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Abstract

Deep learning methods have achieved great successes
in pedestrian detection, owing to its ability to learn dis-
criminative features from raw pixels. However, they treat
pedestrian detection as a single binary classification task,
which may confuse positive with hard negative samples
(Fig.1 (a)). To address this ambiguity, this work jointly op-
timize pedestrian detection with semantic tasks, including
pedestrian attributes (e.g. ‘carrying backpack’) and scene
attributes (e.g. ‘vehicle’, ‘tree’, and ‘horizontal’). Rather
than expensively annotating scene attributes, we transfer
attributes information from existing scene segmentation
datasets to the pedestrian dataset, by proposing a novel
deep model to learn high-level features from multiple tasks
and multiple data sources. Since distinct tasks have distinct
convergence rates and data from different datasets have
different distributions, a multi-task deep model is carefully
designed to coordinate tasks and reduce discrepancies
among datasets. Extensive evaluations show that the
proposed approach outperforms the state-of-the-art on the
challenging Caltech [9] and ETH [10] datasets where it
reduces the miss rates of previous deep models by 17 and
5.5 percent, respectively.

1. Introduction
Pedestrian detection has attracted wide attentions [5, 31,

28, 7, 8, 9, 17, 6, 36, 13]. This problem is challenging
because of large variations and confusions in the human
body and background, as shown in Fig.1 (a), where the
positive and hard negative patches have large ambiguities.

Current methods for pedestrian detection can be gener-
ally grouped into two categories, the models based on hand-
crafted features [31, 5, 32, 8, 7, 35, 11] and deep models
[21, 23, 28, 22, 16]. In the first category, conventional
methods extracted Haar [31], HOG[5], or HOG-LBP [32]
from images to train SVM [5] or boosting classifiers [8].

HOG ACF

JointDeep TA-CNN

(a) Positives and hard negatives

(b)Comparison between models

Figure 1: Distinguishing pedestrians from hard negatives
is challenging due to their visual similarities. In (a), the
first and second row represent pedestrians and equivocal
background samples respectively. (b) shows that our TA-
CNN rejects more hard negatives than the detectors using
hand-crafted features (such as HOG [5] and ACF [7]) and
the JointDeep model [22].

The learned weights of the classifier (e.g. SVM) can be
considered as a global template of the entire human body.
To account for more complex poses, the hierarchical de-
formable part models (DPM) [11, 37, 15] learned a mixture
of local templates for each body part. Although they are suf-
ficient to certain pose changes, the feature representations
and the classifiers cannot be jointly optimized to improve
performance. In the second category, deep neural networks
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achieved promising results [21, 23, 28, 22, 16], owing to
their capacity to learn discriminative features from raw
pixels. For example, Ouyang et al. [22] learned features
by designing specific hidden layers for the Convolutional
Neural Network (CNN), such that features, deformable
parts, and pedestrian classification can be jointly optimized.

However, previous deep models treated pedestrian detec-
tion as a single binary classification task, which are not able
to capture rich pedestrian variations, as shown in Fig.1 (a).

This work jointly optimizes pedestrian detection with
auxiliary semantic tasks, including pedestrian attributes
(e.g. ‘backpack’, ‘gender’, and ‘views’) and scene attributes
(e.g. ‘vehicle’, ‘tree’, and ‘vertical’). To understand how
this work, we provide an example in Fig.2. If only a single
detector is used to classify all the positive and negative
samples in Fig.2 (a), it is difficult to handle complex
pedestrian variations. Therefore, the mixture models of
multiple views were developed in Fig.2 (b), i.e. pedestrian
images in different views are handled by different detectors.
If views are treated as one type of semantic tasks, learning
pedestrian representation by multiple attributes with deep
models actually extends this idea to extreme. As shown in
Fig.2 (c), more supervised information enriches the learned
features to account for combinatorial more pedestrian varia-
tions. The samples with similar configurations of attributes
can be grouped and separated in the high-level feature
space.

