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Abstract

In this paper we are interested in exploiting geographic
priors to help outdoor scene understanding. Towards this
goal we propose a holistic approach that reasons jointly
about 3D object detection, pose estimation, semantic seg-
mentation as well as depth reconstruction from a single im-
age. Our approach takes advantage of large-scale crowd-
sourced maps to generate dense geographic, geometric and
semantic priors by rendering the 3D world. We demon-
strate the effectiveness of our holistic model on the chal-
lenging KITTI dataset [13], and show significant improve-
ments over the baselines in all metrics and tasks.

1. Introduction
Inferring 3D semantic and geometric information from

a single monocular image has been one of the holy grails
of computer vision since the beginning [15]. In the nineties,
most approaches to recover geometry were so-called Shape-
from-X, where local surface orientations were inferred by
exploiting texture [2], shading [33], defocus [23], and con-
tours/silhouettes [5]. Later, learning based methods took
over [36, 20, 29] inferring depth from local patches. The
Manhattan world assumption was also exploited to estimate
the layout of indoor scenes [18, 38], producing impressive
reconstructions in this relatively limited setting.

A variety of approaches have been proposed to infer 3D
objects from a single monocular image. The most common
approach has been to employ a bank of 2D detectors, each
trained for a specific viewpoint [37, 42, 8, 14]. Methods
enabling continuous pose representation also emerged, typi-
cally yielding 3D bounding boxes around objects [19, 9, 30]
or even polygonal 3D shapes [44]. Since 3D inference typ-
ically relies on lifting the 2D detections to the metric world
by imposing real-physical object dimensions, having accu-
rate localization is of crucial importance.

Holistic approaches aim at reasoning jointly about mul-
tiple related tasks. 3D reconstruction is ill-posed, how-
ever, knowledge about the objects and the scene semantics

can be used to help resolve some of the inherent ambigu-
ities. Furthermore, knowing the 3D structure of the world
should simplify recognition. Recently, holistic approaches
that jointly reason about both reconstruction and recogni-
tion tasks have been proposed [27, 19, 39, 16], resulting in
impressive performance gains over techniques that tackle a
single task.

Here we argue that there is much more prior information
that one could use and is freely available. We live in an era
where technology and social networks are part of our ev-
eryday’s life. A single monocular image is thus no longer
our only source of information, a whole cyber world sits be-
hind it. In this paper we make use of geotagged images, and
propose priors derived from map data which contains infor-
mation about the scene, such as the geolocation and rough
shape of roads, buildings and trees. Towards this goal, we
make use of OpenStreetMaps (OSM) which is freely avail-
able. OSM is an open-source crowd-sourcing project which
collects GPS trajectories of the users from their daily driv-
ing routines. Since its beginning in 2004, OSM now has
more than one million contributors from around the globe.
The road coverage is 50% of all the roads in the world. With
a simple download click, the full world sits in our laptop.

In this paper we propose a holistic conditional random
field (CRF) that reasons jointly about 3D object detection,
pose estimation, semantic segmentation as well as depth
reconstruction from a single image. Our approach takes
advantage of large-scale crowd-sourced maps to generate
dense geographic, geometric and semantic priors by render-
ing the 3D world. We demonstrate the effectiveness of our
approach on the challenging KITTI dataset [13], and show
significant improvements over the baselines in all tasks.

2. Related Work
Contextual models in computer vision: Contextual
models have been used to improve scene understanding
tasks, including object detection [46, 28, 32], semantic seg-
mentation [26, 28, 27] and 3D reconstruction [27, 18]. Geo-
metric context [21, 6] aims at capturing coarse 3D geomet-
ric structure of the scene in the form of surface orientations
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Figure 1. Maps can bring rich 3D information. Given the geolocation, a local 3D world (middle) can be built according to OpenStreetMaps
(bottom left) [1]. Given the camera pose we can render a local 3D world (right) to create strong geometric and semantic priors. (e.g. labels).

