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Abstract

We consider the problem of localizing unseen objects in
weakly labeled image collections. Given a set of images an-
notated at the image level, our goal is to localize the object
in each image. The novelty of our proposed work is that,
in addition to building object appearance model from the
weakly labeled data, we also make use of existing detectors
of some other object classes (which we call “familiar ob-
jects”). We propose a method for transferring the appear-
ance models of the familiar objects to the unseen object.
Our experimental results on both image and video datasets
demonstrate the effectiveness of our approach.

1. Introduction

How would one detect an object class, say “dog”, in im-
ages? The de facto answer in computer vision is to collect a
set of labeled training data (e.g. images with object bound-
ing box annotations) for this object class and apply standard
supervised machine learning to learn the appearance model
for this object category. Then this appearance model can be
used to detect dogs in any image. The key of this standard
pipeline is that we need to have access to a large amount of
manually labeled training data. In the past few years, the
availability of large-scale annotated datasets (e.g. PASCAL
VOC [6] and ImageNet [25]) has been one of the driving
forces of much progress in visual recognition.

The most straightforward approach to create large
datasets is to gather images/videos online and ask people
to annotate them via crowd-sourcing. However, this is very
expensive and time-consuming. The PASCAL dataset [6]
has focused only on 20 common objects. ImageNet [25]
covers more object classes, but is still limited to the objects
defined in the WordNet hierarchy, and most of the images in
ImageNet are not annotated with object bounding boxes. It
is not clear how this straightforward approach would scale
up when we need to deal with a large number of concepts
emerging and changing over time, which is common for im-
ages/videos on the Internet.
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Although it is difficult to collect training images anno-
tated with object bounding boxes, it is usually much easier
to collect weakly labeled data, where labels are only given
at the image level. For example, many online data (Flickr
images, YouTube videos) might come with user-generated
tags describing the objects present in the images/videos. It
is also possible to collect weakly labeled images of an ob-
ject class via image search. In this paper, our goal is to
develop techniques to localize the object in weakly labeled
data (see Fig. 1). Given a collection of images labeled with
an object category (e.g. “car”), our method will output the
bounding box of this object in each image. Our method can
also be applied in videos. In this case, we are given one
single video of the novel object. Our method will treat the
frames of the video as the image collection and localize the
object in each frame.

Another weakness of traditional approaches in visual
recognition is that even if we have appearance models for
1000 object classes, we have to start from scratch when
building the appearance model for the 1001-th object class.
This is somewhat unintuitive and unsatisfying — it should be
easier to build the appearance model for a new object class
if it is related to other known object categories.

Our work is motivated by the following observations.
1) Large datasets with bounding box annotations exist for
some object categories, e.g. the 20 objects in PASCAL [6]
and a subset of objects in ImageNet [25]. For these object
categories (we will call them “familiar objects”), we have
access to detectors with reasonably good performance. 2)
For most of other object categories (we call them “novel ob-
jects”), fully annotated data are scarce. But it is easy to col-
lect weakly labeled images/videos for them. In this paper,
we use the term “novel objects” to denote objects for which
we do not have fully annotated data. It is different from the
“novel object” used in object discovery (e.g. [18]). 3) Re-
cent work in text analysis has produced valuable resources
on word semantics. For example, a word is represented as a
fixed length vector (called “word embedding”) in [19]. The
embedding vectors of words are learned from large collec-
tions of text documents. Semantically related words (e.g.
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a collection of images labeled as “car”

“cat” and “dog”) are being mapped closer in this embed-
ding space. The word embedding provides a way for us to
infer how two object classes are related. 4) Objects that are
semantically close often have similar visual appearances.
We acknowledge that some people might not agree with the
last point — indeed one can find object categories that are
semantically close, but visually very different. But previ-
ous work (e.g. [3, 7, 17]) in computer vision has demon-
strated that semantic knowledge can still be useful for solv-
ing vision-related tasks, even when it is constructed from
non-visual information. In this paper, we will show that it
is possible to transfer appearance model from one object
class to another based on their semantic relationship in term
of the word vectors.

The main contribution of this paper is to incorporate
knowledge transfer into weakly supervised learning (WSL)
of object classes. Although weakly supervised learning
has been previously explored in computer vision, there has
not been much work on exploiting familiar objects to help
learning new object categories.

