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Abstract

Audio Description (AD) provides linguistic descriptions
of movies and allows visually impaired people to follow a
movie along with their peers. Such descriptions are by de-
sign mainly visual and thus naturally form an interesting
data source for computer vision and computational linguis-
tics. In this work we propose a novel dataset which contains
transcribed ADs, which are temporally aligned to full length
HD movies. In addition we also collected the aligned movie
scripts which have been used in prior work and compare
the two different sources of descriptions. In total the MPII
Movie Description dataset (MPII-MD) contains a parallel
corpus of over 68K sentences and video snippets from 94
HD movies. We characterize the dataset by benchmark-
ing different approaches for generating video descriptions.
Comparing ADs to scripts, we find that ADs are far more
visual and describe precisely what is shown rather than
what should happen according to the scripts created prior
to movie production.

1. Introduction
Audio descriptions (ADs) make movies accessible to

millions of blind or visually impaired people1. AD provides
an audio narrative of the “most important aspects of the vi-
sual information” [61], namely actions, gestures, scenes,
and character appearance as can be seen in Figures 1 and
2. AD is prepared by trained describers and read by pro-
fessional narrators. More and more movies are audio tran-
scribed, but it may take up to 60 person-hours to describe a
2-hour movie [44], resulting in the fact that only a small
subset of movies and TV programs are available for the
blind. Consequently, automating this would be a noble task.

In addition to the benefits for the blind, generating de-
scriptions for video is an interesting task in itself requiring
to understand and combine core techniques of computer vi-
sion and computational linguistics. To understand the visual

1 In this work we refer for simplicity to “the blind” to account for all
blind and visually impaired people which benefit from AD, knowing of the
variety of visually impaired and that AD is not accessible to all.

AD: Abby gets in the
basket.

Mike leans over and sees
how high they are.

Abby clasps her hands
around his face and
kisses him passionately.

Script: After a moment a
frazzled Abby pops up in
his place.

Mike looks down to see –
they are now fifteen feet
above the ground.

For the first time in
her life, she stops think-
ing and grabs Mike and
kisses the hell out of him.

Figure 1: Audio description (AD) and movie script samples
from the movie “Ugly Truth”.

input one has to reliably recognize scenes, human activities,
and participating objects. To generate a good description
one has to decide what part of the visual information to ver-
balize, i.e. recognize what is salient.

Large datasets of objects [19] and scenes [73, 76] had an
important impact in the field and significantly improved our
ability to recognize objects and scenes in combination with
CNNs [40]. To be able to learn how to generate descrip-
tions of visual content, parallel datasets of visual content
paired with descriptions are indispensable [59]. While re-
cently several large datasets have been released which pro-
vide images with descriptions [31, 49, 53], video descrip-
tion datasets focus on short video snippets only and are
limited in size [12] or not publicly available [54]. TACoS
Multi-Level [58] and YouCook [17] are exceptions by pro-
viding multiple sentence descriptions and longer videos.
While these corpora pose challenges in terms of fine-
grained recognition, they are restricted to the cooking sce-
nario. In contrast, movies are open domain and realis-
tic, even though, as any other video sources (e.g. YouTube
or surveillance videos), have their specific characteristics.
ADs and scripts associated with movies provide rich mul-
tiple sentence descriptions. They even go beyond this by
telling a story which means they allow to study how to ex-
tract plots and understand long term semantic dependencies
and human interactions from the visual and textual data.
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AD: Buckbeak rears and at-
tacks Malfoy.

Hagrid lifts Malfoy up. As Hagrid carries Malfoy away,
the hippogriff gently nudges
Harry.

Script: In a flash, Buckbeak’s
steely talons slash down.

Malfoy freezes. Looks down at the blood blos-
soming on his robes.

Buckbeak whips around, raises
its talons and - seeing Harry -
lowers them.

AD: Another room, the wife
and mother sits at a window
with a towel over her hair.

She smokes a cigarette with a
latex-gloved hand.

Putting the cigarette out, she
uncovers her hair, removes the
glove and pops gum in her
mouth.

She pats her face and hands
with a wipe, then sprays herself
with perfume.

She pats her face and hands
with a wipe, then sprays herself
with perfume.

Script: Debbie opens a win-
dow and sneaks a cigarette.