[21], layout structure [18], relative size and ground-plane
[46]. It has been intensively used for various computer vi-
sion tasks, such as object localization [9], support inference
[40] and occlusion reasoning [46]. Co-occurrence statistics
[26, 45, 12], canonical size, shape and appearance of certain
objects [46, 22, 9] in the real-world can be exploited to ef-
ficiently help both detection and segmentation. Photogram-
metric context [22, 27, 18], such as camera intrinsics and
extrinsic parameters, significantly helps object location and
relative scale estimation. Geolocalization can be used to
provide side information about the scene type, elevation and
semantics [32, 4, 12, 17]. However, most previous works
exploit geographic context in a data-driven manner, which
requires building a gigantic and expensive geo-referenced
image database. In contrast, in this paper we make use of
freely available maps to provide semantic, geographic and
geometric context.

Holistic scene understanding: It is well-accepted that
reasoning about semantics can help reconstruction, and vice
versa. Holistic models aim at solving many of these tasks
jointly. For instance, [26, 45, 10, 28] conduct object detec-
tion and image labeling jointly. [27, 31] improve both depth
reconstruction and semantic labeling with a holistic model.
[40, 46] simultaneously detect objects and reason about the
interactions between objects in the scene.

Crowd-sourcing maps: Maps obtained via crowd-
sourcing can provide us with useful yet inexpensive infor-
mation about the context of the scene. Maps have already
been intensively used in autonomous driving scenarios for
navigation and localization [4, 11]. Matzen and Snavely
[32] explore geographic information for recognition tasks.
In particular, they re-score box proposal for 2D vehicle de-
tection and 3D pose estimation. In contrast, in this paper we
jointly reason about depth, pixel-wise labelings as well as
3D object detection. Moreover, instead of using map meta-

data directly, we render a 3D scene to encode semantic and
geometric prior for our holistic model.

3. Building 3D Scene Priors From OSM
We make use of OpenStreetMaps, a freely available map

dataset to extract geographic information useful for recon-
struction and recognition tasks. OSM is a polygon based
map representation in the world geodetic system (WGS),
with rich labels such as building, road and tree. We refer
the reader to the left bottom subfigure in Fig. 1 for an illus-
tration of the data.

Given a geotagged image as well as the camera param-
eters, we extract a large local region of the map around the
area of interest. Based on this 2D cartographic information
and limited 3D information like elevation, a visual 3D world
can then be easily built from OSM by extending the objects
along the vertical direction, as shown in Fig. 1. In this pa-
per, our 2D-to-3D transformation is based on OSM2World,
which we modified to model buildings and trees. Moreover,
we develop an OpenGL-based renderer to visualize the lo-
cal world using generic textures, semantic labeling, depth
and normal maps. This renderer will be used to create our
priors for our holistic model. Note that the priors will be
inaccurate due to the error in the geolocalization, camera
pose as well as the map itself, e.g., most trees are missing
or misplaced. Furthermore it only contains static objects
and thus will be inaccurate in places occupied by e.g., cars,
pedestrians.

4. Holistic Scene Model
In this paper we are interested in utilizing geographic

priors to help outdoor scene understanding. In particular,
we focus on the tasks of 3D object detection, semantic seg-
mentation as well as depth reconstruction from a single im-
age. Towards this goal, we build 3D scene priors from freely
available maps and frame the problem as one of inference
in a holistic conditional random field (CRF) that reasons



jointly about all tasks and integrates semantics, geometry
as well as geographic information.

4.1. Energy Definition

Given a single geo-localized image x, we are inter-
ested in simultaneously assigning semantic labels to pix-
els, densely reconstructing the scene as well as detecting
objects and localizing them in the 3D world. We parameter-
ize the segmentation task with a random variable per pixel,
sp ∈ {1, ..., C}, encoding its semantic class. Dense depth
reconstruction is parameterized with a continuous variable
per pixel, dp ∈ [0, 80], encoding the distance in the 3D
world (in meters). We parameterize each detection in 3D
with four random variables, yi = {xi, zi, θi, bi}, encoding
the (x, z) position in the ground plane, the object pose θi
as well a binary variable bi ∈ {0, 1} encoding whether the
detection is a true positive.

