
Automatic Construction Of Robust Spherical Harmonic Subspaces

Patrick Snape Yannis Panagakis Stefanos Zafeiriou
Imperial College London

{p.snape,i.panagakis,s.zafeiriou}@imperial.ac.uk

Abstract

In this paper we propose a method to automatically
recover a class specific low dimensional spherical har-
monic basis from a set of in-the-wild facial images. We
combine existing techniques for uncalibrated photomet-
ric stereo and low rank matrix decompositions in order
to robustly recover a combined model of shape and iden-
tity. We build this basis without aid from a 3D model
and show how it can be combined with recent efficient
sparse facial feature localisation techniques to recover
dense 3D facial shape. Unlike previous works in the
area, our method is very efficient and is an order of
magnitude faster to train, taking only a few minutes to
build a model with over 2000 images. Furthermore, it
can be used for real-time recovery of facial shape.

1. Introduction

The recovery of 3D shape from images represents
an ill-posed and challenging problem. In its most dif-
ficult form, this involves recovering a representation
of shape for an object from a single image, under ar-
bitrary illumination. However, for any given image,
there are an infinite number of shape, illumination and
reflectance inputs that can reproduce the image [1].
Therefore, shape recovery is commonly performed by
relaxing the problem by introducing prior information
or by adding constraints. The most impressive results
have been achieved by restricting the problem space
to a single class of objects such as faces. For exam-
ple, Blanz and Vetter’s 3D morphable model (3DMM)
[7] is one of the most well-known shape recovery tech-
niques and concentrates on the recovery of facial shape.
3DMMs constrain their reconstruction capabilities to
lying within the span of a linear combination of faces.
This allows for the synthesis of a large range of novel
faces. However, the major drawback of 3DMMs is their
complexity of construction. Morphable models require
a set of high quality 3D meshes and associated textures.
Currently, collecting these meshes is a time consuming
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Figure 1: An example reconstruction. Given the
input image (a) our algorithm can robustly recover
dense 3D shape using only images.

and expensive process involving specialised hardware
and manual guidance. Once the meshes have been col-
lected, they must be placed into correspondence which
is a complex research issue in its own right.

In this paper, we look to borrow from ideas seen
within the photometric stereo literature in order to re-
cover shape from objects under unconstrained settings
using only a set of images. Typically, these types of un-
constrained photo collections are called ”in-the-wild”.
We seek to construct our models in an automatic man-
ner, without manual feature point placement or careful
selection of the input images.

In particular, we seek to recover the shape of the ob-
ject by exploiting the similarity within the object class.
In the case of faces, there are millions of available im-
ages that can be utilised to build in-the-wild models.
However, recovering shape from these images is incred-
ibly challenging, as they have been captured in com-
pletely unconstrained conditions. No knowledge of the
lighting conditions, the facial location or the camera
geometric properties are provided with the images. To
address these problems, we propose to recover a class
specific spherical harmonic (SH) basis that exploits the
low-rank structure of faces [5, 16]. Spherical harmonics

1



are ideal for this purpose as they can be approximated
by a low-dimensional linear subspace [5, 38]. By using
the first order SH, 87.5% of the low-frequency compo-
nent of the lighting is approximated. The first order SH
can then be used to recover 3D shape as their discrete
approximation directly incorporates the normals of the
object. These normals can be integrated to provide a
dense 3D surface [14].

Since we seek to recover a SH subspace, we require
correspondence between our input images. This is
achieved by locating a set of sparse features on the faces
and then warping them into a single common refer-
ence frame. This method of achieving correspondence
is powerful, as recent facial feature localisation tech-
niques have incredibly low overhead [18, 39] and thus
cause training to be efficient. The secondary benefit of
this coarse alignment is that our basis can be coupled
with existing facial alignment such as Active Appear-
ance Models (AAM) [13, 34] in order to provide an
appearance basis. We show that our recovered SH ba-
sis can be robustly learnt from automatically aligned,
in-the-wild images. The basis can be used to recover
both dense shape of generic faces and as a person spe-
cific appearance prior within AAM type algorithms.