She holds her cigarette with a
yellow dish washing glove.

She puts out the cigarette and
goes through an elaborate rou-
tine of hiding the smell of
smoke.

She puts some weird oil in her
hair and uses a wet nap on her
neck and clothes and brushes
her teeth.

She sprays cologne and walks
through it.

AD: They rush out onto the
street.

A man is trapped under a cart. Valjean is crouched down be-
side him.

Javert watches as Valjean
places his shoulder under the
shaft.

Javert’s eyes narrow.

Script: Valjean and Javert
hurry out across the factory
yard and down the muddy track
beyond to discover -

A heavily laden cart has toppled
onto the cart driver.

Valjean, Javert and Javert’s as-
sistant all hurry to help, but
they can’t get a proper purchase
in the spongy ground.

He throws himself under the
cart at this higher end, and
braces himself to lift it from be-
neath.

Javert stands back and looks on.

Figure 2: Audio description (AD) and movie script samples from the movies “Harry Potter and the Prisoner of Azkaban”,
“This is 40”, “Les Miserables”. Typical mistakes contained in scripts marked in red italic.

Figures 1 and 2 show examples of ADs and compare
them to movie scripts. Scripts have been used for various
tasks [14, 21, 45, 48, 51], but so far not for video descrip-
tion. The main reason for this is that automatic alignment
frequently fails due to the discrepancy between the movie
and the script. Even when perfectly aligned to the movie,
the script frequently is not as precise as the AD because
it is typically produced prior to the shooting of the movie.
E.g. in Figure 2 we note mistakes marked in red. A typical
case is that part of the sentence is correct, while another part
contains irrelevant information.

In this work we present a novel dataset which pro-
vides transcribed ADs, which are aligned to full length HD
movies. For this we retrieve audio streams from Blu-ray
HD disks, segment out the sections of the AD audio and
transcribe them via a crowd-sourced transcription service
[2]. As the ADs are not fully aligned to the activities in
the video, we manually align each sentence to the movie.
Therefore, in contrast to [61, 62, 69], our dataset provides
alignment to the actions in the video, rather than just to the
audio track of the description. In addition we also mine
existing movie scripts, pre-align them automatically, simi-

lar to [14, 45] and then manually align the sentences to the
movie.

As a first study on our dataset we benchmark several ap-
proaches for movie description. First are nearest neighbour
retrieval using state-of-the-art visual features [32, 72, 76]
which do not require any additional labels, but retrieve sen-
tences from the training data. Second, we adapt the ap-
proach of [59] by automatically extracting the semantic rep-
resentation from the sentences using semantic parsing. This
approach achieves competitive performance on the TACoS
Multi-Level corpus [58] without using the annotations and
outperforms the retrieval approaches on our novel MPII
Movie Description dataset.

The main contribution of this work is our novel MPII
Movie Description dataset (MPII-MD) which provides tran-
scribed and aligned AD and script data sentences. We pro-
vide access to our dataset on our web page. We hope that
our dataset will foster research in different areas including
video description, activity recognition, visual grounding,
and understanding of plots. Additionally we present an ap-
proach to semi-automatically collect and align AD data and
analyse the differences between ADs and movie scripts.
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2. Related Work
We first discuss recent approaches to video description

and then the existing works using movie scripts and ADs.
In recent years there has been an increased interest in

automatically describing images [24, 25, 36, 41, 42, 43, 47,
52, 65] and videos [8, 17, 28, 29, 30, 34, 39, 58, 66, 70]
with natural language. While recent works on image de-
scription show impressive results by learning the relations
between images and sentences and generating novel sen-
tences [13, 20, 33, 37, 43, 50, 59, 71], the video descrip-
tion works typically rely on retrieval or templates [17, 28,
29, 39, 41, 66, 68] and frequently use a separate language
corpus to model the linguistic statistics. A few exceptions
exist: [70] uses a pre-trained model for image-description
and adapts it to video description. [20, 59] learn a trans-
lation model, however, the approaches rely on a strongly
annotated corpus with aligned videos, annotated labels and
sentences. The main reason for video description lacking
behind image description seems to be a missing corpus to
learn and understand the problem of video description. We
aim to address this limitation by collecting a large, aligned
corpus of video snippets and descriptions. To handle the
setting of having only videos and sentences without anno-
tated labels for each video snippet, we propose an approach
which adapts [59], by extracting labels from the sentences.
Our extraction of labels has similarities to [68], but we aim
to extract the senses of the words automatically by using
semantic parsing as discussed in Section 5.