Let s = (s1, · · · , sN ), d = (d1, · · · , dN ), y =
(y1, · · · , yM ) be the set of all segmentation, depth estima-
tion and detection variables, with N the size of the image
andM the set of candidate detections. We define the energy
of the CRF by integrating geographic context, appearance
features and geometric properties:

E(y, s,d) =Eobj(y) + Eseg(s) + Edep(d)

+Eso(s,y) + Edo(d,y) + Eds(d, s),
(1)

where Eobj, Eseg, Edep are the energies that depend on a
single task and Eso, Edo, Eds are the energies connecting
different tasks. We now describe the potentials briefly. We
refer the reader to the supplementary material for an in-
depth explanation of all potentials.

3D Object Detection and Pose Estimation: The 3D ob-
ject detection and pose estimation energy is defined as a sum
of energies encoding appearance, geographic priors, occlu-
sion and inter-penetration of objects in 3D:

Eobj(y) = wim

∑
i

φim(yi) +wT
geo

∑
i

φgeo(yi)

+wover

∑
β∈E

φoverlap(yβ) + wocc

∑
α∈H

φocclusion(bα),
(2)

where φim(yi) is defined as the detection score, φgeo(yi)
encodes geographic information in the form of the percent-
age of the object y that is visible when placed in the 3D
scene and rendered back in the 2D image. Additionally,
we use the distance (angular and positional) to the near-
est road as well as the overlap between objects and build-
ings in bird’s eye view. φoverlap(yβ) is a pairwise poten-
tial that penalizes object hypothesis that overlap in bird’s
eye view. Motivated by [9], we make use of CAD mod-
els to represent 3D cars. Towards this goal, we solve for

the best transformation that aligns each CAD model with
the 3D bounding box in terms of vertex error in 3D. This
can be done via Procrustes analysis. We then select the
CAD model that when projected to the image, best fits the
2D box. Finally, φocclusion(yα) is a high-order potential
that pushes object hypothesis that are occluded to be false
positives, i.e. bi = 0. This is simply done by re-rendering
the CAD model in the image and calculating the occlusions
generated by other cars that are in front. Fig. 2 depicts the
high-order potentials as well as a real-world example for
object reasoning.

Semantic Labeling: This energy is defined as the sum of
segmentation unaries, geographic priors and smoothness:

Eseg(s) =win

∑
p

φsim(sp) + wsgeo
∑
p

φsgeo(sp)

+wssm
∑
p

∑
q∈Np

φsmooth(sp, sq),
(3)

where φsim is the score from a segmentation algorithm
[34], and φsgeo(sp) = 1 if the segmentation agrees
with our semantic rendering from OSM. The smoothness
term φsmooth(sp, sq) = µ(sp, sq)

∑
m wmkm(fp, fq), with

km(·, ·) an RBF kernel on the input features from two pix-
els and µ(·, ·) a Potts function. We use a densely con-
nected neighborhood in order to be robust to misalignment
between image and geographic renderings [25].

Depth Estimation: This energy encodes geographic pri-
ors as well as smoothness:

Edep(d) = wdgeo
∑
p

φdgeo(dp)+w
d
sm

∑
p

∑
q∈Np

φdsmooth(dp, dq),

(4)
where the unary potential φdgeo(dp) is the `2 distance
between the hypothesis and the rendered depth in log
scale. The pairwise potential is a weighted smoothness
term between neighboring pixels, i.e., φsmooth(dp, dq) =
µ(dp, dq)

∑
m wmkm(fp, fq), where km(·, ·) is an RBF ker-

nel computed on input features from two pixels (coordinate
and color), and µ(·, ·) is the `2 norm.

Segmentation-Object: Given a 3D object estimation, as
shown in Fig. 2, we employ [9] to match a set of CAD mod-
els with our 3D boxes. We then render those to create pixel-
wise labelings of potentially dynamic objects. Then

Eso(s,y) = wc
∑

p∈P(yi)

δ(sp = car, l(yi, p)), (5)

with l(yi, p)) = 1 if the rendered CAD model occupies
pixel p, and δ(a, b) = 1 if a = b and 0 otherwise. Note
that P(yi) defines the set of pixels where the CAD model
reprojects.



