
Self Scaled Regularized Robust Regression∗

Yin Wang Caglayan Dicle Mario Sznaier Octavia Camps
Electrical and Computer Engineering

Northeastern University, Boston, MA 02115
wang.yin@husky.neu.edu,cdicle@gmail.com,{msznaier,camps}@coe.neu.edu

Abstract

Linear Robust Regression (LRR) seeks to find the param-
eters of a linear mapping from noisy data corrupted from
outliers, such that the number of inliers (i.e. pairs of points
where the fitting error of the model is less than a given
bound) is maximized. While this problem is known to be NP
hard, several tractable relaxations have been recently pro-
posed along with theoretical conditions guaranteeing exact
recovery of the parameters of the model. However, these
relaxations may perform poorly in cases where the fitting
error for the outliers is large. In addition, these approaches
cannot exploit available a-priori information, such as co-
occurrences. To circumvent these difficulties, in this paper
we present an alternative approach to robust regression.
Our main result shows that this approach is equivalent to
a “self-scaled” `1 regularized robust regression problem,
where the cost function is automatically scaled, with scal-
ings that depend on the a-priori information. Thus, the pro-
posed approach achieves substantially better performance
than traditional regularized approaches in cases where the
outliers are far from the linear manifold spanned by the in-
liers, while at the same time exhibits the same theoretical re-
covery properties. These results are illustrated with several
application examples using both synthetic and real data.

1. Introduction
Many computer vision problems involve finding a linear

regression model relating a set of input and output variables.
Examples, illustrated in Fig. 1, include line extraction from
2D images, planar surface fitting in range images, and clas-
sification using linear discriminant analysis (LDA), among
others. When all the available data are inliers, least squares
regression (LSR) provides good fitting regression parame-
ters [9]. However, it is well known that in the presence of
outlier data points, i.e. data points that do not fit the sought
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model, LSR can result in very poor fitting models [13].
The goal of robust regression is to find good fitting mod-

els in spite of the presence of outliers. Robust algorithms
for linear regression include least median squares regression
(LMedS) [22] and random sample consensus type methods
(RANSAC) [8]. While these methods perform well, they
are inherently combinatorial.

Alternative approaches exploit recent advances in com-
pressive sensing [3, 6] by reformulating robust linear re-
gression as an optimization problem with sparse regulariza-
tions [4, 14, 12, 19]. The advantage of these methods is that
they admit convex relaxations which can be solved using
polynomial-time algorithms. In [19], Mitra et al. derived
conditions under which these relaxations solve the robust
regression problem, which depend on the smallest principal
angle between the regressor subspace and all outlier sub-
spaces, in the case of noiseless inliers.

A drawback of the sparsity-based approaches is that the
presence of a few gross outliers, outliers which are very
far from the inlier data, can poison the optimization prob-
lem and lead to ill fitting models. Another limitation of
the current sparsity-based methods is that they cannot ac-
commodate a-priori semi-supervised knowledge such as co-
occurrence information when it is known that a subset of
points should have a single label – i.e. they are all inliers or
all outliers. Thus, to address the above limitations, we pro-
pose a new formulation for robust linear regression which
can handle gross outliers and a priori information.

The contributions of this paper are as follows:

• We provide a new sparsity-based formulation to maxi-
mize the number of inlier data points.

• We show that this new approach is equivalent to a
“self-scaled” `1 regularized robust regression prob-
lem, where the cost function is automatically scaled
and the scalings capture a-priori information. Hence,
we have called the proposed method a “Self-Scaled
Regularized Robust Regression” (S2R3) algorithm.

• We show that the self-scaling property of the proposed
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Figure 1. Sample Regression Problems in Computer Vision. Left: Line fitting; Center: Surface fitting from 3D cloud data points; Right:
Linear discriminant analysis (LDA) for face recognition.

approach yields smaller fitting errors in the presence of
gross outliers.

• We can incorporate a priori information by adding sim-
ple constraints to the problem.