Movie scripts have been used for automatic discov-
ery and annotation of scenes and human actions in videos
[21, 45, 51]. We rely on the approach presented in [45] to
align movie scripts using subtitles. [10] attacks the problem
of learning a joint model of actors and actions in movies
using weak supervision provided by scripts. They also
rely on a semantic parser (SEMAFOR [16]) trained on the
FrameNet database [7], however, they limit the recognition
only to two frames. [11] aims to localize individual short
actions in longer clips by exploiting the ordering constrains
as weak supervision. [10, 11, 21, 45, 51] proposed datasets
focused on extracting several activities from movies. Most
of them are part of the “Hollywood2” dataset [51] which
contains 69 movies and 3669 clips. Another line of works,
[15, 22, 56, 64, 67], proposed datasets for character identifi-
cation targeting TV shows. All the mentioned datasets rely
on alignment to movie/TV scripts and none uses ADs.

Recently, [74] proposed a method to generate audio de-
scriptions (ADs) from video using recurrent neural net-
works and incorporating a soft-attention mechanism. The
method is evaluated on a new corpus of audio described
movies M-VAD [69], collected in parallel and independent
from our corpus. We provide more detailed comparison of
their corpus to ours in Section 3.3. ADs have also been
used to understand which characters interact with each other

[62]. There are some initial works to support AD produc-
tion using scripts as source [44] and automatically finding
scene boundaries [27]. [61] analyses the linguistic proper-
ties on a non-public corpus of ADs from 91 movies. Their
corpus is based on the original sources to create the ADs
and contains different kinds of artifacts not present in ac-
tual description, such as dialogs and production notes. In
contrast our text corpus is much cleaner as it consists only
of the actual ADs.

Semantic parsing has received much attention in com-
putational linguistics recently, see, for example, the tutorial
[6] and references given there. Although aiming at general-
purpose applicability, it has so far been successful rather
for specific use-cases such as natural-language question an-
swering [9, 23] or understanding temporal expressions [46].

3. The MPII Movie Description dataset

Despite the potential benefit of ADs for computer vision,
they have not been used so far apart from [74] as well as
[27, 44] who study how to automate AD production. We
believe the main reason for this is that they are not available
in the text format, i.e. transcribed. We tried to get access to
AD transcripts from description services as well as movie
and TV production companies, but they were not ready to
provide or sell them. While script data is easier to obtain,
large parts of it do not match the movie, and they have to
be “cleaned up”. In the following we describe our semi-
automatic approach to obtain AD and scripts and align them
to the video.

3.1. Collection of ADs

We search for Blu-ray movies with ADs in the “Audio
Description” section of the British Amazon [1] and select
a set of 55 movies of diverse genres. As ADs are only
available in audio format, we first retrieve the audio stream
from Blu-ray HD disk2. Then we semi-automatically seg-
ment out the sections of the AD audio (which is mixed with
the original audio stream) with the approach described be-
low. The audio segments are then transcribed by a crowd-
sourced transcription service [2] that also provides us the
time-stamps for each spoken sentence. As the AD is added
to the original audio stream between the dialogs, there
might be a small misalignment between the time of speech
and the corresponding visual content. Therefore, we manu-
ally align each sentence to the movie in-house.

Semi-Automatic segmentation of ADs. We first estimate
the temporal alignment difference between the ADs and the
original audio (which is part of the ADs), as they might

2We use [3] to extract a Blu-ray in the .mkv file, then [5] to select and
extract the audio streams from it.
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Unique Before alignment After alignment
Movies Words Words Sentences Clips Avg. length Total length

AD 55 346,557 332,846 37,272 37,266 4.1 sec. 42.5 h.
Movie script 50 398,072 320,621 31,103 31,071 3.6 sec. 31.1 h.
Total 94 744,629 653,467 68,375 68,337 3.9 sec. 73.6 h.

Table 1: MPII Movie Description dataset statistics. Discussion see Section 3.3.