Specifically, given a pedestrian dataset, denoted as P, the
positive image patches are manually labeled with several
pedestrian attributes, which are suggested to be valuable
for surveillance analysis [20]. However, as the number
of negatives is significantly larger than the number of
positives, we transfer scene attributes information from
existing background scene segmentation databases (each
one is denoted as B) to the pedestrian dataset, other than
annotating them manually. A novel task-assistant CNN
(TA-CNN) is proposed to jointly learn multiple tasks using
multiple data sources. As different B’s may have different
data distributions, to reduce these discrepancies, we transfer
two types of scene attributes that are carefully chosen,
comprising the shared attributes that appear across all the
B’s and the unshared attributes that appear in only one of

(a) HOG

(c) CNN (d) TA-CNN

(b) Channel Features

Figure 4: Feature spaces of HOG, channel features, CNN
that models pedestrian detection as binary classification,
and TA-CNN. Positive and hard negative samples of the
Caltech-Test set [9] are represented by red and green,
respectively.

them. The former one facilitates the learning of shared
representation among B’s, whilst the latter one increases
diversities of attributes. Furthermore, to reduce the gaps
between P and B’s, we first project each sample in B’s to
a structural space of P and then the projected values are
employed as input to train TA-CNN.

This work has the following main contributions. (1)
To our knowledge, this is the first attempt to learn discrim-
inative representation for pedestrian detection by jointly
optimizing it with semantic attributes, including pedestrian
attributes and scene attributes. The scene attributes can be
transferred from existing scene datasets without annotating
manually. (2) These multiple tasks from multiple sources
are trained using a single task-assistant CNN (TA-CNN),
which is carefully designed to bridge the gaps between
different datasets. (3) We systematically investigate the
effectiveness of attributes in pedestrian detection. Extensive
experiments on both challenging Caltech [9] and ETH [10]
datasets demonstrate that TA-CNN outperforms state-of-
the-art methods. It reduces miss rates of existing deep mod-
els on these datasets by 17 and 5.5 percent, respectively.

1.1. Related Works

We review recent works in two aspects.
Models based on Hand-Crafted Features The hand-

crafted features, such as HOG, LBP, and channel features,
achieved great success in pedestrian detection. For ex-
ample, Wang et al. [32] utilized the LBP+HOG features
to deal with partial occlusion of pedestrian. Chen et
al. [4] modeled the context information in a multi-order
manner. The deformable part models [11] learned mixture
of local templates to account for view and pose variations.
Moreover, Dollár et al. proposed Integral Channel Features
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Figure 3: The proposed pipeline for pedestrian detection.

(ICF) [8] and Aggregated Channel Features (ACF) [7],
both of which consist of gradient histogram, gradients,
and LUV, and can be efficiently extracted. Benenson et
al. [1] combined channel features and depth information.
However, the representation of hand-crafted features cannot
be optimized for pedestrian detection. They are not able to
capture large variations, as shown in Fig.4 (a) and (b).

Deep Models Deep learning methods can learn features
from raw pixels to improve the performance of pedestrian
detection. For example, ConvNet [28] employed convo-
lutional sparse coding to unsupervised pre-train CNN for
pedestrian detection. Ouyang et al. [21] jointly learned
features and the visibility of different body parts to handle
occlusion. The JointDeep model [22] designed a deforma-
tion hidden layer for CNN to model mixture poses infor-
mation. Unlike the previous deep models that formulated
pedestrian detection as a single binary classification task,
TA-CNN jointly optimizes pedestrian detection with related
semantic tasks. The learned features are more robust to
large variations, as shown in Fig.4 (c) and (d). Another
contemporaneous deep model [13] seems complementary
to our method.

2. Our Approach
Method Overview Fig.3 shows our pipeline of pedes-

trian detection, where pedestrian classification, pedestrian
attributes, and scene attributes are jointly learned by a
single TA-CNN. Given a pedestrian dataset P, for example
Caltech [9], we manually label the positive patches with