The paper is organized as follows. Section 2 gives an
overview of related work. In section 3 a new sparsity-based
formulation to the robust linear regression problem is in-
troduced. Section 4 presents the tightest, tractable con-
vex relaxation of the proposed objective and investigates
the relationship between the new and existing approaches.
Section 5 describes how to incorporate prior information
through the use of additional constraints in the optimization
problem. Section 6 summarizes the proposed algorithm and
section 7 illustrates its performance with several application
examples using synthetic and real data. Finally, section 8
gives the conclusions.

2. Literature Review
Most current robust linear regression methods can be

classified into one of four major classes: median-based, M-
estimators, RANSAC, and sparsity-based convex methods.

Median-based approaches try to overcome the limita-
tions of least squares regression by using, instead of the
mean, the median of the fitting errors since it is more robust
to outliers. For example, LMedS [22] seeks to minimize the
median of the squared residues using a random sampling
algorithm. However, this algorithm is combinatorial on the
number of regression parameters and hence is not suitable
for high dimensional regression problems.

An alternative for making least squares regression robust
is to use M-estimators [13]. In this approach, the residual
error in the maximum likelihood estimate is replaced by a
non-linear function of the residuals that penalizes residuals
from inliers almost linearly but saturates for residual errors
due to outliers. A disadvantage of this approach is that the
resulting optimization problem is non-convex. Solving this
problem with iterative steepest descent methods is not guar-
anteed to converge to the true optimum. It has also been pro-
posed to solve this problem using random sampling meth-

ods [18]. However, as mentioned above, this approach suf-
fers from its combinatorial complexity.

Perhaps the most commonly used robust regression al-
gorithms belong to the RANSAC family [8, 23, 5, 21, 7].
The main idea behind these approaches is to try to mini-
mize the number of outliers. However, these techniques,
like LMedS, rely on random sampling of the data to sepa-
rate the inliers from the outliers, based on fitting error, and
hence are also inherently combinatorial.

More recently, inspired by the success of compressive
sensing, it has been proposed to use sparsity ideas to sep-
arate outliers from inliers [4, 14, 12, 19]. These methods
reformulate the regression problem by minimizing the least
square error for the inlier data while enforcing the natu-
ral assumption that there are more inliers than outliers data
points . While these new formulations are non-convex, they
can be relaxed to convex optimization problems which can
be solved in polynomial time. The issue of whether the so-
lutions obtained using these relaxations are also solutions
to the original regression problem was addressed in [19].
There, the authors computed, for the case when there is no
inlier noise, a lower bound of the maximum number of out-
liers that minimizing the number of outliers (such that the
inliers fit the model) can handle. This bound is given by the
smallest principal angle θk between the regressor subspace
and all the k-dimensional outlier subspaces. However, the
quality of the solutions obtained by these formulations suf-
fers when the size of some of the outlier errors is very large.

In this paper, a Self-Scaled Regularized Robust Regres-
sion (S2R3) algorithm is proposed. The S2R3algorithm be-
longs to the last category, as it maximizes the number of
inliers through a convex relaxation. However, the main ad-
vantage of the proposed formulation is that it is not sensitive
to the scale of the outlier errors. Indeed, as shown in sec-
tion 4 the proposed formulation is equivalent to a properly
scaled `1 regularized regression. While the S2R3method
has the desirable property that the data scaling is done au-
tomatically, it also suggests that previous methods would
benefit from proper scaling of the data, as well. In addi-
tion, in contrast with previous approaches, the S2R3method



can easily handle prior information such as co-occurrence
labeling.