Dataset multi-sentence domain sentence source videos clips sentences

YouCook [28] x cooking crowd 88 - 2,668
TACoS [57, 59] x cooking crowd 127 7,206 18,227
TACoS Multi-Level [58] x cooking crowd 185 14,105 52,593
MSVD [12] open crowd - 1,970 70,028
M-VAD [69] x open professional 92 48,986 55,904
MPII-MD (ours) x open professional 94 68,337 68,375

Table 2: Comparison of video description datasets. Discussion see Section 3.3.

be off a few time frames. The precise alignment is impor-
tant to compute the similarity of both streams. Both steps
(alignment and similarity) are computed using the spec-
tograms of the audio stream, which is computed using Fast
Fourier Transform (FFT). If the difference between both au-
dio streams is larger than a given threshold we assume the
AD contains audio description at that point in time. We
smooth this decision over time using a minimum segment
length of 1 second. The threshold was picked on a few sam-
ple movies, but has to be adjusted for each movie due to
different mixing of the audio description stream, different
narrator voice level, and movie sound.

3.2. Collection of script data

In addition to the ADs we mine script web resources3

and select 39 movie scripts. As starting point we use the
movies scripts from “Hollywood2” [51] that have highest
alignment scores to the movie. We are also interested in
comparing the two sources (movie scripts and ADs), so we
are looking for the scripts labeled as “Final”, “Shooting”, or
“Production Draft” where ADs are also available. We found
that the “overlap” is quite narrow, so we analyze 11 such
movies in our dataset. This way we end up with 50 movie
scripts in total. We follow existing approaches [14, 45]
to automatically align scripts to movies. First we parse
the scripts, extending the method of [45] to handle scripts
which deviate from the default format. Second, we extract
the subtitles from the Blu-ray disks4. Then we use the dy-
namic programming method of [45] to align scripts to subti-
tles and infer the time-stamps for the description sentences.

3http://www.weeklyscript.com, http://www.simplyscripts.com,
http://www.dailyscript.com, http://www.imsdb.com

4We extract .srt from .mkv with [4]. It also allows for subtitle alignment
and spellchecking.

We select the sentences with a reliable alignment score (the
ratio of matched words in the near-by monologues) of at
least 0.5. The obtained sentences are then manually aligned
to video in-house.

3.3. Statistics and comparison to other datasets

During the manual alignment we filter out: a) sen-
tences describing movie introduction/ending (production
logo, cast etc); b) texts read from the screen; c) irrelevant
sentences describing something not present in the video; d)
sentences related to audio/sounds/music. Table 1 presents
statistics on the number of words before and after the alig-
ment to video. One can see that for the movie scripts re-
duction in number of words is about 19.5%, while for ADs
it is 3.9%. In case of ADs filtering mainly happens due to
inital/ending movie intervals and transcribed dialogs (when
shown as text). For the scripts it is mainly attributed to irrel-
evant sentences. Note, that in cases when the sentences are
“alignable” but have minor mistakes we still keep them. As
sometimes multiple sentences migh refer to the same video
snippet, the number of clips (68,337) is slightly smaller than
the total number of sentences (68,375).

We compare our corpus to other existing parallel video
corpora in Table 2. The main limitations of existing datasets
are single domain [17, 57, 58] or limited number of video
clips [28]. Recently, in parallel with our work, [69] pro-
posed a similar dataset M-VAD of movies with ADs. There
are three differences between our and their corpus. First,
our corpus consists both of movie scripts and ADs, while
they only use ADs. Second, we manually align every sen-
tence to the corresponding activity in the video, while they
rely on automatic AD detection and use its timestamps,
leading to less precise alignment. Last, we use Blu-ray HD
movies, while they use DVDs. Both datasets contribute with
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a large number of realistic open domain videos, provide
high quality (professional) sentences and allow for multi-
sentence description. We end up with the largest (as of now)
parallel corpus of over 68K video-sentence pairs and a total
length over 73 hours.

3.4. Visual features

We extract video snippets from the full movie based on
the aligned sentence intervals. We also uniformly extract
10 frames from each video snippet. As discussed above
AD and scripts describe activities, object, and scenes (as
well as emotions which we do not explicitly handle with
these features, but they might still be captured, e.g. by the
context or activities). In the following we briefly introduce
the visual features computed on our data which we will also
make publicly available.