Figure 2. 3D Object localization and pose reasoning. We first obtain an initial 3D bounding box estimation from each 2D detection [8]
(Left top). Based on the best matched CAD models, we generate car segmentation (Left bottom) and depth (Left middle). Given the camera
pose and location, we can place the car bounding boxes in the 3D world [9] (Right top, bird-view). As we see in the right figure, the initial
3D boxes are noisy and some are even physically impossible (e.g. mutual overlaps, overlapping with buildings etc.). This is not the case
with our approach, which also encourages cars to be aligned with the road direction.

Depth-Object: Similarly, we use the CAD model to gen-
erate an estimate of the depth for each pixel and define:

Edo(d,y) = wdo
∑

p∈P(yi)

‖ log(dp)− log(d̂p(yi))‖22, (6)

where P(yi) defines the set of pixels where the CAD model
reprojects.

Depth-Segmentation: We also employ a depth regressor
which uses geometric and semantic features as follows:

Eds(d, s) = wds
∑
p

‖ log(dp)− log(d̂(fp; sp))‖22, (7)

where d̂(fp; c) = wTc fp+b is a local linear regression model
trained for different semantic labels, with fp encoding the
pixel coordinates, color, as well as gradient features and
log-depth from our geographic context computed from ren-
dering the 3D scene.

4.2. Inference

Inference in our model can be done by computing the
minimum energy configuration

min
y,s,d

E(y, s,d)

Note that this inference is NP-hard, and is particularly diffi-
cult as it contains a mixture of discrete and continuous vari-
ables. We perform approximate inference by running block
coordinate descent. Thus we iteratively solve for each task,
fixing the other ones, but taking into account the dependen-
cies between the tasks. We refer the reader to Alg. 1 for a
summary of our inference algorithm. We now describe how
to do inference over each task.

Solving for 3D Detection: This involves minimizing

min
y
E(y, s,d) = min

y
Eobj(y) +Eso(s

t,y) +Edo(d
t,y),

with st,dt the current estimates of segmentation and depth.
As we have a continuous-discrete MRF with relatively
small number of nodes and edges, we proposed to use Gibbs
sampling to do inference, where each object is updated by a
Metropolis-Hastings sampler with a Gaussian proposal dis-
tribution centered at the current location and pose.

Solving for segmentation: This involves minimizing

min
s
E(y, s,d) = min

s
Eseg(s) + Eso(s,y

t) + Eds(d
t, s),

with yt,dt the current solutions for the 3D detection, lo-
calization and depth estimation tasks. This reduces to the
problem of inference in a fully connected MRF with Gaus-
sian potentials. We exploit the efficient mean-field infer-
ence algorithm of [25] to solve this problem, which iter-
atively approximates the original distribution with a prod-
uct of independent marginal distributions by minimizing the
KL-divergence between the two distributions.

Solving for depth: This involves minimizing

min
d
E(y, s,d) = min

d
Edep(d)+Eds(d, s

t)+Edo(d,y
t),

with fixed 3D detection and semantic segmentation yt, st.
This is a continuous-valued Gaussian MRF, which can be
efficiently solved by Gaussian belief propagation [43].

5. Experiments
In this section, we evaluate our approach on the chal-

lenging KITTI dataset [13]. We tested our performance



Figure 3. Overall performance for holistic tasks.

Algorithm 1 Holistic Inference via Block Coordinate Descent
Input: Image x, geolocation and camera pose.