3. Preliminaries
3.1. Notation

R set of real numbers
Nn set of positive integers up to n:

Nn
.
= {1, . . . , n}

x (X) a vector (matrix) in RN (RN×d)
x(j) jth component of the vector x
X(j) jth row of the matrix X
‖x‖p p-norm in RN
‖{x}‖p `p norm of a vector valued sequence {xi}mt=1

where each xi ∈ RN

‖{x}‖p
.
=
(∑m

i=1 ‖xi‖
p
p

)1/p
, 1 ≤ p <∞

‖{x}‖∞
.
= max

1≤i≤m
‖xi‖∞

‖{x}‖o `o-quasinorm .
= number of non-zero vectors

in the sequence (i.e. cardinality of the set
{i|xi 6= 0, i ∈ [1,m]})

|S| cardinality of the set S
ei ith vector of the canonical basis: ei

.
=

[0, . . . , 1, . . . 0]
T

II Matrix whose columns are the vectors ei cor-
responding to indexes i ∈ I ⊂ Nn.

3.2. Statement of the problem

Given N data points xi ∈ Rd, corresponding scalars
yi, i = 1, . . . , N , a vector r ∈ Rd, and a noise bound ε,
define the set of inliers as:

Si(r) =
{
xi : |yi − xTi r| ≤ ε

}
(1)

The robust regression problem consists on determining a
vector r such that the number of inliers is maximized, that
is:

r∗ = argmax
r

|Si(r)| (2)

By introducing additional variables ri ∈ Rd the problem
above can be reformulated as:

r∗ = argminr,ri ‖{r− ri}‖o subject to:
|yi − xTi ri| ≤ ε, i = 1, . . . , N

(3)

where ‖{r−ri}‖o denotes the number of non-zero elements
of the vector sequence {r− ri}Ni=1.

Lemma 1. Problems (2) and (3) are equivalent.

Proof. Given r, define

J(r)
.
= minri∈Rd ‖{r− ri}‖o subject to

|yi − xTi ri| ≤ ε, i = 1, . . . , N
(4)

Since ||r − ri‖o = 0 ⇐⇒ r = ri ⇐⇒ xi ∈ Si(r), it
follows that ‖{r − ri}‖o = number of outliers, or equiva-
lently, |Si(r)| = N−J(r). Thus r∗ maximizes |Si(r)|, and
hence it is a solution to (2), if and only if it is a minimizer
of J(r).

Note that the solution to problem (3) may not be unique.
Conditions guaranteeing uniqueness and exact recovery are
discussed below.

Theorem 1. Let X(i) .
= xTi and denote by Ik the set of

subsets Sk ⊆ S
.
= {1, . . . , N}, with |Sk| = k. Then, in the

noiseless case, if the matrix [X II ] has full column rank for
all I ∈ Ik and Problem (3) admits a solution with ‖{r −
ri}‖o < k

2 , the model r is unique.

Proof. Define si
.
= xTi (ri − r) and consider the following

related problem:

minr,s ‖s‖o subject to
yi = xTi r + si, i = 1, . . . , N

(5)

Note that in the noiseless case, (5) and (4) have the same
constraint set. Since ‖s‖0 ≤ ‖{r − ri}‖0, it follows from
the hypothesis and Proposition II.1 in [19], that if (4) admits
a m-sparse solution, with m < k

2 then the solution to (5) is
unique. To finish the proof, assume by contradiction that (4)
admits multiple m-sparse solutions with different r. Then,
the corresponding vectors r and s solve (5), contradicting
the fact that this problem has a unique solution.

4. Main Results
While the results in section 3.2 guarantee exact recov-

ery of the model under some conditions, they require solv-
ing problem (3), which can be easily shown to be generi-
cally NP-hard. In this section we present a tractable convex
relaxation and investigate its relationship with existing ap-
proaches.

4.1. Self-Scaled Regularized Robust Regression

Recall that the convex envelope (that is the tightest con-
vex approximation) of the cardinality of a vector sequence
{vi} [20] is given by:

‖{v}‖0,env =
∑
i

‖vi‖∞ (6)

It follows that replacing ‖{r − ri}‖0 by
∑N
i=1 ‖r − ri‖∞

provides the tightest convex approximation to the objective
function, motivating the following convex relaxation of (3)

minr,ri

∑N
i=1 ‖r− ri‖∞ subject to:

|yi − xTi ri| ≤ ε, i = 1, . . . , N
(7)

As we show next, in the absence of additional constraints,
the problem above is equivalent to a suitable scaled tradi-
tional `1-regularized robust regression. Thus, in the sequel



we will refer to problem (7) as the self-scaled regularized
robust regression problem (S2R3).