Summarising, our contributions are:

1. We show the advantage of using a coarser align-
ment than optical flow for model construction. In
particular, our training time for 2330 images from
the HELEN dataset [25] is approximately 12 min-
utes. We strongly believe that leveraging large
numbers of images is important to build expres-
sive models and thus training time is an important
consideration.

2. A formal mathematical framework for perform-
ing efficient class specific uncalibrated photometric
stereo using low-rank and sparsity constraints.

3. We show how our model can be coupled with exist-
ing facial alignment algorithms in order to provide
low frequency dense shape for in-the-wild images.

2. Related Work

In the literature, there are many techniques that at-
tempt to recover 3D facial shape from single images
[7, 47, 30, 31, 28, 20, 44]. The most influential of
these works was the 3D Morphable Model (3DMM)
proposed in [7]. The 3DMM can produce very realistic
reconstructions but has the disadvantage of having a
complex model construction and fitting process. This
reliance on accurate 3D meshes means that 3DMMs
often suffer from an inability to recover complex facial
attributes such as expression. Expression in dense 3D

models has been addressed in the area of blendshapes
[11, 10, 48], however these blendshapes are still com-
plex to create as they require hundreds of meshes of
individuals under varying expressions.

More general techniques for shape recovery such as
the work of Barron et al . [3] do not perform well for
inherently non-lambertian objects such as faces. How-
ever, shape-from-shading (SFS) has been shown to re-
cover accurate facial shape by assuming a prior on the
shape of faces [44, 20, 30, 29, 31, 17, 21]. In contrast to
our proposal, SFS techniques rely on recovery of shape
from a single image, whereas we consider large collec-
tions of images.

The most relevant techniques to this paper involve
recovering shape from a collection of images under
varying illumination. Typically, this involves solving
some form of uncalibrated photometric stereo problem
[4, 36, 35]. However, traditional uncalibrated photo-
metric stereo techniques still assume that the images
provided have been captured by a photometric stereo
system under explicit directed lighting. The relaxation
of the uncalibrated photometric stereo problem to a
class of objects further increases the ambiguity inher-
ent within the problem. Specifically, it is now neces-
sary to separate the SH lighting from the identity of
the individuals. This problem has been approached
for both shape recovery and facial recognition pur-
poses [27, 26, 30, 29, 51]. Lee et al . [27, 26] recover
facial shape by separating illumination from identity
in a manner that is similar to 3DMMs. Minsik et al .
separate [30, 29] the appearance and identity via a low
rank tensor decomposition that provides a very efficient
reconstruction methodology. However, both Lee et al .
and Minsik et al . still rely on previously built dense 3D
models to perform their decomposition.

Recently, Kemelmacher-Shlizerman [19] proposed a
method for building morphable models from images of
faces downloaded from the Internet. This work shares
similarities with ours in that it attempts to build a sub-
space that explicitly separates shape and appearance.
However, in [19] they do not investigate a robust de-
composition, but instead rely on a time consuming op-
tical flow [22] based registration process to remove out-
liers from the images. Although this methodology al-
lows for expression transfer, it does not allow the recov-
ered shapes to be used within existing facial alignment
techniques such as Active Appearance Models (AAMs).
In contrast, our use of efficient facial alignment tech-
niques to acquire correspondence substantially reduces
our training time. It also allows our recovered basis
to be coupled with the alignment techniques for simul-
taneous facial landmark localisation and dense surface
recovery. However, the coarse geometric alignment we



employ is more sensitive to corruptions such as occlu-
sions and extreme facial pose. For this reason, we em-
ploy a low rank constraint [9, 37, 41, 12, 49, 32] to
help remove these high frequency errors whilst main-
taining the low frequency lighting variations. Although
we share a similar optimisation framework to other ro-
bust principal component analysis problems such as
[9, 37, 49, 32], we are the first to propose a low-rank de-
composition that recovers a subspace of spherical har-
monics.