Get initial detections y0 from image [8].
Render the 3D scene from OpenStreetMaps.
Get initial s0 and d0 from 3D scene.
repeat

Solve yt+1 = argminy E(y, st,dt)
Render object depth and labeling using yt

Solve st+1 = argminsE(yt+1, s,dt)
Solve dt+1 = argmindE(yt+1, st+1,d)

until convergence or reach max iteration
Output: y, s,d

quantitively on two subsets, according to the availability of
the ground-truth data. For depth reconstruction, 3D object
detection and pose estimation we use the KITTI tracking
sequences, as they are very challenging and contain many
moving objects. For semantic segmentation, we use the
KITTI visual odometry dataset where annotations by [35]
are available. We train our model parameters by cross-
validation.

5.1. Depth Reconstruction

In KITTI, the ground-truth depth is captured by a Velo-
dyne LIDAR. To create a per-pixel depth estimation, we
first project for each image the 3D point cloud onto the
camera plane, with the provided calibration matrix. This re-
sults in a sparse ground truth image. Note that due to mov-
ing objects we cannot aggregate multiple Velodyne point
clouds in contrast to the stereo benchmark where the scene
is static and 7 frames are aggregated to produce denser
depth. Nonetheless, we get 18,000 pixels labeled on aver-
age, which we employ to compute our error metric. When
the projection of multiple pixels overlap, we pick the one
with closest capture time. Although the ground truth is not
perfect, it is sufficiently precise given the capabilities to re-
construct depth from a single image. We split the 21 se-
quences into training (0-9, 3049 images), validation (19-20,
1894 images) and testing (10-18, 2724 images). We employ
the relative depth ratio δ = max(

dgt
dout

, doutdgt
) as our accuracy

measure. We report the ratio of pixel with correctly esti-
mated depth, depending on whether the relative depth ratio
is smaller than three thresholds (1.25, 1.252 and 1.253). As
baseline we train a support vector regressor (SVR) for each
semantic label [7]. We use local features (color, pixel co-



Figure 4. Depth reconstruction from rendered 3D map. From top to bottom: input image, ground-truth depth, image based depth estimation
[24], geographic based depth map, image+geographic depth estimation, error map for image only depth, error map for geographic only
depth and error map for image+geographic depth.

ordinates, histogram of gradients, local binary descriptors)
as input to the regressor. We also runs the SIFTFlow based
depth transfer algorithm, which is the current state-of-the-
art single image depth estimation method [24].

As shown in Tab. 1 our geographic prior is fairly accurate
but generates mistakes due to incorrect building heights or
missing vegetations in OSM, which occur very frequently.
In contrast, our holistic approach leverages semantic seg-
mentation and results in a 10% improvement over the prior.
Moreover, our experiment results also suggest that purely
image-based depth reconstruction cannot generate reliable
results, due to the depth ambiguity that is present when us-
ing local image features. Additionally, we computed the
oracle performance that our approach could ever achieve.
This is not 100% as the UCM superpixels we employed
(with boundary threshold 0.04) are not perfect. For each su-
perpixel, an average depth is estimated based on the ground
truth. The performance is around 78.16%, 93.87%, 98.71%
for the three measurements respectively. Our method is
fairly close to the oracle performance.

We refer the reader to Fig. 4 for a qualitative illustra-
tion of some examples. As shown in this figure, our holistic
model can generate good dense depth estimates. Further-

Method δ < 1.25 δ < 1.252 δ < 1.253

Image only 26.21% 52.34% 78.52%
Karsch et al. [24] 53.07% 83.91% 93.57%
Geographic only 61.25% 76.13% 85.49%

Proposed 69.44% 85.51% 92.59%

Table 1. Depth reconstruction performance

more, semantic information from the image can help pro-
duce more accurate results with fine details and compensate
errors brought by inaccurately rendered 3D scenes. We also
show a failure case in the leftmost column, where depth is
wrongly estimated due to missing trees in the geographic
3D scene and little geometric information from the image.