nine pedestrian attributes, which are listed in Fig.5. Most
of them are suggested by the UK Home Office and UK
police and valuable in surveillance analysis [20]. Since
the number of negative patches in P is significantly larger
than the number of positives, we transfer scene attribute
information from three public scene segmentation datasets
to P, as shown in Fig.3 (a), including CamVid (Ba) [3],
Stanford Background (Bb) [12], and LM+SUN (Bc) [29],
where hard negatives are chosen by applying a simple yet
fast pedestrian detector [7] on these datasets. As the data in
different B’s are sampled from different distributions, we
carefully select two types of attributes, the shared attributes
(outlined in orange) that present in all B’s and the unshared
attributes (outlined in red) that appear only in one of them.
This is done because the former one enables the learning
of shared representation across B’s, while the latter one
enhances diversities of attributes. All chosen attributes
are summarized in Fig.5, where shows that data from
different sources have different subset of attribute labels.
For example, pedestrian attributes only present in P, shared
attributes present in all B’s, and the unshared attributes
present in one of them, e.g. ‘traffic light’ of Ba.

We construct a training set D by combing patches
cropped from both P and B’s. Let D = {(xn,yn)}Nn=1

be a set of image patches and their labels, where each
yn = (yn,o

p
n,o

s
n,o

u
n) is a four-tuple1. Specifically, yn

denotes a binary label, indicating whether an image patch

1In this paper, scalar variable is denoted by normal letter, while set,
vector, or matrix is denoted as boldface letter.
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Figure 5: Attribute summarization.

is pedestrian or not. op
n = {opin }9i=1, os

n = {osin }4i=1, and
ou
n = {ouin }4i=1 are three sets of binary labels, representing

the pedestrian, shared scene, and unshared scene attributes,
respectively. As shown in Fig.3 (b), TA-CNN employs
image patch xn as input and predicts yn, by stacking
four convolutional layers (conv1 to conv4), four max-
pooling layers, and two fully-connected layers (fc5 and
fc6). This structure is inspired by the AlexNet [14] for
large-scale general object categorization. However, as the
difficulty of pedestrian detection is different from general
object categorization, we remove one convolutional layer
of AlexNet and reduce the number of parameters at all
remaining layers. The subsequent structure of TA-CNN is
specified in Fig.3 (b).

Formulation of TA-CNN Each hidden layer of TA-
CNN from conv1 to conv4 is computed recursively by
convolution and max-pooling. Each hidden layer in fc5 and
fc6 is obtained by a fully-connected transformation. For all
these layers, we utilize the rectified linear function [18] as
the activation function.

TA-CNN can be formulated as minimizing the log poste-
rior probability with respect to a set of network parameters
W

W∗ = argmin
W
−

N∑
n=1

log p(yn,o
p
n,o

s
n,o

u
n|xn;W), (1)

where E = −
∑N

n=1 log p(yn,o
p
n,o

s
n,o

u
n|xn) is a com-

plete loss function regarding the entire training set. Here,
we illustrate that the shared attributes os

n in Eqn.(1) are
crucial to learn shared representation across multiple scene
datasets B’s.

For clarity, we keep only the unshared attributes, ou
n,

and the loss function becomes E = −
∑N

n=1 log p(o
u
n|xn).

Let xa
n denote the n-th sample of scene dataset Ba. A

shared representation can be learned if and only if all the
samples share at least one target (attribute). Since the
samples are independent, the loss function can be expanded
asE = −

∑I
i=1 log p(o

u1
i |xa

i )−
∑J

j=1 log p(o
u2
j , ou3j |xb

j)−∑K
k=1 log p(o

u4
k |xc

k), where I+J +K = N , implying that
each dataset is only used to optimize its corresponding un-

shared attribute, although all the datasets and attributes are
trained in a single TA-CNN. For instance, the classification
model of ou1 is learned by using Ba without leveraging
the existence of the other datasets. In other words, the
probability of p(ou1|xa,xb,xc) = p(ou1|xa) because of
missing labels. The above formulation is not sufficient
to learn shared features among datasets, especially when
the data have large differences. To bridge multiple scene
datasets B’s, we introduce the shared attributes os, the
loss function develops intoE = −

∑N
n=1 log p(o

s
n,o

u
n|xn),

such that TA-CNN can learn a shared representation across
B’s because the samples share common targets os, i.e.
p(os1n , o

s2
n , o

s3
n , o

s4
n |xa

n,x
b
n,x

c
n).