Theorem 2. Problem (7) is equivalent to the following op-
timization problem:

minr,η

∑N
i=1

|yi−xT
i r+ηi|
‖xi‖1

subject to |ηi| ≤ ε, i = 1, . . . , N
(8)

Proof. Rewriting the constraints in (7) as yi = xTi ri + ηi
for some |ηi| ≤ ε leads to

yi = xTi (ri − r) + xTi r + ηi

Thus
|xTi (r− ri)| = |xTi r + ηi − yi| (9)

Since the `1 and `∞ norms are dual [17], from the equation
above it follows that

‖xi‖1‖r− ri‖∞ ≥ |xTi r + ηi − yi| ⇒
‖r− ri‖∞ ≥ |xT

i r+ηi−yi|
‖xi‖1

(10)

(with equality holding when x and r − ri are aligned).
For fixed yi, r, ηi, consider now the following minimization
problem:

min
ri
‖r− ri‖∞ subject to: xTi ri + ηi − yi = 0 (11)

We claim that the solution to this problem is given
(component-wise) by

r̃
(j)
i = r(j) − xTi r− yi + ηi

‖xi‖1
sign(x

(j)
i ) (12)

To show this, note that r̃i is a feasible solution of (11), and
such that each component of the difference vector r − r̃i
satisfies:

|r(j) − r̃
(j)
i | =

|xTi r− yi + ηi|
‖xi‖1

, j = 1, . . . , d

and hence

‖r− r̃i‖∞ =
|xTi r− yi + ηi|
‖xi‖1

, j = 1, . . . , d (13)

since, from(10), this is the lowest possible value of the ob-
jective, optimality of r̃i follows. Replacing each term in the
objective function in (7) by its optimal value leads to:

min
r, ri, |ηi| ≤ ε
yi = xTi ri + ηi

∑N
i=1 ‖r− ri‖∞ =

min
r,|ηi|≤ε

∑N
i=1

|xT
i r+ηi−yi|
‖xi‖1

(14)

4.2. Connections with regularized `1 robust regres-
sion

By introducing an outlier error vector s, problem (2) can
be reformulated as:

minr,η,s ‖s‖o subject to:
y = Xr + η + s, ‖η‖∞ ≤ ε

(15)

where X(i) = xTi . Since this problem is known to be NP
hard, a convex relaxation can be obtained by using the `1
norm as surrogate for cardinality, leading to the `1 regular-
ized robust regression problem introduced in [19].

minr,η ‖s‖1 subject to:
y = Xr + η + s, ‖η‖∞ ≤ ε

(16)

From (8), (16) and Theorem 2, it follows that, in the uncon-
strained case, (7) can be considered as a scaled version of
(16), where each data point is automatically scaled by its
`1 norm. As we will illustrate with several examples, this
scaling prevents small groups of outliers, far from the inlier
manifold, from “poisoning” the optimization, hence leading
to better fitting.

4.3. Exact Recovery Conditions and Bounds on the
Estimation Error

From Theorem 2, it follows that the results in [19] can
be directly applied to establish bounds on the norm of the
difference between the solutions to (3) and its convex relax-
ation (7). To this effect, begin by defining the normalized
data matrix Xn, with rows given by X

(i)
n =

xT
i

‖xi‖1 . Next,
perform a reduced QR decomposition Xn = QR, where Q
is orthonormal and R is upper diagonal, and define z .

= Rr.
Proceeding as in [19], we will first find the estimation error
∆z and use it to bound the estimation error ∆r. Define the
isometry constant δk of Q as the smallest real such that

(1− δk)‖v‖2 ≤ ‖[Q II ]v‖22 ≤ (1 + δk)‖v‖2

for all I with |I| ≤ k, where vT
.
= [zT sT ] and s ∈ Rk.