5.2. Semantic Labeling

We train on 100 training images from the visual odom-
etry benchmark, and split the testing images into two parts,
23 images for validation and 23 for test. As baseline we em-
ploy the state-of-the-art hierarchical semantic labeling algo-
rithms of [34] and [41]. We utilize six semantic classes for
evaluation, namely sky, building, road, sidewalk, vegeta-
tion and car, since classes like pole and pedestrians contain



Figure 5. Semantic labeling from rendered 3D map and 3D car detection. From top to bottom: input image, ground-truth labeling, semantic
labeling from geographic information, image based semantic labeling of [34], image based semantic labeling of [41], and our proposed
semantic labeling using geographic and image information. Color code: sky, building, road, sidewalk, fence, vegetation, car.

only 2 examples. We use PASCAL intersection-over-union
(IOU) as our measure of performance.

As shown in Tab. 2, our algorithm outperforms [34] by
3%. Importantly, it improves all categories. The weak per-
formance of the purely geographic unary is mainly due to
the misalignment and inaccuracy of OSM, which suggests
an important future direction to improve the geographic 3D
world from the image information. Despite this low perfor-
mance, our holistic model improves in all classes. As shown
in Fig. 5 and Fig. 3 our geographic prior can provide addi-
tional information for semantic reasoning, e.g. correcting
wrongly labeled road pixels due to shadows. On the other
hand, with the help of 3D detection our algorithm can also
generate instance segmentations that have been missed by
the image-based segmentation algorithm. Moreover, the use
of densely connected pairwise potentials reduces the noise
while preserving the boundaries. Additionally, given our
estimated depth and semantic labels, we visualize the 3D
point cloud in Fig. 7, by transforming the points from the
image to the world coordinates and coloring with RGB in-
tensity as well as estimated semantic labels.

5.3. 3D Object Detection

We evaluate our 3D object detection on the tracking
dataset, following the same train/validation/test splits that
we use for the depth reconstruction experiment. As base-
line we use the method of [9], which fits a CAD model in
3D to 2D bounding boxes. Note that those boxes are also
the input to our algorithm. In particular, they are the output
of the deformable part-based model [8]. We evaluate both
mean average precision (mAP) as well as F1-measure for
2D object detection. We compute localization results for
all true-positive DPM detections with heights larger than 30

pixels. Localization is evaluated as the percentage of de-
tections that have an error less than a fix distance (1m and
2m respectively). We also report the median localization er-
ror. Pose estimation is evaluated as the median pose error in
degrees. As shown in Tab. 3, our holistic approach signifi-
cantly improves in all metrics over the baseline. Specially,
as shown in Fig. 6, pose estimation errors can be signifi-
cantly reduced in our model.

We conduct an additional pilot experiment on a small
subset of the dataset, which contains 419 images. We asked
the authors of [46] to run their method on this subset. [46]
utilizes poselets [3] as the detector and can only return re-
sults on cars of size more than 50 pixels, as their approach
requires sufficient image evidence to reason about parts.
However, our approach can tackle the more difficult setting
of dealing with small cars of half the size. Nevertheless, we
report results on the subset where their approach works. On
pose estimation, our method (4.09◦ median error) achieves
2◦ degree improvement over both Zia et al. [46] (6.28◦ me-
dian error) and Fidler et al. [9] (6.16◦ median error), and
comparable localization performance (1.31 meters) vs (1.25
meters for Zia et al. and 1.33 meters for Fidler et al.) in
terms of median error. Under this easy configuration (large
bounding boxes) the initial localization error is very small,
our localization potentials do not have major impact since
the hypothesis do not overlap with buildings or other ob-
jects.

6. Conclusions

In this paper we have proposed a holistic approach that
reasons jointly about 3D object detection, pose estimation,
semantic segmentation as well as depth reconstruction from



Method Overall sky building road sidewalk vegetation car
Ren et al. [34] 71.93% 87.35% 78.67% 72.58% 41.28% 80.93% 59.47%

Tighe et al. [41] 60.67% 81.41% 72.17% 52.16% 17.33% 69.91% 52.30%
Geographic only 44.21% 32.41% 59.25% 63.01% 36.41% 7.36% 35.66%

Proposed 74.78% 88.62% 80.12% 80.89% 43.64% 81.59% 63.50%
Table 2. Semantic labeling performance: intersection-over-union

Method Config mAP F1 < 1m < 2m median loc < 10◦ median pos
Fidler et al. [9] [8], height > 30 58.1% 0.67 19.96% 37.32% 2.92m 71.97% 4.85◦

Proposed [8], height > 30 60.6% 0.69 22.96% 40.73% 2.67m 77.32% 3.85◦

Table 3. 3D object detection and pose estimation performance

Figure 7. 3D point cloud visualization of depth reconstruction results. Top row: coloring with input image; bottom row: coloring with our
semantic labeling result.