3. Problem Formulation

In this section we describe how a spherical harmonic
(SH) basis can be recovered using uncalibrated photo-
metric stereo (PS) techniques. We then describe how
this problem generalises to a multi-person dataset and
how a representation of shape can be recovered per
image. Finally, we discuss the importance of achieving
correspondence between the images in an efficient and
scalable manner.

3.1. Spherical Harmonic Bases

The lambertian reflectance model states that matte
materials reflect light uniformly in all directions. This
simple image formation model assumes that the inten-
sity of light reflecting from a surface is a function of the
shape of the surface and a linear combination of point
light sources. More formally, given an image I(x, y),
the intensity at a given pixel (x, y) of a convex lam-
bertian surface illuminated by a single light, can be
expressed as

I(x, y) = ρ(x, y)lTn(x, y), (1)

where ρ(x, y) is the albedo at the pixel and represents
surface reflectivity, l is the vector denoting the single
point light source illuminating the object and n(x, y)
is the surface normal at the pixel.

If we now consider a collection of directional light
sources placed at infinity, the lighting intensity at a
given pixel can be expressed as a non-negative function
of the unit sphere using a sum of spherical harmonics.
Formally,

I(x, y) =

∞∑
n=0

n∑
m=−n

αn `nm ρ(x, y) Ynm(n(x, y)), (2)

where αn = π, 2π/3, π/4, . . ., `nm are the coeffi-
cients of the harmonic expansion of the lighting and
Ynm(n(x, y)) are the surface SH functions evaluated at
the surface normal, n(x, y). As n→∞, the coefficients
tend to zero, and thus the SH can be accurately rep-
resented by the lower order harmonics. In [15], it was

shown that the first order SH function is guaranteed
to represent at least 87.5% of the reflectance and ex-
perimentally verified to recover up to 95% in the case
of faces. The first order SH expansion is also directly
related to the objects surface normals:

Y(n(x, y)) = ρ(x, y)[1,nx(x, y),ny(x, y),nz(x, y)]T ,
(3)

where ni(x, y) denotes the ith component of the nor-
mal vector. This is a particularly useful result as re-
covering the first order SH means directly recovering a
representation of shape for an object.

3.2. Uncalibrated Photometric Stereo

Classical photometric stereo (PS) seeks to recover
the normals of a convex object given a number of im-
ages under known different lighting with known di-
rections. Traditionally, the following decomposition is
performed

X = NL̃, (4)

where X ∈ Rd×n is the matrix of observations, and
each of the n columns represents a vectorised image
of the object with d total pixels, N ∈ Rd×3 contains
the normal at every pixel and L̃ ∈ R3×n is the matrix
of lighting vectors per image. Assuming accurate light
vectors and no shadowing artifacts, this problem is triv-
ially solved as a linear least squares problem. Photo-
metric stereo has been shown to provide accurate fa-
cial reconstructions despite faces not representing true
lambertian objects. For example, there are many pub-
licly available facial PS datasets such as the Photoface
Database [50] and the Yale B [16] dataset.

If the lighting vectors are inaccurate or unknown,
then PS is said to be uncalibrated. In [4], Basri et
al . showed that X can be decomposed via a rank con-
strained singular value decomposition (SVD) to recover
the SH bases and the lighting coefficients in the un-
calibrated setting. First order SH are recovered by a
rank 4 SVD and are accurate up to a 4× 4 generalised
Lorentz transformation. By enforcing constraints such
as the integrability constraint [14], the first order SH,
and thus the normals, can be recovered up to a gen-
eralised bas relief ambiguity (GBR). Formally, uncali-
brated PS looks to recover

X = BL, (5)

where X is as before, B ∈ Rd×4 contains the first or-
der SH basis images and L ∈ R4×n is the matrix of
lighting coefficients. As previously mentioned, the so-
lution to this problem is found by performing an SVD,
X = UΣVT , B = U

√
Σ and L =

√
ΣVT . Uncali-

brated PS is useful as it is not always possible to re-
cover accurate lighting estimations for every image.