DT We extract the improved dense trajectories compen-
sated for camera motion [72]. For each feature (Trajectory,
HOG, HOF, MBH) we create a codebook with 4000 clus-
ters and compute the corresponding histograms. We apply
L1 normalization to the obtained histograms and use them
as features.

LSDA We use the recent large scale object detection
CNN [32] which distinguishes 7604 ImageNet [19] classes.
We run the detector on every second extracted frame (due
to computational constraints). Within each frame we max-
pool the network responses for all classes, then do mean-
pooling over the frames within a video snippet and use the
result as a feature.

PLACES and HYBRID Finally, we use the recent scene
classification CNNs [76] featuring 205 scene classes. We
use both available networks: Places-CNN and Hybrid-
CNN, where the first is trained on the Places dataset [76]
only, while the second is additionally trained on the 1.2 mil-
lion images of ImageNet (ILSVRC 2012) [60]. We run the
classifiers on all the extracted frames of our dataset. We
mean-pool over the frames of each video snippet, using the
result as a feature.

4. Approaches to video description
In this section we discuss different approaches to the

video description task that we benchmark on our proposed
dataset. Given a training corpus of aligned videos and sen-
tences we want to describe a new unseen test video.

Nearest neighbor We retrieve the closest sentence from
the training corpus using the L1-normalized visual features
introduced in Section 3.4 and the intersection distance.

SMT We adapt the two-step translation approach of [59]
which uses an intermediate semantic representation (SR),
modeled as a tuple, e.g. 〈cut, knife, tomato〉. As the first
step it learns a mapping from the visual input to the seman-
tic representation (SR), modeling pairwise dependencies in
a CRF using visual classifiers as unaries. The unaries are

Phrase WordNet VerbNet Expected
Mapping Mapping Frame

the man man#1 Agent.animate Agent: man#1

begin to shoot shoot#4 shoot#vn#3 Action: shoot#4

a video video#1 Patient.solid Patient: video#1

in in PP.in

the moving
bus

bus#1 NP.Location.
solid

Location: mov-
ing bus#1

Table 3: Semantic parse for “He began to shoot a video in
the moving bus”. Discussion see Section 5.1

trained using an SVM on dense trajectories [72]. In the sec-
ond step [59] translates the SR to a sentence using Statistical
Machine Translation (SMT) [38]. For this the approach uses
a concatenated SR as input language, e.g. cut knife tomato,
and natural sentence as output language, e.g. The person
slices the tomato. While we cannot rely on an annotated SR
as in [59], we automatically mine the SR from sentences
using semantic parsing which we introduce in the next sec-
tion. In addition to dense trajectories we use the features
described in Section 3.4.

SMT Visual words As an alternative to potentially
noisy labels extracted from the sentences, we try to directly
translate visual classifiers and visual words to a sentence.
We model the essential components by relying on activity,
object, and scene recognition. For objects and scenes we
employ on the pre-trained models LSDA and PLACES. For
activities we rely on the state-of-the-art activity recognition
feature DT. We cluster the DT histograms to 300 visual
words using k-means. The index of the closest cluster
center DTi from our activity category is chosen as label. To
build our tuple we obtain the highest scoring class labels of
the object detector and scene classifier. More specifically
for the object detector we consider two highest scoring
classes: for subject and object. Thus we obtain the tuple
〈SUBJECT,ACTIV ITY,OBJECT, SCENE〉 =
〈argmax(LSDA), DTi, argmax2(LSDA),
argmax(PLACES)〉, for which we learn a transla-
tion model to a natural sentence using the SMT approach
discussed above.

5. Semantic parsing

Learning from a parallel corpus of videos and natural
language sentences is challenging when no annotated inter-
mediate representation is available. In this section we intro-
duce our approach to exploit the sentences using semantic
parsing. The proposed method extracts intermediate seman-
tic representations (SRs) from the natural sentences. Later
in the section we perform an evaluation of our method on
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a corpus where annotated SRs are available in context of a
video description task.