Corollary 1. Assume that δ2k < 2
3 . Then, the estimation

error in z is bounded by

‖∆z‖22 ≤ Co‖ŝ− ŝk‖1 + C1ε (17)

where Co = 2δ2k√
k(1−1.5δ2k)

, C1 =
√
1+2δ2k

1−1.5δ2k (
n∑
i=1

‖xi‖−11 )
1
2 ,

ŝi
.
= si
‖xi‖1 , denote the components of weighted true outlier

approximation error vector and where ŝk denote the best (in
the `1 sense), k-sparse approximation to ŝ. In particular, if
‖ŝ‖o ≤ k, in the noiseless case, (7) recovers the exact z
(and hence r).



Proof. Follows from Theorem 2 and Theorem II.1 in [19]
by noting that (8) can be rewritten as:

min
r,η
‖ŝ‖1 subject to: ŷ = Xnr + η̂ + ŝ,

where ŷi
.
= yi
‖xi‖1 , ŝi

.
= si
‖xi‖1 , and η̂i

.
= ηi
‖xi‖1 .

Remark 1. Note that, for inliers si = ski = 0, and thus
the scaling has no effect on the error bounds. A similar rea-
soning holds for the outliers corresponding to the largest
k components of ŝ, since here ŝi = ŝki . Indeed, it can be
shown that as long as the only data points with ‖xi‖1 < 1
are amongst those corresponding to the k largest compo-
nents of s, then the solution to (7) yields a smaller upper
bound on the estimation error than the solution to the clas-
sical `1 regularized regression.

5. Incorporating priors
In many situations of practical interest, additional a-

priori information is available that can be exploited to im-
prove performance. In the sequel, we illustrate the ability
of the proposed algorithm to exploit priors, using two com-
monly occurring scenarios.

5.1. Using co-occurrence information

Consider the case where it is known that certain sets of
points should have the same label. An example of this situa-
tion arises for instance in motion-based segmentation prob-
lems, where often it is known that a group of points belongs
to either the target or the background. As we show in the
sequel, this information can be easily incorporated as addi-
tional constraints in the formulation (7). On the other hand,
traditional `1 regularized regression cannot exploit this in-
formation, since the problem is formulated in terms of er-
ror indicator variables si, rather than candidate model pa-
rameters ri. Specifically, let I denote the set of indices of
points xi that should have the same label and denote by XI
and yI the sub matrix of X formed by considering only
the rows indexed by elements of I, and the vector formed
by the corresponding elements of y, respectively. Consider
first the noiseless case and assume that yI ∈ span-col(XI)
and rank(XI) ≤ d1. Under these conditions, there exist at
least one r∗ such that yI = XIr

∗. Thus adding the con-
straints ri = rI ∀ i ∈ I (enforced by simply using the
same variable rI in all terms in (7) involving elements of
I, does not change the optimal solution. This follows from
the fact that rI can be set to r if the points indexed by I
are inliers, or to r∗ if they are outliers, without changing the
value of the objective. In the case of noisy data, the same
reasoning can be applied as long as there exists some vector
ηI , with ‖ηI‖∞ ≤ ε such that yI − ηI ∈ span-col(XI).
As before, this condition holds trivially as long as |I| ≤ d.

1This situation holds trivially when |I| ≤ d).

5.2. Non-full rank X

Conventional robust regression typically considers the
case where X is full rank. However, this assumption does
not always hold in practice. Indeed, several practical prob-
lems involve considering the case where yi = 0, and hence,
if non-trivial solutions to (7) exist, they are not unique. An
example of this situation is the problem of estimating the
fundamental matrix [11], where the solution is unique up to
a scaling factor. In these cases, in order to avoid ambigu-
ities, it is of interest to impose additional constraints on r.
One such class of constraints is of the form uT r = 1, for
some suitable chosen u. For instance, the choice u = 1
leads to the constraint

∑
r(j) = 1, while u = ei corre-

sponds to r(i) = 1, both used in the context of fundamental
matrix estimation.