2. Related Work

In recent years, weakly supervised learning has emerged
as a powerful way of reducing the effort required in col-
lecting fully-annotated datasets. Several methods have been
proposed to localize or segment objects in weakly labeled
images and videos, where the labels are only provided at
the image/video level. Nguyen et al. [20] use a variant of
multiple instance learning (MIL) to localize objects in im-
ages without bounding box annotations. Deselaers et al. [4]
propose a CRF model for learning object appearance while
localizing the objects in weakly labeled images. Similar
models [22] have been used for learning object detectors
from videos. Tang et al. [31] propose a method for object
co-localization in noisy Internet images. The goal is to si-
multaneously localize the object of interest in a collection of
images. Joulin et al. [15] extend the co-localization frame-
work to videos. Weakly supervised learning has also been
used to segment objects in images and videos. Vezhnevets
et al. [35] propose a CRF model for semantic segmenta-

a video labeled as “car”

Figure 1. Our goal is to localize objects in weakly labeled data. (Left) Given a collection of images labeled as “car”, our algorithm will
localize the car in each image of the collection. (Right) By applying our algorithm on a single video labeled as “car”, we can localize the
specific instance of “car” in this video. The red bounding boxes in this figure are outputs of our algorithm.

tion of object with weak supervision. There are also meth-
ods [11, 32] for segmenting objects in YouTube videos.

Our work of using familiar objects to help learning novel
objects is related to transfer learning. The goal is to use the
knowledge learned in one task to help the learning of re-
lated tasks. Earlier work [8] on one-shot learning in vision
aims to transfer the knowledge from some object categories
to a new object class, so learning a new object class only
requires a small number of training images. Stark et al. [30]
transfer shape knowledge between related object classes.
Tommasi and Caputo [33] use the SVM parameters learned
from one object class as the prior for a new related object
class. Farhadi et al. [7] and Lampert et al. [17] propose
to transfer knowledge about object categories via attributes.
There is also work [23, 24] on discovering attributes from
online knowledge base. Another type of transfer learning
is to adapt the model learned for one vision task to another,
e.g. Hoffman [12] propose a method for adapting classifi-
cation models to detection.

Our work is also related to a line of research on using lin-
guistic knowledge (in particular, word embedding) in com-
puter vision. In the natural language processing (NLP) com-
munity, there has been work [13, 19] on learning word em-
bedding from a text corpus. The goal is to produce a vector
representation for each word. If two words (e.g. “dog” and
“cat”) are semantically close, their word vectors will tend
to be similar. The learned word vectors have been used in
many NLP applications, e.g. information retrieval, docu-
ment classification, etc. Recently, they have been used in
computer vision applications as well. Frome et al. [9] learn
to embed both words and images jointly in a semantic space
for image classification. Andrej et al. [16] use word vectors
for learning to translate between images and sentences.

3. Problem Statement

We assume that we have a set of “familiar object” cate-
gories and some “novel object” categories. For familiar ob-
jects, we have access to pre-trained appearance models (i.e.
detectors) for them, or equivalently, a set of training images
with bounding box annotations for learning the appearance

4316



models. For example, familiar objects might correspond to
the 20 object categories in the PASCAL VOC challenge or
the subset of synsets in ImageNet with annotated bound-
ing boxes. For these familiar objects, a large collection of
annotated images are available. There are also many pre-
trained object detectors available for these familiar objects.
For a novel object class, we have a set of images contain-
ing the novel object, but we do not have the bounding boxes
of the object in those images. Our goal is to localize the
novel object in each image. In this work, we will make
the following assumptions about the image collection: 1)
the novel object appears in every image of the collection;
2) For each object name (either familiar or novel), we have
a word vector describing the semantic information of this
object. These word vectors can be obtained from the NLP
community [13, 19].

4. Our Approach

An overview of our approach is illustrated in Fig. 2. To
localize a novel object in a collection of weakly labeled im-
ages, we build two initial appearance models. The first ap-
pearance model is obtained from the image collection using
object proposals (Sec. 4.1). The second appearance model
is obtained by transferring knowledge from other familiar
objects (Sec. 4.2). Our final appearance model of the novel
object is a combination of these two initial models. We then
use the final appearance model to localize the novel object
in each image of the collection.

4.1. Appearance model from object proposals

Given a collection of weakly labeled images of a novel
object, the first step of our approach is to generate a set of
object proposals in each image. Each object proposal is a
bounding box which might contain any object class. There
has been several recent work on generating object propos-
als in the form of bounding boxes [1, 36] or image seg-
ments [5]. In our work, we use the edge boxes method in
[36] for generating bounding boxes as our object proposals.
This method is based on the observation that the number of
contours in a bounding box is indicative of how likely this
bounding box contains an object of any class. Based on this
observation, it defines a box objectness score that measures
the number of edges in the box minus those that are mem-
bers of contours that overlap the box’s boundary. Using ef-
ficient data structures, the edge boxes algorithm can evalu-
ate millions of candidate boxes quickly and return the top
scoring boxes in a given image. The score (called “object-
ness score”) associated with each bounding box indicates
the likelihood of the box containing an object. Figure 3
shows the results of applying the edge boxes algorithm on
sample images.