Now, we reconsider Eqn.(1), where the loss func-
tion can be decomposed similarly as above, E =
−
∑I

i=1 log p(o
s
i , o

u1
i |xa

i )−
∑J

j=1 log p(o
s
j , o

u2
j , ou3j |xb

j)−∑K
k=1 log p(o

s
k, o

u4
k |xc

k) −
∑L

`=1 log p(y`,o
p
` |x

p
` ). Even

though the discrepancies among B’s can be reduced by
os, this decomposition shows that gap remains between
datasets P and B’s. To resolve this issue, we compute
the structure projection vectors zn for each sample xn, and
Eqn.(1) turns into

W∗ = argmin
W
−

N∑
n=1

log p(yn,o
p
n,o

s
n,o

u
n|xn, zn;W).

(2)
For example, the first term of the above decomposition can
be written as p(os

i , o
u1
i |xa

i , z
a
i ), where zai is attained by

projecting the corresponding xa
i in Ba on the feature space

of P. This procedure is explained below. Here zai is used
to bridge multiple datasets, because samples from different
datasets are projected to a common space of P. TA-CNN
adopts a pair of data (xa

i , z
a
i ) as input (see Fig.3 (b)). All

the remaining terms can be derived in a similar way.
Structure Projection Vector As shown in Fig.6, to close

the gap between P and Bs, we calculate the structure
projection vector (SPV) for each sample by organizing
the positive (+) and negative (-) data of P into two tree
structures, respectively. Each tree has depth that equals
three and partitions the data top-down, where each child
node groups the data of its parent into clusters, for example
C1

1 and C10
5 . Then, SPV of each sample is obtained by

concatenating the distance between it and the mean of each
leaf node. Specifically, at each parent node, we extract
HOG feature for each sample and apply k-means to group
the data. We partition the data into five clusters (C1 to C5)
in the first level, and then each of them is further partitioned
into ten clusters, e.g. C1

1 to C10
1 . As a result, the length of

SPV for each sample is 2× 5× 10 = 100.

3. Learning Task-Assistant CNN
To learn network parameters W , a natural way is to

reformulate Eqn.(2) as the softmax loss functions similar
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to the previous methods. We have2

E ,− y log p(y|x, z)−
9∑

i=1

αio
pi log p(opi|x, z)

−
4∑

j=1

βjo
sj log p(osj |x, z)−

4∑
k=1

γko
uk log p(ouk|x, z),

(3)

where the main task is to predict the pedestrian label
y and the attribute estimations, i.e. opi, osj , and ouk,
are auxiliary semantic tasks. α, β, and γ denote the
importance coefficients to associate multiple tasks. Here,
p(y|x, z), p(opi|x, z), p(osj |x, z), and p(ouk|x, z) are mod-
eled by softmax functions, for example, p(y = 0|x, z) =

exp(Wm
·1

Th(L))

exp(Wm
·1

Th(L))+exp(Wm
·2

Th(L))
, where h(L) and Wm indi-

cate the top-layer feature vector and the parameter matrix
of the main task y respectively, as shown in Fig.3 (b), and
h(L) is obtained by h(L) = relu(W(L)h(L−1) + b(L) +
Wzz+ bz).

Eqn.(3) optimizes eighteen loss functions together. It
has two main drawbacks. First, since different tasks have
different convergence rates, training many tasks together
suffers from over-fitting. Second, if the dimension of the
features h(L) is high, the number of parameters at the
top-layer increases rapidly. For example, if the feature
vector h(L) has H dimensions, the weight matrix of each
two-state variable (e.g. Wm of the main task) has 2 ×
H parameters, whilst the weight matrix of the four-state
variable ‘viewpoint’ has 4 × H parameters3. As we have
seventeen two-state variables and one four-state variable,
the total number of parameters at the top-layer is 17 × 2 ×
H + 4×H = 38H .

