. The multi-part track-
ing and segmentation modules are described next.



Figure 2. Left to right: energy curves and segmentation results
based on the intersection-over-union overlap metric in the iterative
optimization process of several sample frames in the Monkey and
Girl sequences. Different frames are described by different colors.
The red square on each curve represents the end of each iterative
process.

5.1. Multi-Part Segmentation
To segment multiple target parts from the background,

we assign a pixel p in the segmentation region with multiple
labels {l0, l1, . . . , lk} rather than simply classify it as the
foreground or background in previous methods. The pixel
labeling problem is formulated as an energy minimization
of the pairwise Markov random field,

f∗ = argmin
f

D(f ,M)+
∑

(p,q)∈N

Vp,q(fp, fq)+H (f ,M),

(8)
where D(f ,M) is the data term based on the labeling f and
multi-part model M, Vp,q(fp, fq) is the smooth term de-
scribing interactions between neighboring pixels, N is the
4-neighborhood relations between pixels in S. The opti-
mization problem can be solved by the α-expansion algo-
rithm [4] with graph cut effectively since the energy func-
tion remains sub-modular.

5.2. Multi-Part Tracking
Once the pixel labeling f in the segmentation region

are computed, we re-estimate the multi-part model M =
{M1, . . . ,Mk} by minimizing the energy E (M, f ).
Given the current pixel labels f , the smooth term in (2) is
fixed and the multi-part tracking problem is formulated as

M∗ = argmin
M

D(f ,M) + H (f ,M), (9)

It is challenging to solve (9) since the regularization term
is difficult to minimize with respect to the multi-part model
M. Similar to [3], we disregard the regularization term at
first and focus on minimizing the first term of (9) using the

Maximum Likelihood Estimation (MLE) method to obtain
the optimal models M∗. That is, for the i-th selected model
Mi in labeling f , we estimate the HSV histogram Âi, the
center location P̂i, and the pixel location set Θ̂i based on
the current observed pixels labeled as li. Then, if the over-
all energy of (2) is reduced, we use the estimated model
(Âi, P̂i, Θ̂i) to replaceMi; otherwise, the part modelMi

is retained.
This optimization scheme is motivated by two factors:

1. the simplified minimization (dropping the regulariza-
tion term) is effectively solved by the maximum likeli-
hood estimation method while keeping the overall energy
non-increasing; 2. the simplification of the minimization
should have insignificant effect on the complete energy
minimization scheme. That is, if the current solution is
near the good minima, the gradient of the regularization
term ∂

∂MH (f ,M) will be small since the solution already
obeys the constraints discussed in Section 4.3. Otherwise, a
large gradient ∂

∂MH (f ,M) indicates that there exists an-
other model which is more plausible to the constraints. The
model will be picked up by the following step to refine hy-
pothesized models (described in next section). Thus, we
defer the difficult aspects of energy minimization to the sub-
sequent multi-part segmentation optimization stage.

5.3. Expanding Hypothesized Part Model
Generating the initial hypothesized model. In the first
frame, multiple parts are generated in the initial target area
by the SLIC algorithm [1]. If the overlap ratio between a
generated part and the user annotated target region is larger
than a threshold θ1 (e.g., 0.5 in this work), we add it to
generate the initial part models and otherwise consider it as
part of the background.

Refining hypothesized models. To obtain a better part
model from existing ones for segmentation, we use two cri-
teria to merge and split regions: 1. Only the neighboring
small regions with similar appearance are randomly chosen
to generate new models. A region is considered small if the
number of pixels is less than the average number of pixels of
the current multi-part model. 2. A labeled region with area
larger than twice of the average area of the current used part
models is split into multiple ones by the SLIC algorithm.

6. Experiments
We evaluate the proposed algorithm on two video seg-

mentation benchmark databases, namely the SegTrack [24]
and SegTrack v2 [18] databases. As discussed in [18], the
pixel errors on objects of different size vary considerably.
In addition, the pixel error metric is sensitive to the manu-
ally annotation errors. For fair and comprehensive compar-
isons, the results on the average pixel error per frame are
reported in the original SegTrack database and the results



Figure 3. Segmentation results of the JOTS algorithm in 3 se-
quences from the SegTrack and SegTrack v2 databases. The es-
timated parts of each frame are presented. Different part models
are described by different colors.

on the intersection-over-union overlap metric are reported
on the SegTrack v2 database.