In this case, it can be shown, by computing sub gradients,
that the optimal solutions to (7) for the case

∑
r
(j)
i = 1 is:

r̃
(j)
i = r(j) − (xTi r + ηi − yi)

sign(x
(j)
i −xmedian)

‖xi−xmedian‖1
(18)

with associated cost

‖r̃i − r‖∞ =
|xT

i r+ηi−yi|
‖xi−xmedian‖1

(19)

leading again to a modified regularized `1 regression, where
each term is now scaled by the factor ‖xi − xmedian‖1.

6. Self Scaled Regularized Regression Algo-
rithm

Theorem 1 provides sufficient conditions guaranteeing
that solving (7) will lead to the sparsest {r − ri} sequence
and hence result in a model that maximizes the number of
inliers. However, in many practical situations these condi-
tions may not hold. In these cases, sparse solutions can be
obtained by using a reweighted heuristic [16], leading to the
following algorithm2

Algorithm 1 Reweighted Self Scaled Regression
1: w0 ← {1, . . . , 1}, τ = 10−2 . Initialization
2: repeat
3: Solve

{rk, rki } = argminr,ri

∑N
i=1 w

k(i)‖r− ri‖∞
s.t. |yi − xTi ri| ≤ ε,

i = 1, . . . , N

4: Update wk+1(i) = (‖rk − rki ‖∞ + τ)−1.
5: until convergence

2A similar algorithm was proposed in [20] in the context of systems
identification, but without an analysis of its recovery properties or rela-
tionship to traditional `1 regularized robust regression.



7. Experimental Results

In this section we describe two sets of experiments to
evaluate the performance of the proposed algorithm. The
first set of experiments uses synthetic data to fit a hyper-
plane while the second set uses real data to reconstruct
corrupted face images from the Yale face dataset. In all
cases, performance is compared against 8 existing regres-
sion methods that range from classic techniques using ran-
dom approaches to state of the art convex formulations.

Randomized Algorithms. The methods using random
approaches we compared against are: RANSAC, MSAC,
MLEASAC and LMEDS. To ensure that comparisons are
fair, i.e. all the methods are solving a robust regression
problem, these techniques were used to solve the problem
below:

min
r

‖s‖0 s.t. ‖y −Xr + s‖∞ ≤ ε

The most critical parameters for randomized algorithms are
the inlier noise bound and the number of iterations. We set
the inlier noise bound for all randomized algorithms equal
to the inlier noise bound of convex formulations. In other
words, all algorithms shared same inlier noise bound. The
number of iterations was set to 500 for all noise levels and
for all algorithms. We used the implementation from GML
Toolbox from [1].

M-estimator. M-estimator is a standard robust regres-
sion method. We used the MATLAB implementation with
“huber” weighting function, which is the common setup for
it. We found the best parameter for M-estimator by line
search in one dataset and use it for the corresponding exper-
iment.

Constrained RPCA: Robust PCA is a recent robust re-
gression method proposed by [2]. We modified the original
formulation inline with [24]. In our formulation we find
the smallest penalty parameter that gives a rank deficient
data matrix. This step removes both inliers and outliers of
the data and makes sure it has a null space of dimension 1.
Then, we use the null space vector as the final model.

RR [12]: This formulation is similar to RPCA formula-
tions with the inclusion of the model term in the optimiza-
tion function. Their extended formulation is bilinear and
solved with ALM. We implemented our own version fol-
lowing their supplementary material. This algorithm has 2
parameters which are difficult to tune. We used grid search
to find the best setup given a dataset from each experiment.

BPRR and BSRR [19]: These are the most recent for-
mulations for robust regression and they are the closest
works to ours. We implemented them using CVX Toolbox
[10]. The only parameter these formulations require is the
inlier noise bound (same as ours).

Figure 2. Synthetic Data Experiments: Fitting a 5-dimensional hy-
perplane. The plots show the Geometric Mean of Precision and
Recall for all the evaluated algorithms.