To resolve the above issues, we cast learning multiple
tasks in Eqn.(3) as optimizing a single multivariate cross-
entropy loss,

E ,− yTdiag(λ) log p(y|x, z)

− (1− y)
T
diag(λ)(log 1− p(y|x, z)),

(4)

2We drop the sample index n in the remaining derivation for clarity.
3All tasks are binary classification (i.e. two states) except the pedestrian

attribute ‘viewpoint’, which has four states, including ‘front’, ‘back’, ‘left’,
and ‘right’.

where λ denotes a vector of tasks’ importance coefficients
and diag(·) represents a diagonal matrix. Here, y =
(y,op,os,ou) is a vector of binary labels, concatenating
the pedestrian label and all attribute labels. Note that each
two-state (four-state) variable can be described by one bit
(two bits). Since we have seventeen two-state variables and
one four-state variable, the weight matrix at the top layer,
denoted as Wy in this case, has 17 ×H + 2 ×H = 19H
parameters, which reduces the number of parameters by
half, i.e. 19H compared to 38H of Eqn.(3). Moreover,
p(y|x, z) is modeled by sigmoid function, i.e. p(y|x, z) =

1
1+exp(−WyTh(L))

, where h(L) is achieved in the same way
as in Eqn.(3).

The network parameters are updated by minimizing
Eqn.(4) using stochastic gradient descent [14] and back-
propagation (BP) [27], where the error of the output layer
is propagated top-down to update filters or weights at each
layer. The BP procedure is similar to [14]. The main
difference is how to compute error at the L-th layer. In
the traditional BP algorithm, the error e(L) at the L-th layer
is obtained by the gradient of Eqn.(4), indicating the loss,
i.e. e(L) = y − y, where y denotes the predicted labels.
However, unlike the conventional BP where all the labels
are observed, each of our dataset only covers a subset of at-
tributes. Let ô signify the unobserved labels. The posterior
probability of Eqn.(4) becomes p(y\ô, ô|x, z), where y\ô
specifies the labels y excluding ô. Here we demonstrate
that ô can be simply marginalized out, since the labels are
independent. We have

∑
ô p(y\ô, ô|x, z) = p(y\ô|x, z) ·∑

ô1
p(ô1|x, z) ·

∑
ô2
p(ô2|x, z) · ... ·

∑
ôj
p(ôj |x, z) =

p(y\ô|x, z). Therefore, the error e(L) of Eqn.(4) can be
computed as

e(L) =

{
y − y, if y ∈ y\ô,
0, otherwise,

(5)

which demonstrates that the errors of the missing labels will
not be propagated no matter whether their predictions are
correct or not.

We fix the important coefficient λ1 ∈ λ of the main
task y, i.e. λ1 = 1. As the auxiliary tasks are independent,
their coefficients can be obtained by greedy search between
zero and one. To simplify the learning procedure, we have
∀λi ∈ λ, λi = 0.1, i = 2, 3, ..., 18 and found that this
setting provides stable and reasonable good results.

4. Experiments
The proposed TA-CNN4 is evaluated on the Caltech-Test

[9] and ETH datasets [10]. We strictly follow the evaluation
protocol proposed in [9], which measures the log average

4 http://mmlab.ie.cuhk.edu.hk/projects/
TA-CNN/ The corresponding author is Ping Luo (pluo.lhi@gmail.com).

http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
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miss rate over nine points ranging from 10−2 to 100 False-
Positive-Per-Image. We compare TA-CNN with the best-
performing methods as suggested by the Caltech and ETH
benchmarks5 on the reasonable subsets, where pedestrians
are larger than 49 pixels height and have 65 percent visible
body parts.

4.1. Effectiveness of TA-CNN

We systematically study the effectiveness of TA-CNN in
four aspects as follows. In this section, TA-CNN is trained
on Caltech-Train and tested on Caltech-Test.

Effectiveness of Hard Negative Mining To save com-
putational cost, We employ ACF [7] for mining hard nega-
tives at the training stage and pruning candidate windows
at the testing stage. Two main adjustments are made in
ACF. First, we compute the exact feature pyramids at each
scale instead of making an estimated aggregation. Second,
we increase the number of weak classifiers to enhance
the recognition ability. Afterwards, a higher recall rate is
achieved by ACF and it obtains 37.31 percent miss rate
on Caltech-Test. Then the TA-CNN with only the main
task (pedestrian classification) achieved 31.45 percent miss
rate by cascading on ACF, obtaining more than 5 percent
improvement.