Quantitative evaluations against several state-of-the-art
methods [16, 13, 27, 18, 24, 12, 7, 25, 6] are presented in
Table 1 and Table 2. The top two performing methods are
shown in red and blue, respectively. Some segmentation
results are presented in Figure 3.

6.1. Implementation Details
In each experiment, the initial hypothesized model is

generated with the simple user annotation followed by the
segmentation method [14] and the SLIC algorithm [1] for
our method (See Figure 1(a)). All experiments are carried
out on a machine with a 2.9 GHz Intel i7 processor and
16 GB memory. The run time complexity of the proposed
JOTS algorithm depends on the size of the target object. For
example, implemented in MATLAB without code optimiza-
tion, it takes about 20 seconds per frame to segment the tar-
get in the Monkeydog-Monkey sequence containing images
of 320× 240 pixels. The source code of the proposed JOTS
algorithm will be made publicly available.

For each sequence, the number of superpixels for the
SLIC algorithm [1] in initialization is set according to the
size of the target. Empirically, the JOTS algorithm performs
well when each part model for both target and background
contains about 50 to 200 pixels. All the other parameters in
the JOTS algorithm are fixed in all experiments. We use 6
bins for each channel of the HSV histogram to describe a
target object. For the preset weight parameters, we take the
following default values: α1 = 2.0, α2 = 1.2; α3 = 3.0,
α4 = 3.0; α5 = 20, α6 = 20, α7 = 10. It takes 2 to 8
iterations to solve (8) (See also Figure 2).

6.2. Databases
SegTrack database. The SegTrack database [24] consists
of 6 challenging videos (Birdfall, Cheetah, Girl, Monkey-
dog, Parachute, and Penguin) with pixel-level human anno-
tated segmentation results for the primary foreground ob-

jects. It includes multiple interacting objects (Cheetah and
Penguin), abrupt motion (Monkeydog and Birdfall), com-
plex deformation (Girl and Monkeydog), and appearance
change (Parachute).

SegTrack v2 database. This database is an extension of
the SegTrack database with more annotated objects and 8
new video sequences are included: Bird of Paradise, BMX,
Drift, Hummingbird, Monkey, Frog, Worm, and Solider.
There are 14 sequences with 24 objects over 947 annotated
frames in this database including different challenging fac-
tors for video segmentation, including multiple interacting
objects (Cheetah, Drift, and Penguin), appearance change
(Bird of Paradise and Drift), occlusion (Cheetah, BMX, and
Drift), and complex deformation (BMX-Person, Humming-
bird, Frog, Solider, Monkey, and Worm).

6.3. Quantitative Comparison
Table 1 shows the quantitative results of the proposed

algorithm and state-of-the-art video segmentation meth-
ods [16, 27, 18, 24, 12, 7, 25, 6]. Overall, the pro-
posed JOTS algorithm performs favorably against most on-
line and offline methods on the SegTrack database using
the pixel error metric. In addition, Table 2 shows that
the JOTS algorithm performs well against the other meth-
ods [18, 16, 13, 12, 25, 6] on the SegTrack v2 database1

using the intersection-over-union overlap metric. Detailed
analysis and discussions on the quantitative evaluation are
presented next.

Multiple interacting objects. The targets in the Penguin
and Cheetah sequences have similar appearance to neigh-
boring objects. For the offline methods SPT+CSI [18]
and [16, 13, 27, 24], all the available object proposals in
both the past and future frames are used for segmentation.
Inevitably, inaccurate object proposals and wrong associ-
ation in these methods easily result in larger segmentation
errors, especially in the cases where the correct target is sur-
rounded by multiple adjacent/interacting objects with sim-
ilar appearance, as shown in Table 2. The same problem
also exists for the online method SPT [18] that relies on the
object proposals. In contrast, the JOTS algorithm performs
well in these sequences. This can be attributed to that the
JOTS algorithm exploits the temporal consistence of both
target parts and their neighboring background, which helps
distinguish these regions when they are similar.