Car
−1.6 radCar

2.4 rad

12

3 4

56

7 8

1 2

34

5 6

78

Car
−2.0 rad

Car
1.2 radCar

2.0 rad

Car
2.0 rad

12
3 4

56
7 8

1 2

34

5 6

78

1 2

34

5 6

78
1 2

34
5 6
78

−40 −30 −20 −10 0 10 20 30
−60

−50

−40

−30

−20

−10

0

10

20

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

20

Figure 6. Bird’s eye view visualization of our localization and
pose estimation (GT, Fidler et al. [9], Ours)

a single image. Our approach is able to take advantage
of large-scale crowd-sourced maps to generate dense ge-
ographic, geometric and semantic priors by rendering the

3D world. We have demonstrated the effectiveness of our
holistic model on the challenging KITTI dataset [13], and
showed significant improvements over the baselines in all
metrics and tasks. While we employed OpenStreetMaps,
we would like to emphasize that GoogleEarth and other
similar resources could be used as well.
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[28] L. Ladickỳ, P. Sturgess, K. Alahari, C. Russell, and P. H.
Torr. What, where and how many? combining object detec-
tors and crfs. In ECCV. 2010. 1, 2

[29] D. C. Lee, M. Hebert, and T. Kanade. Geometric reasoning
for single image structure recovery. In CVPR, 2009. 1

[30] J. Liebelt and C. Schmid. Multi-view object class detection
with a 3d geometric model. In CVPR, 2010. 1

[31] B. Liu, S. Gould, and D. Koller. Single image depth estima-
tion from predicted semantic labels. In CVPR, 2010. 2

[32] K. Matzen and N. Snavely. Nyc3dcars: A dataset of 3d ve-
hicles in geographic context. In ICCV, 2013. 1, 2

[33] E. Prados and O. Faugeras. Shape from shading. Springer,
2006. 1

[34] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features
and algorithms. In CVPR, 2012. 3, 6, 7, 8

[35] G. Ros, S. Ramos, M. Granados, A. Bakhtiary, D. Vazquez,
and A. Lopez. Vision-based offline-online perception
paradigm for autonomous driving. In WACV, 2015. 5

[36] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d
scene structure from a single still image. PAMI, 2009. 1

[37] H. Schneiderman and T. Kanade. A statistical method for 3d
object detection applied to faces and cars. In CVPR, 2000. 1

[38] A. Schwing, T. Hazan, and R. Urtasun. Efficient structured
prediction for 3d indoor scene understanding. In ECCV,
2012. 1

[39] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box
in the box: Joint 3d layout and object reasoning from single
images. In ICCV, 2013. 1

[40] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV. 2012. 2

[41] J. Tighe and S. Lazebnik. Finding things: Image parsing with
regions and per-exemplar detectors. In CVPR, 2013. 6, 7, 8

[42] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing vi-
sual features for multiclass and multiview object detection.
PAMI, 2007. 1

[43] Y. Weiss and W. T. Freeman. Correctness of belief prop-
agation in gaussian graphical models of arbitrary topology.
Neural computation, 2001. 4

[44] Y. Xiang and S. Savarese. Estimating the aspect layout of
object categories. In CVPR, 2012. 1

[45] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as
a whole: Joint object detection, scene classification and se-
mantic segmentation. In CVPR, 2012. 2

[46] M. Z. Zia, M. Stark, K. Schindler, and R. Vision. Are cars
just 3d boxes?–jointly estimating the 3d shape of multiple
objects. In CVPR, 2014. 1, 2, 7