5.1. Semantic parsing approach

We lift the words in a sentence to a semantic space of
roles and WordNet [26, 55] senses by performing SRL (Se-
mantic Role Labeling) and WSD (Word Sense Disambigua-
tion). For an example, refer to Table 3, the expected out-
come of semantic parsing on the input sentence “He shot
a video in the moving bus” is “Agent: man, Action:

shoot, Patient: video, Location: bus”. Ad-
ditionally, the role fillers are disambiguated.

We use the ClausIE tool [18] to decompose sentences
into their respective clauses. For example, “he shot and
modified the video” is split into two phrases “he shot the
video” and “he modified the video”). We then use the
OpenNLP tool suite5 for chunking the text of each clause.
In order to provide the linking of words in the sentence to
their WordNet sense mappings, we rely on a state-of-the-art
WSD system, IMS [75]. The WSD system, however, works
at a word level. We enable it to work at a phrase level. For
every noun phrase, we identify and disambiguate its head
word (e.g. the moving bus to “bus#1”, where “bus#1”
refers to the first sense of the word bus). We link verb
phrases to the proper sense of its head word in WordNet
(e.g. begin to shoot to “shoot#4”). The phrasal verbs
such as e.g. “pick up” or “turn off” are preserved as long
as they exist in WordNet.

In order to obtain word role labels, we link verbs to
VerbNet [35, 63], a manually curated high-quality linguis-
tic resource for English verbs. VerbNet is already mapped
to WordNet, thus we map to VerbNet via WordNet. We
perform two levels of matches in order to obtain role la-
bels. First is the syntactic match. Every VerbNet verb
sense comes with a syntactic frame e.g. for shoot, the
syntactic frame is NP V NP. We first match the sentence’s
verb against the VerbNet frames. These become candi-
dates for the next step. Second we perform the seman-
tic match: VerbNet also provides a role restriction on the
arguments of the roles e.g. for shoot (sense killing), the
role restriction is Agent.animate V Patient.animate
PP Instrument.solid. For the other sense for shoot
(sense snap), the semantic restriction is Agent.animate

V Patient.solid. We only accept candidates from the
syntactic match that satisfy the semantic restriction.

VerbNet contains over 20 roles and not all of them are
general or can be recognized reliably. Therefore, we group
them to get the SUBJECT, VERB, OBJECT and LOCA-
TION roles. We explore two approaches to obtain the la-
bels based on the output of the semantic parser. First is to
use the extracted text chunks directly as labels. Second is to
use the corresponding senses as labels (and therefore group

5http://opennlp.sourceforge.net/

Approach BLEU

SMT [59] 24.9
SMT [58] 26.9
SMT with our text-labels 22.3
SMT with our sense-labels 24.0

Table 4: Video description performance (BLEU@4 in %)
on Detailed Descriptions from the TACoS Multi-Level [58],
see Section 5.2.

Labels activity tool object source target

Manual [58] 78 53 138 69 49

verb object location

Our text-labels 145 260 85
Our sense-labels 158 215 85

Table 5: Comparing manual labels from TACoS Multi-
Level [58] and automatic labels obtained by our semantic
parser, see Section 5.2.

multiple text labels). In the following we refer to these as
text- and sense-labels. Thus from each sentence we extract
a semantic representation in a form of (SUBJECT, VERB,
OBJECT, LOCATION).

5.2. Applying parsing to TACoS Multi-Level corpus

We apply the proposed semantic parsing to the TACoS
Multi-Level [58] parallel corpus. We extract the SR from
the sentences as described above and use those as annota-
tions/labels. Note, that this corpus is annotated with the tu-
ples (ACTIVITY, OBJECT, TOOL, SOURCE, TARGET)
and the subject is always the person. Therefore we drop
the SUBJECT role and only use (VERB, OBJECT, LOCA-
TION) as our SR. After extracting the labels for VERBs,
OBJECTs, LOCATIONs with our parser we only use those
that appear at least 30 times. For them we train the visual
classifiers as in [58]. Next we train a CRF with 3 nodes for
verbs, objects and locations, using the visual classifier re-
sponses as unaries. We follow the translation approach of
[59] and train the SMT on the Detailed Descriptions part of
the corpus using our labels. Finally, we translate the SR pre-
dicted by our CRF to generate the sentences. Table 4 shows
the results comparing our method to [59] and [58] who use
manual annotations to train their models. As we can see
the sense-labels perform better than the text-labels as they
provide better grouping of the labels. Our method produces
competitive result which is only 0.9% below the result of
[59]. At the same time [58] uses more training data, addi-
tional color SIFT features and recognizes the dish prepared
in the video. All these points, if added to our approach,
would also improve the performance.