Abrupt motion. The targets in the Birdfall and Monkeydog-
Monkey sequences exhibit fast and abrupt motion. The
Gaussian location model in the JOTS algorithm may not

1We cannot obtain the source code or binary executable to produce the
results of online method [7] in the SegTrack v2 database. Thus, only the
available results in the SegTrack database of [7] are reported.



Table 1. Average pixel error per frame in the SegTrack database. In
the table,− indicates that the result is not reported in the sequence.
The results with ∗ indicates exclusion of the Penguin sequence.
Same as [27], the average score is the mean pixel error per frame.
Sequences [16] [27] SPT+CSI [18] [24] [12] SPT [18] [7] [25] [6] JOTS
Supervised × × ×

√ √
×

√ √ √ √

Online × × × ×
√ √ √ √ √ √

Birdfall 288 155 242 252 466 188 265 1204 481 163
Cheetah 905 633 1156 1142 1431 983 570 2765 2825 806

Girl 1785 1488 1564 1304 6338 1573 841 10505 7790 1904
Monkeydog 521 365 483 563 809 558 289 2466 5361 342
Parachute 201 220 328 235 1028 339 310 2369 3105 275
Penguin 136285 - 5116 1705 6239 5026 456 9078 11669 571
Average 23949 452∗ 1391 785 2297 1374 400 4156 5282 535

be able to handle large displacement from the center lo-
cation of the target in the previous frame. In such cases,
the coarse center location of the target is predicted by the
spectral matching method before segmentation (See Fig-
ure 1(b)), which enables the JOTS algorithm to handle the
abrupt motion challenge. In contrast, the method [7] tracks
the target only by the optical flow, which makes it fail to
handle the large displacement of the target in conservative
frames, and may be easily affected by the background noise
in complex scenes, e.g., the object in the Birdfall sequence.

Complex deformation. It is challenging to segment the
non-rigid objects in the Girl, Monkeydog-Monkey, Hum-
mingbird, Frog, Worm, Solider, Monkey and BMX-Person
sequences due to large deformation. Notwithstanding that
these sequences contain complex object deformations or
cluttered background challenges, the part-based represen-
tation in JOTS algorithm is able to handle such cases ef-
fectively. It is worth mentioning that the online superpixel-
based tracking methods, e.g., [25] and [6], do not perform
well in these sequences against the JOTS algorithm (See
Table 1 and Table 2). The superpixels are generated in-
dependently in each frame by these methods. Thus, some
of the superpixels contain both foreground and background
pixels, and the segmentation results are less accurate. In
addition, the HT method [12] also does not perform well
mainly due to the pixel-based representation without effec-
tive local constraints in segmentation (i.e., pixels from the
foreground and background are easily confused based only
on the global appearance information). With the combina-
tion of pixel-level segmentation and part-level tracking in
a unified iterative optimization formulation, both represen-
tations facilitate each other for accurate segmentation and
tracking results in our method.

Appearance change. The large appearance change chal-
lenge happens in the Parachute, Bird of Paradise and Drift
sequences. The proposed JOTS algorithm performs well
against the other video segmentation methods [13, 18, 16]
in these sequences (See Table 2). The algorithm [13] di-
rectly aggregates superpixels from both the foreground and
background without considering the target object specifi-
cally, and thus the segmentation results are less accurate. In

Table 2. Intersection-over-union overlap metric of the segmenta-
tion of each algorithm in the SegTrack v2 database. In the table,
− indicates that the method fails to complete the segmentation task
in the sequence, and ∗ indicates exclusion of the failed sequences.