3.3. Class Specific Uncalibrated Photometric Stereo

A generalisation of the uncalibrated PS problem for
a specific class involves recovering a joint basis of ap-
pearance and illumination. In the case of SH for faces,
this means attempting to separate the identity of the
individual from their surface normals. This problem is
a classic example of a bilinear decomposition problem
and has been previously studied for use in 3D surface
recovery [51, 30, 28, 27, 19]. In the case of SH, we seek
to recover a low dimensional linear subspace that can
recover normals for multiple individuals. This subspace
implies that a face can be accurately reconstructed us-
ing a linear combination of basis shapes. This assump-
tion is commonly employed in algorithms such as the
3DMM and AAMs. Assuming that we want to recover
k such components for our shape subspace, and that
we are using the first order SH, we will recover a d×4k
basis matrix that allows us to recover 3D facial shape
for multiple individuals. Formally,

X = B(L ∗C), (6)

where B ∈ Rd×4k is the linear basis, L ∈ R4×n is the
matrix of first order SH lighting coefficients, C ∈ Rk×n
is the matrix of shape coefficients and (· ∗ ·) denotes
the Khatri-Rao product[23]. In fact, this is the ex-
act decomposition problem solved by Kemelmacher-
Shlizerman in [19] where they denote the combined
coefficients matrix as P = L ∗ C. This was partially
recognised by Zhou et al . [51], however they recover the
lighting and shape coefficient separately by iteratively
solving for each in an alternating fashion. Zhou et al .
also do not provide any examples of the quality of the
shape estimate that they recover.

Minsik et al . [30, 28] also attempt this decomposi-
tion by posing the problem in the form of a tensor.
The decomposition can then be solved by applying a
multilinear SVD. However, multilinear SVD requires a
tensor representation and thus these techniques require
prior data to recover results. A tensor representation is
useful, however, for illustrating how to recover the d×4
first order SH for an individual, given their coefficients
vector ci ∈ Rk×1. We reshape the basis matrix B as a
tensor which we denote S ∈ Rd×k×4. The tensor prod-
uct along the second mode, S×2 ci, recovers the person
specific shape of the ith column of X. To recover B
from S, we perform matricisation of S along the first
mode, denoted S(1), to yield S(1) = B ∈ Rd×4k.

The problem given in (6) can now be solved within
an optimisation framework, which we examine in detail
in the next section.

3.4. Robust Construction Of Spherical Harmonic
Bases

Inspired by recent advances in robust low-rank sub-
space recovery [9], we seek to modify Equation 6 to
include new constraints that impose robustness. As
mentioned previously, faces can be accurately recon-
structed by a linear combination of faces taken from
a low-dimensional basis. Therefore, we propose to de-
compose the image matrix into a low-rank part (A)
capturing the low frequency shape information and a
sparse part (E) accounting for gross but sparse noise
such as partial occlusions and pixel corruptions. To
promote low-rank and sparsity the nuclear norm (de-
note by ‖·‖∗) and the `1-norm (denote by ‖·‖1) are
employed, respectively. Formally we propose to solve
the following non-convex optimisation problem:

argmin
A,E,B,L,C

‖A‖∗ + λ‖E‖1 +
µ

2
‖A−B(L ∗C)‖2F

subject to X = A + E, BTB = I. (7)

Although the above problem is non-convex, an accurate
solution can be obtained by employing the Alternating
Directions Method (ADM) [6]. That is, to minimise
the following augmented Lagrangian function:

L(A,E,B,C,L,Y) =

‖A‖∗ + λ‖E‖1 +
µ

2
‖A−B(L ∗C)‖2F+

tr (YT (X−A−E)) +
µ

2
‖X−A−E‖2F ,

(8)

with respect to BTB = I. Let t denote the iteration
index. Given A[t], E[t], B[t], C[t], L[t], Y[t] and µ[t],
the iteration of ADM for Equation 7 reads:

A[t+1] = argmin
A[t]

L(A[t],E[t],B[t],C[t],L[t],Y[t])

= ‖A[t]‖∗ +
µ[t]

2

(
‖A[t] −B[t](L[t] ∗C[t])‖2F+

‖X−A[t] −E[t] +
Y[t]

µ[t]
‖2F
)
, (9)

E[t+1] = argmin
E[t]

λ‖E[t]‖1+

µ[t]

2
‖X−A[t+1] −E[t] +

Y[t]

µ[t]
‖2F , (10)

B[t+1] = argmin
BT

[t]
B[t]=I

µ[t]

2
‖A[t+1] −B[t](L[t] ∗C[t])‖2F ,

(11)[
L[t+1],C[t+1]

]
=

argmin
L[t],C[t]

µ[t]

2
‖A[t+1] −B[t+1](L[t] ∗C[t])‖2F . (12)



Subproblem (9) admits a closed-form solution, given
by the singular value thresholding (SVT)[8] operator
as:

A[t+1] = Dµ−1
[t]

[
M[t] −A[t] + X−E[t] +

Y[t]

µ[t]

]
, (13)

where M[t] = B[t](L[t] ∗C[t]) is introduced for brevity
of the equation and the SVT is defined as Dτ (Q) =
USτV

T for any matrix Q with SVD: Q = USVT .
Subproblem (10) has a unique solution that is obtained
via the elementwise shrinkage operator [9]. The shrink-
age operator is defined as Sτ [q] = sgn(q) max(|q|−τ, 0).
Therefore, the solution of (10) is

E[t+1] = Sλµ−1
[t]

[
X−A[t+1] +

Y[t]

µ[t]

]
. (14)

Subproblem (11) is a reduced rank Procrustes Rota-
tion problem [52]. Its solution is given by B[t] = UV>

with

A[t+1]

(
L[t] ∗C[t]

)>
= UΣV>, (15)

being the SVD of A[t+1]

(
L[t] ∗C[t]

)>
. However, due

the unitary invariance of the Frobenius norm, Equa-
tion 12 becomes

argmin
L[t+1],C[t+1]

‖BT
[t+1]A[t+1] − L[t] ∗C[t]‖2F . (16)

Subproblem (12, 16) is a least squares factorisation of a
Khatri-Rao product [40], which is solved as follows: Let
Q = B[t+1]

>A[t+1],L = L[t], and C = C[t]. Further-
more, let qi, li, and ci be the ith columns of matrices
Q,L, and C, respectively. Clearly qi = li ⊕ ci, where
⊕ denotes the Kronecker product. For each column of
Q: Reshape qi into a matrix Q̃i ∈ Rl×k×N such that

vec
(
Q̃i

)
= qi. Obviously, Q̃i = ci · l>i is a rank-one

matrix. Compute the SVD of Q̃i as Q̃i = UiΣiV
>
i .

The best rank-one approximation of Q̃i is obtained by
truncating the SVD as: li = ui

√
σ1 and ci =

√
σ1vi,

where ui and vi are the first column vectors of Ui and
Vi, respectively, and σ1 is the largest singular value.
The ADM for solving (7) is outlined in Algorithm 1.

It is important to note that there are inherent am-
biguities in this decomposition, both from the SVD to
recover B and in the Khatri-Rao factorisation to re-
cover L and C. In particular, we are most concerned
about how they may affect the recovered normals be-
fore we integrate them to recover depth. In order to
resolve these ambiguities, we take the simplest possible
approach, we recover the ambiguity matrix from a tem-
plate set of normals provided by a known mean face.

Algorithm 1 Solving (7) by the ADM method.

Input: Data Matrix X ∈ Rd×n and parameter λ.

Output: Matrices A, E, B, C, L.