7.1. Synthetic Data Experiments

This set of experiments attempts to recover hyperplanes
from data corrupted by outliers. The data was generated as
follows. First, a vector r was drawn using a Normal dis-
tribution N(0, I). Then, the input samples xi were uni-
formly sampled from [0, 1]m−1, where m = 5 is the di-
mension of the data. Next, the outputs yi were computed as
yi = xir + ei, with ei uniformly distributed from [−ε, ε],
where ε = 0.1. Finally, the outliers were seeded by ran-
domly sampling yi and xi from N(0, 15) and N(0, 1), re-
spectively.

In all the experiments, the inlier noise bound was set to
the value used to generate the data. The number of out-
liers was varied from 10% to 90%, in increments of 10%.
The algorithm was run 100 times for each level of outliers.
Performance was compared using two performance scores:
geometric mean of precision and recall, and the regression
recovery error.

Table 1. Running times for the experiments with synthetic data.

Method Implementation Times
proposed Gurobi(LP) 0.0266
RANSAC MATLAB 0.0491

MSAC MATLAB 0.0495
MLESAC MATLAB 0.1282

LMeds MATLAB 0.0580
M-estimator MATLAB 0.0080

cRPCA MATLAB(ADMM) 2.5346
BPRR CVX 0.9859

RR MATLAB(ADMM) 1.9388
BSRR MATLAB 0.7307

The results of this set of experiments can be seen in Fig-
ures 2 and 3 and the running times are given in Table 1.



Figure 3. Synthetic Data Experiments: Fitting a 5-dimensional hy-
perplane. The plots show the Model Error for all the evaluated
algorithms.

Note that our algorithm performs the best, both with low
and high percentages of outliers. On the other hand, ran-
domized algorithms show a significant performance drop
when the percentage of outliers is 70% and above, showing
the advantage of our formulation. Furthermore, it should be
noted that not all the convex formulations have similar ro-
bustness under heavy outlier noise. In particular, the early
failure of the BPRR algorithm illustrates the importance of
the self scaling property of the proposed approach.

Using Priors. To evaluate the impact of using priors we
proceeded as follows. After a run without priors was done,
no more than half of the false positive points were paired
randomly with a true negative point, and no more than half
of the false negative points were paired randomly to a true
point. As seen in Figure 2 and 3, the ability to incorporate
the additional co-occurrence information can boost the per-
formance of the proposed algorithm between 5 to 10 percent
under heavy outlier noise.

7.2. Real Data Experiments

This set of experiments attempts to reconstruct face im-
ages that have been corrupted with heavy occlusion, where
the occluding pixels constitute the outliers. The data used
for these experiments is from the CroppedYale Dataset [15].
The dataset contains 38 subjects. We choose 8 face images
per person, taken under mild illumination conditions and
computed an eigenface set with 20 eigenfaces. Then, the
goal of these experiments was: given a corrupted face im-
age of a subject in the database (this (uncorrupted) image
was not used to compute the eigenspace), get the best re-
construction/approximation of the true face image.

We reconstructed one image per person. Occlusion was
simulated by randomly placing 10 blocks of size 30×30. To
increase the difficulty of the problem and reduce the dimen-
sionality, data was randomly sampled (400 pixels from the

Figure 4. Face recovery results: In order from left to right, top to
bottom: original image, occluded image, best possible recovery
with given basis, proposed, BPRR, cRPCA, LMedS, Mestimator,
MLESAC, MSAC, RANSAC, and RR.

image and the basis). The performance of the algorithms
was evaluated using the Root Mean Square metric (Table
2),

RMS(I, Î) =

√
||I − Î||2F /Npixels

where I is the original image without occlusion and Î is the
reconstructed image. A visual comparison for one instance
of recovery using all the evaluated methods is shown in Fig-
ure 4. We normalized all images to [0, 1] range to remove
scaling effects of the pixel values on the RMS metric. We
also computed a best possible reconstruction of the original
face image by using the 20 eigenfaces. We used the model
of this step as the ground truth model and computed the
model recovery error as in the synthetic experiments (Ta-
ble 3). The experiments show that the mean RMS and the
model error are the best for our method and that the recov-
ered images are visually closer to the un-occluded original
image.