Sequence/Object SPT+CSI [18] [16] [13] SPT [18] [12] [25] [6] JOTS
Supervised × × × ×

√ √ √ √

Online × × ×
√ √ √ √ √

Girl 89.2 87.7 31.9 89.1 53.6 52.4 62.0 84.6
Birdfall 62.5 49.0 57.4 62.0 56.0 32.5 36.4 78.7

Parachute 93.4 96.3 69.1 93.2 85.6 69.9 59.3 94.4
Cheetah-Deer 37.3 44.5 18.8 40.1 46.1 33.1 38.7 66.1

Cheetah-Cheetah 40.9 11.7 24.4 41.3 47.4 14.0 19.7 35.3
Monkeydog-Monkey 71.3 74.3 68.3 58.8 61.0 22.1 25.7 82.2

Monkeydog-Dog 18.9 4.9 18.8 17.4 18.9 10.2 3.83 21.1
Penguin-#1 51.5 12.6 72.0 51.4 54.5 20.8 40.1 94.2
Penguin-#2 76.5 11.3 80.7 73.2 67.0 20.8 37.9 91.8
Penguin-#3 75.2 11.3 75.2 69.6 7.59 10.3 31.2 91.9
Penguin-#4 57.8 7.7 80.6 57.6 54.3 13.0 30.2 90.3
Penguin-#5 66.7 4.2 62.7 63.4 29.6 18.9 10.7 76.3
Penguin-#6 50.2 8.5 75.5 48.6 2.09 32.3 35.0 88.7

Drift-#1 74.8 63.7 55.2 73.8 62.6 43.5 57.2 67.3
Drift-#2 60.6 30.1 27.2 58.4 21.8 11.6 13.8 63.7

Hummingbird-#1 54.4 46.3 13.7 45.4 11.8 28.8 25.1 58.3
Hummingbird-#2 72.3 74.0 25.2 65.2 - 45.9 44.2 50.7

Frog 72.3 0 67.1 65.8 14.5 45.2 38.8 56.3
Worm 82.8 84.4 34.7 75.6 36.8 27.4 44.3 79.3
Soldier 83.8 66.6 66.5 83.0 70.7 43.0 54.2 81.1
Monkey 84.8 79.0 61.9 84.1 73.1 61.7 58.7 86.0

Bird of Paradise 94.0 92.2 86.8 88.2 5.10 44.3 46.5 93.0
BMX-Person 85.4 87.4 39.2 75.1 2.04 27.9 36.0 88.9
BMX-Bike 24.9 38.6 32.5 24.6 - 6.04 3.86 5.70

Mean per object 65.9 45.3 51.8 62.7 40.1∗ 30.7 35.6 71.8
Mean per sequence 71.2 57.3 50.8 68.0 41.0∗ 37.0 40.4 72.2

contrast, the JOTS algorithm integrates target parts state es-
timation (from multi-part tracking) and pixel labeling (from
multi-part segmentation) in a unified energy minimization
formulation, such that more accurate segmentation results
can be generated in the RANSAC-style iterative optimiza-
tion process (See Figure 2). The online method SPT [18]
and offline methods SPT+CSI [18] and [16] deal with the
appearance changes of the target by refining and associat-
ing the object proposals in consecutive frames. In contrast,
the JOTS algorithm performs well in handling appearance
changes of targets online by selecting good part models in
the optimization process (as discussed in Section 5.3).

Occlusion. As presented in Table 2, the proposed JOTS
algorithm performs well when target objects are occluded
(e.g., in the Cheetah, Drift and Penguin sequences), which
can be explained by the RANSAC-style optimization ap-
proach for selecting a small set of reliable target models to
generate more accurate results (as discussed in Section 5).
However, when a target object undergoes heavy occlusion
in the very first frame of the BMX-Bike sequence, the unsu-
pervised methods SPT [18], SPT+CSI [18] and [16, 13] per-
form well against our method. Since the occluded parts are
contained in the object proposals, all these methods are able
to associate the unoccluded and occluded parts of the target
in the BMX-Bike sequence to achieve better performance.
However, our method considers only the spatio-temporal
consistence between consecutive frames to segment objects
online. Thus, it is difficult for the proposed JOTS algorithm



Figure 4. Sensitive analysis of the part model size in the SegTrack
database based on the intersection-over-union overlap metric. The
region between two red dashed lines is the suggested value range
for the number of initial superpixels.

to recognize the separate occluded parts since the informa-
tion of them is not available in the first frame. Overall,
our method performs well in both databases when occlu-
sion challenge happens.