We assume that the novel object is reasonably salient in
most images in the collection. Admittedly, this assumption

does not always hold. But we believe this is a reasonable
assumption in many cases. For example, if we collect im-
ages by querying the name of the novel object from search
engines, the novel object tends to be salient in the images
returned by search engines.

Based on this assumption, we can train an initial model
for the novel object from the object proposals in the image
collection. We select object proposals with high objectness
scores and consider them as positive examples of the novel
object. We then select a set of negative examples by ran-
domly generating bounding boxes from images that do not
correspond to the novel object. Given these positive and
negative examples, we learn an appearance model for this
novel object using a linear SVM. Let x denote the feature
vector of an image patch, the appearance model is repre-
sented by a parameter vector w;,. The dot product w; X
(without loss of generality, we assume a linear SVM model
without the bias term) indicates the likelihood of x being
the novel object.

4.2. Appearance model from familiar objects

The appearance model and the localization of the novel
object appear to be a chicken-and-egg problem. If we have
an appearance model of the novel object, we can use the
appearance model to localize the object in an image. Con-
versely, if we know the ground-truth locations of the novel
object in some images, we can simply learn an appearance
model of this object. Then we can use the appearance model
to localize the object in other images. Sec. 4.1 provides
one way of getting the appearance model w,,. In this sec-
tion, we propose another way of constructing the appear-
ance model by transferring knowledge from other familiar
objects. First, we use the word vectors associated with the
novel object and familiar objects to establish their semantic
relatedness. Then we transfer the appearance models of fa-
miliar objects based on their relatedness to the novel object.
Word vectors: We use the word vectors learned in [13].
These word vectors are learned in an unsupervised fashion
from a large corpus using a neural-network-based language
model. The model learns the semantics of words from their
local and global context in the corpus. As a result, the
model produces a vector space representation for each En-
glish word as a D-dimensional vector (D = 200 in our
experiments). These vectors can then be used as features
in various applications in text analysis, e.g. information re-
trieval, document classification, parsing, etc. In our work,
we use the word vectors as a source of semantic knowledge
to bridge the familiar and novel objects.

Figure 4 shows a visualization of the word vectors by
projecting them on a 2D space using t-SNE [34]. We can
see that words similar in their semantic meanings are close
in term of their word vectors. For example, words corre-
sponding to various music instruments are mapped together
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familiar objects

Figure 2. An overview of our approach. (Top left) Given a collection of weakly labeled images of a novel object (e.g. motorbike), we learn
an appearance model w,, from the object proposals (see Sec. 4.1). (Bottom left) We also have access to fully annotated data (or pre-trained
models) for a set of familiar objects, e.g. car, bus, dog, etc. We transfer the knowledge of familiar objects to obtain another appearance
model w; for the novel object (see Sec. 4.2). (Middle) The final appearance model w for the novel object is a combination of w, and wy.
(Right) We can then use w to localize the novel object in the image collection (see Sec. 4.3).

Figure 3. Examples of applying the edge boxes algorithm on images (1st row) and videos (2nd row). Objects in the images tend to be
covered by one or more bounding boxes produced by the edge boxes algorithm.

in the upper left corner in Fig. 4.

Novel object as sparse reconstruction: We are given a set
of K familiar object classes. We use v; to denote the word
vector associated with the i-the object class and u; to denote
the corresponding appearance model. For simplicity, we
assume the appearance model (object detector) has a linear
form:

fi(x) =u/x (1)

where x represents the feature vector of an image patch.
Given an input image, we can apply Eq. 1 to sub-windows
at various positions and scales to detect the i-th object in the
image.

For a novel object class, we denote its word vector as v.
Our goal is to obtain an appearance model (we denote it as
w) for this novel object class. Our approach is based on
two assumptions. First of all, the word vectors and appear-
ance models of objects are related — if two objects ¢ and j
are similar in terms of their word vectors v; and v, they
tend to be similar in terms of their appearance models u;

and u;. Secondly, for a novel object, we can approximate
its word vector v as a linear combination of those of famil-
iar objects, i.e.:

vaOivy+0ove + . 0V 2)

where the parameters 6; (¢ = 1, 2, ..., K) are the coefficients
of the linear combination.