1: Initialise: A[0] = 0, E[0] = 0, B[0] = 0, C[0] = 0, L[0] = 0,

Y[0] = 0, µ[0] = 10−6, ρ = 1.1, ε = 10−8

2: while not converged do do
3: Fix E[t], B[t], C[t], L[t] and update A[t+1] by

A[t+1] = D
µ
−1
[t]

[
B[t](L[t] ∗C[t])−A[t] + X− E[t] +

Y[t]

µ[t]

]
(17)

4: Fix A[t+1], L[t], C[t], L[t] and update A[t+1] by

E[t+1] = Sλµ[t]−1

[
X−A[t+1] +

Y[t]

µ[t]

]
(18)

5: Update B[t+1] by first performing the SVD on:

A[t+1](L[t] ∗C[t])
T

= UΣV, B[t+1] = UV
T

(19)

6: Update [L[t+1],C[t+1]] via a Least Squares Khatri-Rao fac-
torization, as described in Section 3.4

7: Update Lagrange multipliers by

Y[t+1] = Y[t] + µ[t]

(
X−A[t+1] − E[t+1]

)
(20)

8: Update µ[t+1] by µ[t+1] = min(ρµ[t], 106)
9: Check convergence condition

‖X−A[t+1] − E[t+1]‖∞ < ε,

‖A[t+1] −B[t+1] − (L[t+1] ∗C[t+1])‖∞ < ε
(21)

10: t← t+ 1
11: end while

3.5. Efficient Pixelwise Correspondence

In contrast to the related work of Kemelmacher-
Shlizerman [19], we achieved pixelwise correspondence
between our images by using existing, efficient sparse
facial alignment algorithms. This has two distinct ad-
vantages. Firstly, recent facial alignment algorithms
such as those by Ren et al . [39] and Kazemi et al . [18]
can produce a very accurate set of sparse facial features
in the order of a single millisecond. In contrast, the op-
tical flow method cited in [19] takes multiple seconds
even for a small image. This means that our training
time is drastically reduced in comparison to [19]. Ide-
ally, our technique would be able to scale to the mag-
nitude of thousands of images, whereas the alignment
of [19] would quickly become infeasible as the number
of images increases. In fact, the optical flow step is
run multiple times as the collection flow algorithm is
used [22] which involves an iterative algorithm of rank
4 decompositions and repeated optical flow. Secondly,
the use of a direct alignment to a single reference frame



(a) (b) (c) (d)

Figure 2: Example of the low rank effect on
warped pose. (a) initial input image (b) input im-
age after warping (c) warped image after the low rank
constraint (d) recovered depth from (c).

enables the the usage of our basis in existing appear-
ance based facial alignment algorithms such as AAMs.
This means that our basis can be used to reconstruct
dense 3D shape of faces directly from an existing AAM
fitting provided the reference space of the AAM and
our subspace is the same.

However, it is important to note that there are two
potential drawbacks to our alignment technique. The
alignment is based on a Piecewise Affine warping and
is thus much coarser than the optical flow technique
used in [19]. This is particularly amplified when larger
poses are present in the input images. However, this is
partly why the low rank component of our algorithm
is so important. As Figure 2 shows, the robust decom-
position of the basis helps correct these large global
errors so that the shape subspace can be successfully
recovered. Secondly, our technique does not contain a
number of sub-clusters that can be used to warp expres-
sion onto our model. However, by using a large number
of images that contain expression we directly include
expression within our subspace. In [19], the recovered
subspace will necessarily be devoid of expression as the
global reference shape is neutral. This means that the
subspace recovered by [19] will not be able to recover
expressive 3D shape using efficient facial alignment al-
gorithms.

4. Experiments

In this section we provide a number of experiments
that emphasise the increase in robustness of our re-
constructions. We also show a new application to this
type of model that involves improving the fitting results
of an AAM using our constructed SH basis. Choos-
ing the number of components, k, to recover is an
important problem that was not properly addressed
by Kemelmacher-Schlizerman in [19]. In these experi-
ments we attempt to recover as many components as
possible in order to strike a balance between cleanly
reconstructed normals and identity. However, there is
a trade-off when choosing the value of k. In particular,

Initial Final Recovered Depth

Figure 4: Person specific model fitting for Tom
Hanks. Images of Tom Hanks coarsely aligned by a fa-
cial alignment method. Our algorithm improves the fa-
cial alignment and simultaneously recovers depth. Im-
ages shown are from a YouTube video of Tom Hanks.