6.4. Discussion
Sensitive analysis of the part model size. We study the in-
fluence of the number of initial superpixels in the proposed
JOTS algorithm, which resolves the size of initial part mod-
els. As presented in Figure 4, the JOTS algorithm is rel-
atively robust to the small perturbations of the number of
initial superpixels. Specifically, we notice that the perfor-
mance of the JOTS algorithm improves to reach a stable
state as the number of superpixels increases for rigid tar-
get objects, e.g., the Parachute, Penguin, and Birdfall se-
quences. While for non-rigid objects, e.g., the Cheetah-
Deer, Girl, and Monkeydog-Monkey sequences, the JOTS
algorithm achieves relative better results only in the region
between two red dashed lines. Obviously, the geometric
structure of the rigid targets are relative stable. Thus, when
the number of superpixels is larger than a certain value, the
JOTS algorithm can obtain enough local information of the
target to produce desirable results. Meanwhile, for the non-
rigid target objects, their geometric structure changes dra-
matically, which weakens the discriminative power of the
location aspect of part model. Thus, if the number of super-
pixels is too small, the part models are less discriminative
to output satisfactory results. On the other hand, if it is too
large, the part models will be small and will be removed as
the noise during the target motion, which also results in bad
performance.

Effectiveness of the regularization term. To demonstrate
the effectiveness of the regularization term in the proposed
JOTS algorithm, we compare it with two baselines meth-
ods, i.e., “JOTS-com” and “w/o regularization” on the Seg-
Track database using the intersection-over-union overlap
metric. The “JOTS-com” method uses only the Complex-
ity regularization term in the regularization term (5), i.e.,
hf (M) =

∑k
i=1 I(∃p : fp = li) ·

(
α7 · h3

f (Mi)
)
, and the

Figure 5. Comparisons of the JOTS algorithm and its four baseline
methods of the sequences in the SegTrack database based on the
intersection-over-union overlap metric.

“w/o regularization” approach does not use the regulariza-
tion term in the energy objective (2), i.e., hf (M) = 0. As
shown in Figure 5, the JOTS algorithm performs better than
both baseline methods in all sequences, which demonstrates
the effectiveness of the well designing regularization term.
The regularization term in (6) not only considers the con-
straints of the number of models (i.e., the Complexity reg-
ularization term) to remove some useless models, but also
the constraints of the size and regularity of the models (i.e.,
the Area and Profile regularization terms) to improve the
performance (as discussed in Section 4.3).

Integration of multi-part tracking and segmentation. To
demonstrate the effectiveness of the integration of multi-
part tracking and segmentation in a unified objective func-
tion, we construct two baseline methods, i.e., “w/o itera-
tions” and “w/o refinement”. The “w/o iterations” method
indicates that multi-part tracking and segmentation are not
optimized iteratively, and the “w/o refinement” approach in-
dicates that the model refinement step (See Section 5.3) is
not included in the iterative process. Figure 5 shows that
the JOTS algorithm outperforms both baseline methods in
all sequences. Without the iterative process, the multi-part
tracking and segmentation modules fail to help each other,
and thus the results are less accurate. Without refining hy-
pothesized models, multiple good models can not be added,
which reduces the accuracy of the results.

7. Conclusion
In this paper, a joint online tracking and segmentation

algorithm based on multi-part models is proposed for on-
line video segmentation. Both multi-part segmentation as
pixel labeling and tracking as part models estimation pro-
cess are integrated in a unified energy minimization formu-
lation, which is effectively solved by a RANSAC-style ap-
proach with the α-expansion algorithm. Furthermore, mul-
tiple constraints are integrated to regularize the pixel label-
ing and part models estimation. Extensive experimental re-
sults on two benchmark databases demonstrate the effec-
tiveness of the proposed algorithm against the state-of-the-
art methods for video segmentation.
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