Finally, we ran another set of experiments where we
gave all the *SAC algorithms (RANSAC, MSAC, MLE-
SAC, LMeds) some extra time. For these experiments, we
set the number of iterations so that these algorithms could
use as much time or longer than the time used by the pro-
posed algorithm. While the extra time improved the perfor-
mance of the *SAC algorithms it was not enough to achieve
the best performance, as summarized in Tables 4 and 5.



Table 2. Fitting to original image error.
proposed BPRR BSRR M-est. RR cRPCA MLESAC MSAC RANSAC LMedS

Mean RMS 0.1320 0.1397 0.1378 0.1345 0.1844 0.1854 0.1751 0.1773 0.1690 0.1835
stdev 0.0074 0.0052 0.0081 0.0074 0.0054 0.0071 0.0082 0.0067 0.0064 0.0085

Table 3. Model estimation error.
proposed BPRR BSRR M-est. RR cRPCA MLESAC MSAC RANSAC LMedS

Mean RMS 0.7105 0.9092 0.7428 0.7232 1.0663 1.0761 1.0682 1.0917 1.1013 1.0528
stdev 0.0382 0.0472 0.0533 0.0435 0.0441 0.0506 0.0329 0.0337 0.0338 0.0353

Table 4. Fitting to original image error (allowing extra time to the *SAC algorithms).
proposed BPRR BSRR M-est. RR cRPCA MLESAC MSAC RANSAC LMedS

Mean RMS 0.1320 0.1397 0.1378 0.1345 0.1844 0.1854 0.1704 0.1545 0.1588 0.1661
stdev 0.0074 0.0052 0.0081 0.0074 0.0054 0.0071 0.0069 0.0064 0.0074 0.0082

run time 1.5088 1.6553 51.1901 0.0343 19.5540 0.3533 3.3083 1.5997 1.5864 1.7923

Table 5. Model estimation error (allowing extra time to the *SAC algorithms).
proposed BPRR BSRR M-est. RR cRPCA MLESAC MSAC RANSAC LMedS

Mean RMS 0.7105 0.9092 0.7428 0.7232 1.0663 1.0761 0.8719 0.9098 0.9045 0.9183
stdev 0.0382 0.0472 0.0533 0.0435 0.0441 0.0506 0.0392 0.0366 0.0305 0.0369

run time 1.5088 1.6553 51.1901 0.0343 19.5540 0.3533 3.3083 1.5997 1.5864 1.7923

8. Conclusions

Robust regression is at the core of a large number of
computer vision problems ranging from recovering 3D ge-
ometry, to classification and image reconstruction. While
this problem has been the object of a very large research
effort, it remains challenging in scenarios characterized by
noisy correspondences and high percentage of gross out-
liers. The main result of this paper is a computationally
tractable regression algorithm specifically tailored to this
situation. Contrary to other sparsification based approaches,
the proposed algorithm seeks to directly sparsify the set of
models that explain the data, rather than the set of outlier
errors. The intuition behind this approach is that this set of
models can be normalized so that all its elements have com-
parable magnitude, a fact that prevents gross outliers from
skewing the results. Surprisingly, as shown in the paper,
the proposed approach is equivalent to a self-scaled robust
regression, where the data points are automatically scaled
by a problem dependent quantity, providing an alternative
explanation of the reason behind its improved performance
in the presence of gross outliers. In addition, working di-
rectly with models (rather than outlier errors) allows for ex-
ploiting existing a-priori information about co-occurrences
to improve the resulting model, a feature hitherto beyond
the ability of existing regression techniques. As shown in
the paper, the combination of self-scaling and the ability to
exploit priors allows the proposed algorithm to consistently
outperform existing techniques, regardless of the percent-
age of outliers.
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