(a) (b) (c)

(d) (e) (f)

Figure 5: Our subspace used for SFS. Normals
learnt automatically from the SH subspace of HELEN
vs normals from the clean data of ICT-3DRFE. (b, e)
the clean data (c, f) proposed subspace.

if the value of k is too large, then the decomposition is
unable to separate the identity and shape and the sub-
space of shape no longer represents valid normals. This
is one of the primary advantages of our robust decom-
position, as it allows the value of k to be larger given
the reduced rank of the images. However, a potential
disadvantage of our proposed method is the sensitivity
of the algorithm to the parameter λ, which must be
tuned for every dataset. It is also important to stress
that our main goal is to recover the low frequency shape
information to provide plausible 3D facial surfaces un-
der challenging conditions. However, in Section 4.3, we



Input Proposed [19] Proposed [19]

Figure 3: Comparison with the blind decomposition of [19]. Images from the HELEN[25] dataset.

show that our recovered subspace can be used in exist-
ing high frequency recovery algorithms such as SFS.

The area of 3D facial surface recovery is lacking any
form of formal quantitative benchmark. The quantita-
tive benchmark presented in [19] is performed on depth
data recovered from photometric stereo. This is not
ground truth depth data, as error is introduced dur-
ing integration, and a more accurate evaluation would
be the angular error of the recovered normals. How-
ever, in the presence of cast shadows, even the normals
of photometric stereo are biased. For this reason, the
lack of a standard and fair quantitative evaluation, we
focus on qualitative results in this paper.

Specifically we performed the following experiments:
(1) We built our subspace using the HELEN[25]
dataset. We directly compare against the blind de-
composition proposed in [19] and show particularly
challenging images from the dataset. This experiment
highlights the difficulty in constructing subspaces from
large a set of in-the-wild images. (2) We show that the
robust subspace learnt in (1) can be used within the
shape-from-shading (SFS) framework of Smith et al .
[44]. By recovering the normals from every image of
HELEN, we can perform a secondary principal compo-
nent analysis (PCA) on the normals in order to directly
embed them within Smith’s algorithm. In this exper-
iment, we compare against a clean dataset of normals
acquired from the ICT-3DRFE[46] database. (3) We
show how our subspace can be combined with an ex-
isting facial alignment algorithm, namely project-out

AAMs [34]. Our subspace can be used both as the ap-
pearance basis for the AAM and also as a methodology
of recovering dense 3D shape.

In the following section we describe the construction
of the bases and explain what processing was performed
on each dataset.

4.1. Constructing The Robust Bases

The process of building the robust SH basis was
the same for all datasets involved. Facial annotations
consisting of 68 points were recovered through vari-
ous methods for each dataset. In the case of the HE-
LEN database, the manual annotations provided by
the IBUG group were used [42, 43], in the case of the
Yale B, Photoface and ICT-3DRFE databases, man-
ual annotations were used and the in-the-wild images
and video of Tom Hanks were automatically annotated
by the one millisecond facial alignment method of [18]
provided by the Dlib project [24].

These annotations were then warped via a Piece-
wise Affine transformation to a mean reference shape
that was built from all the faces, training and testing,
of the LFPW facial annotations provided by IBUG.
This provided the dense correspondence required for
performing matrix decompositions. To construct our
SH bases, we performed the algorithm as described in
Section 3.4 on the warped images. In order to provide
the example reconstructions, the reconstructed images
were warped back into their original shapes and then
integrated using the method of Frankot and Chellappa



[14].
Table 1 gives examples of the training time taken

for the in-the-wild Tom Hanks images and the HELEN
dataset. It is important to note that part of the rea-
son the training time is much lower for the Tom Hanks
images is that they have an inherently lower rank than
the HELEN images as they are all of the same individ-
ual. This greatly affects the convergence time and thus
the timings do not scale linearly.