Effectiveness of Pedestrian Attributes We investigate
how different pedestrian attributes can help improve the
main task. To this end, we train TA-CNN by combing
the main task with each of the pedestrian attributes, and
the miss rates are reported in Table 1, where shows that
‘viewpoint’ is the most effective attribute, which improves
the miss rate by 3.25 percent, because ‘viewpoint’ captures

5 http://www.vision.caltech.edu/Image_
Datasets/CaltechPedestrians/

the global information of pedestrian. The attribute capture
the pose information also attains significant improvement,
e.g. 2.62 percent by ‘riding’. Interestingly, among those at-
tributes modeling local information, ‘hat’ performs the best,
reducing the miss rate by 2.56 percent. We observe that
this result is consistent with previous works, SpatialPooling
[25] and InformedHaar [35], which showed that head is the
most informative body parts for pedestrian detection. When
combining all the pedestrian attributes, TA-CNN achieved
25.64 percent miss rate, improving the main task by 6
percent.

Effectiveness of Scene Attributes Similarly, we study
how different scene attributes can improve pedestrian de-
tection. We train TA-CNN combining the main task with
each scene attribute. For each attribute, we select 5, 000
hard negative samples from its corresponding dataset. For
example, we crop five thousand patches for ‘vertical’ from
the Stanford Background dataset. We test two settings,
denoted as “Neg.” and “Attr.”. In the first setting, we
label the five thousand patches as negative samples. In the
second setting, these patches are assigned to their original
attribute labels. The former one uses more negative samples
compared to the TA-CNN (main task), whilst the latter one
employs attribute information.

The results are reported in Table 2, where shows that
‘traffic-light’ improves the main task by 2.53 percent, re-
vealing that the patches of ‘traffic-light’ are easily confused
with positives. This is consistent when we exam the hard
negative samples of most of the pedestrian detectors. Be-
sides, the ‘vertical’ background patches are more effective
than the ‘horizontal’ background patches, corresponding to
the fact that hard negative patches are more likely to present
vertically.

Attribute Prediction We also consider the accuracy of
attribute prediction and find that the averaged accuracy
of all the attributes exceeds 75 percent. We select the
pedestrian attribute ‘viewpoint’ as illustration. In Table 3,
we report the confusion matrix of ‘viewpoint’, where the
number of detected pedestrians of ‘front’, ‘’back’, ‘’left’,
and ‘right’ are 283, 276, 220, 156 respectively. We observed
that ‘front’ and ‘back’ information are relatively easy to
capture, rather than the ‘left’ and ‘right’, which are more
likely to confuse with each other, e.g. 21 + 40 = 61 mis-
classified samples.

4.2. Overall Performance on Caltech

We report overall results in two parts. All the results
of TA-CNN are obtained by training on Caltech-Train and
evaluating on Caltech-Test. In the first part, we analyze
the performance of different components of TA-CNN. As
shown in Fig.7a, the performances show clear increasing
patterns when gradually adding more components. For
example, TA-CNN (main task) cascades on ACF and re-

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/


Predict State
Frontal Back Left Right

Frontal 226 32 15 10
True Back 24 232 12 8
State Left 22 13 164 21

Right 5 15 40 96
Accuracy 0.816 0.796 0.701 0.711

Table 3: View-point estimation results on Caltech-Test.

(a) Log-average miss rate reduction procedure

(b) Overall Performance on Caltech-Test

Figure 7: Results under standard evaluation settings

duces the miss rate of it by more than 5 percent. TA-
CNN (PedAttr.+SharedScene) reduces the result of TA-
CNN (PedAttr.) by 2.2 percent, because it can bridge the
gaps among multiple scene datasets. After modeling the
unshared attributes, the miss rate is further decreased by 1.5
percent, since more attribute information is incorporated.
The final result of 20.86 miss rate is obtained by using
the structure projection vector as input to TA-CNN. Its
effectiveness has been demonstrated in Fig.7a.