We analyze the labels selected by our method in Table
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Correctness Relevance

Movie scripts 33.9 (11.2 ) 33.4 (16.8 )
ADs 66.1 (35.7 ) 66.6 (44.9 )

Table 6: Human evaluation of movie scripts and ADs:
which sentence is more correct/relevant with respect to the
video (forced choice). Majority vote of 5 judges in %. In
brackets: at least 4 of 5 judges agree. See also Section 6.1.

5. We see that comparing to the manual labels the number
nearly doubles. This is due to two reasons. First, differ-
ent labels might still be assigned to very similar concepts.
Second, the manual annotations were created prior to the
sentence collection, so some words used by humans in sen-
tences might not be present in the annotations.

From this experiment we conclude that the output of our
automatic parsing approach can serve as a replacement of
manual annotations and allows to achieve competitive re-
sults. In the following we apply this approach to our Movie
Description dataset.

6. Evaluation
In this section we provide more insights about our movie

description dataset. First we compare ADs to movie scripts
and then benchmark the approaches to video description in-
troduced in Section 4.

6.1. Comparison of AD vs script data

We compare the AD and script data using 11 movies
from our dataset where both are available (see Section 3.2).
For these movies we select the overlapping time intervals
with the intersection over union overlap of at least 75%,
which results in 279 sentence pairs, we remove 2 pairs
which have idendical sentences. We ask humans via Ama-
zon Mechanical Turk (AMT) to compare the sentences with
respect to their correctness and relevance to the video, us-
ing both video intervals as a reference (one at a time). Each
task was completed by 5 different human subjects, cover-
ing 2770 tasks done in total. Table 6 presents the results of
this evaluation. AD is ranked as more correct and relevant
in about 2/3 of the cases, which supports our intuition that
scrips contain mistakes and irrelevant content even after be-
ing cleaned up and manually aligned.

6.2. Semantic parser evaluation

Table 7 reports the accuracy of individual components of
the semantic parsing pipeline. The components are clause
splitting (Clause), POS tagging and chunking (NLP), se-
mantic role labeling (Labels) and word sense disambigua-
tion (WSD). We manually evaluate the correctness on a ran-
domly sampled set of sentences using human judges. It is

Corpus Clause NLP Labels WSD

TACoS Multi-Level [58] 0.96 0.86 0.91 0.75
MPII-MD 0.89 0.62 0.86 0.7

Table 7: Semantic parser accuracy on TACoS Multi-Level
and MPII-MD. Discussion in Section 6.2.

Correctness Grammar Relevance

Nearest neighbor
1: DT 8.7 6.9 8.7
2: LSDA 8.4 6.5 8.5
3: PLACES 8.1 6.4 8.2
4: HYBRID 7.8 6.3 7.8

5: SMT Visual words 6.7 8.5 6.9

SMT with our text-labels
6: DT 30 6.4 6.4 6.2
7: DT 100 6.4 6.4 6.4
8: Combi 100 6.1 6.7 6.2

SMT with our sense-labels
9: DT 30 5.4 5.8 5.4

10: DT 100 5.3 6.1 5.4
11: Combi 100 5.7 6.3 5.7

12: Scripts/ADs 2.9 5.7 2.5
13: Movie scripts∗ 3.7 5.9 3.1
14: ADs∗ 2.3 5.5 2.1

Table 8: Video description performance of different meth-
ods on MPII-MD. Mean Ranking (1-12), lower is better.
Movie scripts only and ADs Discussion in Section 6.3.
∗ Mean ranks computed only on the corresponding subset
of the data.

evident that the poorest performing parts are the NLP and
the WSD components. Some of the NLP mistakes arise due
to incorrect POS tagging. WSD is considered a hard prob-
lem and when the dataset contains less frequent words, the
performance is severely affected. Overall we see that the
MPII-MD dataset is more challanging than TACoS Multi-
Level but the drop in performance is reasonable compared
to the siginificantly larger variability.