Data W1 Train W2 Tot
HELEN (2330) 8 730 25 763
T. Hanks (274) 1 21 4 26

Table 1: Training Times. Mean training times in
seconds over 10 runs rounded to the nearest second.
’W1’ denotes warping to the LFPW reference frame of
(150 × 150) pixels, ’W2’ denotes warping back to the
original images and ’Train’ denotes the total training
time of our method described in Section 3.4. Original
images were larger than the reference, hence the in-
crease from ’W1’ to ’W2’. Timings were recorded on
an Intel Xeon E5-1650 3.20GHz with 32GB of RAM.

4.2. Comparison Using HELEN

In this set of experiments we wished to convey two
results: (1) that we are capable of quickly constructing
our basis on a large number of in-the-wild images, (2)
that the our robust formulation of the problem gives
superior performance to the blind decomposition used
by [19]. In this experiment, k = 200 and the total num-
ber of components was thus 4k = 800. Figure 3 shows
the results from this experiment. As we can clearly see,
on challenging images the blind decomposition is un-
able to separate the appearance from the illumination
and thus the recovered normals are unable to recovery
accurate shape.

4.3. Using The Subspace In SFS

The SFS technique of Smith et al . [44] relies on a
PCA basis constructed from normals of a single class
of object. It then seeks to recover the high frequency
normal information directly from the texture. In order
to create the PCA required by [44], we recovered spher-
ical harmonics for every image in the dataset using the
proposed algorithm. We then computed Kernel-PCA
[45] on the normals recovered from the HELEN images
and supplied them to [44]. The lighting vector is also
an input to the algorithm and we recover it by solving
a least squares problem with the known normals.

In order to provide a comparison for our reconstruc-
tion, we created a clean normal subspace using the data

from the ICT-3DRFE [46] database. This database is
primarily use for image relighting purposes, however,
they provide a very accurate set of normals of faces
under a wide range of expressions. The results of this
experiment are shown in Figure 5. Although our sub-
space did not provide reconstructions that are as visu-
ally accurate as the subspace from ICT-3DRFE, they
were still able to successfully recover a plausible repre-
sentation of the high frequency shading information.

4.4. Automatic Alignment

In this experiment we used the Active Template
Model (ATM) provided by the Menpo project [2] in
order to perform a project-out type algorithm to align
images of Tom Hanks. This model is similar to the
Lucas-Kanade [33] method but uses a point distribu-
tion model (PDM) in order to perform non-rigid align-
ment between the images. In particular, the template
image is fixed during optimisation of the PDM, and we
use our subspace to provide a texture representing an
approximation of the diffuse component of the image.
This is essentially identical to the procedure performed
within a project-out AAM.

We used a person specific SH subspace that was built
on images of Tom Hanks that were downloaded auto-
matically from the Internet. In this case, the images
were automatically aligned using the DLib implemen-
tation of [18]. For this experiment, k = 30 and thus
the total number of components 4k = 120. We down-
loaded 200 frames from a Youtube video of Tom Hanks1

and attempted to automatically align them using our
subspace and the ATM. The ATM was initialised us-
ing another fitting of [18] which was then iteratively
improved. At each global iteration, we recovered a
new set of diffuse textures for each frame and then
performed a refitting of every frame. This caused the
images to align over a sequence of iterations. We per-
formed 10 such iterations. Figure 4 shows two example
frames where the alignment was improved and dense
shape was also recovered.

5. Conclusion

We have proposed a robust method for automati-
cally constructing generalised spherical harmonic sub-
spaces. In particular, we have shown that by using a
common reference frame as defined in algorithms such
as AAMs, we can efficiently build models that have
applications in shape recovery and facial alignment.

1https://www.youtube.com/watch?v=nFvASiMTDz0 from
3:43
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