Figure 8: Results on Caltech-Test: (a) comparison with
hand-crafted feature based models; (b) comparison with
other deep models

In the second part, we compare the result of TA-CNN
with all existing best-performing methods, including VJ
[30], HOG [5], ACF-Caltech [7], MT-DPM [33], MT-
DPM+Context [33], JointDeep [22], SDN [16], ACF+SDT
[26], InformedHaar [35], ACF-Caltech+ [19], SpatialPool-
ing [25], LDCF [19], Katamari [2], SpatialPooling+ [24].
These works used various features, classifiers, deep net-
works, and motion and context information. We summarize
them as below. Note that TA-CNN dose not employ motion
and context information.

Features: Haar (VJ), HOG (HOG, MT-DPM), Channel-
Feature (ACF+Caltech, LDCF); Classifiers: latent-SVM
(MT-DPM), boosting (VJ, ACF+Caltech, SpatialPooling);
Deep Models: JointDeep, SDN; Motion and context: MT-
DPM+Context, ACF+SDT, Katamari, SpatialPooling+.

Fig.7b reports the results. TA-CNN achieved the small-
est miss rate compared to all existing methods. Although it
only outperforms the second best method (SpatialPooling+
[24]) by 1 percent, it learns 200 dimensions high-level fea-
tures with attributes, other than combining LBP, covariance
features, channel features, and video motion as in [24].
Also, the Katamari [2] method integrates multiple types of
features and context information.

Hand-crafted Features The learned high-level repre-
sentation of TA-CNN outperforms the conventional hand-
crafted features by a large margin, including Haar, HOG,
HOG+LBP, and channel features, shown in Fig.8 (a). For
example, it reduced the miss rate by 16 and 9 percent com-
pared to DPM+Context and Spatial Pooling, respectively.
DPM+Context combined HOG feature with pose mixture
and context information, while SpatialPooling combined
multiple features, such as LBP, covariance, and channel
features.

Deep Models Fig.8 (b) shows that TA-CNN surpasses
other deep models. For example, TA-CNN outperforms two
state-of-the-art deep models, JointDeep and SDN, by 18 and
17 percent, respectively. Both SDN and JointDeep treated
pedestrian detection as a single task and thus cannot learn
high-level representation to deal with the challenging hard



Figure 9: Results on ETH

negative samples.

4.3. Overall Performance on ETH

We compare TA-CNN with the existing best-performing
methods (see Sec.4.2) on ETH [10]. TA-CNN is trained
on INRIA-Train [5]. This setting aims at evaluating the
generalization capacity of the TA-CNN. As shown in Fig.9,
TA-CNN achieves the lowest miss rate, which outperforms
the second best method by 2.5 percent. It also outperforms
the best deep model by 5.5 percent.

Effectiveness of different Components The analysis
of the effectiveness of different components of TA-CNN
is displayed in Fig.10, where the log-average miss rates
show clear decreasing patterns as follows, while gradually
accumulating more components. First, TA-CNN (main
task) cascades on ACF and reduces the miss rate by 5.4
percent. Second, with pedestrian attributes, TA-CNN
(PedAttr.) reduces the result of TA-CNN (main task)
by 5.5 percent. Third, when bridging the gaps among
multiple scene datasets with shared scene attributes, TA-
CNN (PedAttr.+SharedScene) further lower the miss rate by
1.8 percent. Forth, after incorporating unshared attributes,
the miss rate is further decreased by another 1.2 percent.
TA-CNN finally achieves 34.99 percent log-average miss
rate with the structure projection vector.

Comparisons with Deep Models Fig.11 shows that TA-
CNN surpasses other deep models on ETH dataset. For
example, TA-CNN outperforms other two best-performing
deep models, SDN [16] and DBN-Mul [23], by 5.5 and 6
percent, respectively. Besides, TA-CNN even reduces the
miss rate by 12.7 compared to MultiSDP [34], which care-
fully designed multiple classification stages to recognize
hard negatives.

Figure 10: Log-average miss rate reduction procedure on
ETH

Figure 11: Comparison with other deep models on ETH
dataset

5. Conclusions

In this paper, we proposed a novel deep model to
learn features from multiple tasks and datasets, showing
superiority over hand-crafted features and features learned
by other deep models. Extensive experiments demonstrate
its effectiveness. Future work tends to explore more
attribute configurations. The proposed approach also has
potential for attribute prediction and background scene
understanding.
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