6.3. Video description

As the collected text data comes from the movie context,
it contains a lot of information specific to the plot, such as
names of the characters. We pre-process each sentence in
the corpus, transforming the names to “Someone” or “peo-
ple” (in case of plural). The transformed version of the cor-
pus is used in all the experiments below. We provide the
transformed and the original corpus.
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Labels subject verb object location

text-labels 30 94 534 387 153
sense-labels 30 89 608 385 159
text-labels 100 16 186 88 50
sense-labels 100 16 193 80 51

Table 9: Statistics for the labels obtained by our semantic
parser on MPII-MD. 30 and 100 is the minimum number of
label occurrences, see Section 6.3.

For the video description task we split the 11 movies
with associated scripts and ADs (in total 22 alignments, 2
for each movie) from Section 3.2) into validation set (8)
and test set (14). The other 83 movies are used for training.
Human judges are asked to rank multiple sentence outputs
with respect to their correctness, grammar and relevance to
the video (as in [58]).

Table 8 summarizes results of the human evaluation from
3736 randomly selected test video snippets, showing the
mean rank, where lower is better. In the top part of the ta-
ble we show the nearest neighbor results based on multiple
visual features. When comparing the different features, we
notice that the pre-trained features (LSDA, PLACES, HY-
BRID) perform better than DT, where HYBRID performing
best. Next is the translation approach with the visual words
as labels, performing better than the nearest neighbors in
terms of correctness and relevance, however loosing to hu-
man written sentences in terms of grammar. The next two
blocks correspond to the translation approach when using
the labels from our semantic parser. After extracting the la-
bels we select the ones which appear at least 30 or 100 times
as our visual attributes, see Table 9 for details. “Combi 100”
refers to combining DT, HYBRID, and PLACES as unaries
in the CRF. We did not add LSDA as we found that it re-
duces the performance of the CRF. Finally, the last “Refer-
ence” block refers to the human written test sentences from
the corpus and not surprisingly ranks best.

Overall we can observe the following tendencies: (1)
Using our parsing with SMT outperforms nearest neighbor
baselines and SMT Visual words. This is also reflected in
Figure 3, showing example outputs of all the evaluated ap-
proaches for a single movie snippet. (2) The mean rank of
the actual movie script/AD is significantly lower, i.e. better,
than any of the automatic approaches. (3) When computing
ranks only on the AD (line 14), the mean rank for correct-
ness/relevance is 1.4/1.0 lower than for Movie scripts (line
13). This confirms the observation made in Table 6.

6From 500 submitted tasks to AMT we had to remove 3 workers who
obviously did not follow the instructions, leaving us with 373 evaluated
snippets.

Nearest neighbor
1: DT Someone fetches someone, who’s holding

her resume.
2: LSDA Someone watches the man place his suit in

a locker as the guard rubs someone’s butt.
3: PLACES Someone holds up two ties for her ap-

proval.
4: HYBRID She looks round on hearing the noise and

sees a cupboard door opening.

5: SMT Visual W. Someone gets out of the desk.

SMT with our text-labels
6: DT 30 Someone opens the door.
7: DT 100 Someone opens the door.
8: Combi 100 Someone enters and closes the door.

SMT with our sense-labels
9: DT 30 Someone opens the door behind her.

10: DT 100 Someone comes in.
11: Combi 100 Someone walks up to the door.

12: Script/AD Someone decides to go and investigate.

Figure 3: Qualitative comparison of different video descrip-
tion methods. Discussion in Section 6.3.

7. Conclusions

In this work we presented a novel dataset of movies with
aligned descriptions sourced from movie scripts and ADs
(audio descriptions for the blind). We present first experi-
ments on this dataset using state-of-the art visual features,
combined with a recent movie description approach from
[59]. We adapt the approach for this dataset to work with-
out annotations, but rely on semantic parsing of labels. We
show competitive performance on the TACoS Multi-Level
dataset and promising results on our movie description data.
We compare AD with previously used script data and find
that AD tends to be more correct and relevant to the movie
than script sentences. Beyond our first study on single sen-
tences, the dataset opens new possibilities to understand sto-
ries and plots across multiple sentences in an open domain
scenario on large scale.
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