We estimate the coefficient vector © = [0y, 0, ..., 0] "
by solving the following optimization problem:

win [|v — (61 v1 + 62va + LOVI)E+ MO 3)

The first term in Eq. 3 minimizes the reconstruction er-
ror of the linear approximation, while the second term min-
imizes the L; norm of the parameter ©. The L, norm will
encourage © to be sparse, since we prefer to reconstruct the
novel object using a small number of familiar objects.

Transferring appearance model: By solving Eq. 3, we
get the parameter vector © = [0, 05, ...,0k]". If we as-
sume that the semantic relatedness of object classes (in term
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Figure 4. (Best viewed in PDF with magnification) Visualization of the word vectors in 2D using t-SNE [34]. The t-SNE algorithm finds a

2D embedding of the word vectors.

of word vectors) is similar to that of appearance models, we
can use the same O to represent the appearance model of
the novel object as:

“4)

w; = 01ug + Ous + .0 ug

Note that we do not require any training data of the novel
object in order to get w;. As long as we have the word
vectors of object classes (both familiar and novel) and pre-
trained appearance models for familiar objects, we can use
Eq. 3 and Eq. 4 to compute w;. In other words, we have
transferred the appearance models from familiar objects to
the novel object.

4.3. Modeling and localizing the novel object

Sec. 4.1 and Sec. 4.2 provide two different ways of learn-
ing the appearance model of the novel object. Let w,, and
w; denote the two appearance models learned in Sec. 4.1
and Sec. 4.2, respectively. Our final appearance model w
for the novel object is a linear combination of these two:

®)

W =YW, + Wy

where +y is a parameter that controls the relative importance
of w,, and w,.

Intuitively, the parameter v should vary depending on
the “transferability” of the novel object. If a lot of familiar
objects are closely related to the novel object, it should be
easier to transfer the appearance model to the novel object.
In this case, we like ~y to be small, so w; will have a higher
influence. Conversely, if the novel object is vastly different
from all the familiar objects, we like ~ to be large. So we
do not rely too much on transferring appearance model from
the familiar objects.

One way to define the “transferability” of an novel object
is to examine the reconstruction error in Eq. 3. Let ©*

(07,05, ...,0%] T be the solution to Eq. 3, the reconstruction
error is:

E(©) = ||v = (0ivi + 03v2 + .05vK)l[5 (6

We then set v = SE(©*), where 3 is a free parameter. Le.

our final appearance model is computed as:
w=/-E(©")- -w,+w @)

Notice that if a novel object can be easily represented as
a linear combination of familiar objects, i.e. it is easy to do
the transfer learning, the reconstruction error £(0*) will be
small. In this case, the appearance model w, obtained from
the transferring learning will have a larger effect in Eq. 7.

We can then use this appearance model w to re-score the
object proposals generated in Sec. 4.1. Let x be the feature
vector extracted from the image patch of a proposal, we use
w | x to measure the score of this proposal belonging to the
novel object. The top scored bounding box in each image
will be our localization result.

An interesting special case is when the image collection
consists of frames from a single video. This is potentially
useful for video retrieval. For example, if we query a novel
object, say “tiger” in YouTube. Instead of just returning
the videos containing tigers, we can also localize the tiger
in each video. If we apply our method on a single video
of a novel object, we will get an appearance model for the
specific instance of the object in this particular video. In
other words, our approach can automatically adapt to dif-
ferent videos of the same novel object.

5. Experiments

We evaluate our approach on one image
dataset (Sec. 5.2) and two video datasets (Sec. 5.3
and 5.4).

4319



method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | avg

transfer only [48.32 48.97 17.58 55.25 6.15 32.26 15.85 40.36 28.54 70.92 4.5 1591 43.55 34.69 13.75 3.26 51.04 28.38 46.74 19.92| 31.3
proposal only |77.31 55.55 62.73 40.88 21.31 77.96 72.1 549 14.83 68.79 29.5 56.29 70.38 74.69 43.18 27.35 4791 26.2 70.88 67.19| 53
combined |78.57 63.37 66.36 56.35 19.67 82.26 74.75 69.13 22.47 72.34 31 62.95 74.91 78.37 48.61 29.39 64.58 36.24 75.86 69.53|58.84

Table 1. CorLoc results on the PASCAL VOC 2007 dataset. We

compare three different methods: (1st row) using only the appearance

model transferred from familiar objects w; (2nd row) using only the appearance model from the object proposals w, ; (3rd row) using the

combined appearance model w.

motorbike person sheep

SRR RIS

sofa train tv monitor

Figure 5. Qualitative examples of our approach on the PASCAL VOC 2007 dataset.

method aero bird boat car

cat cow dog horse bike train avg

[21] 654 673 389 652

[15] (video) | 25.12 31.18 27.78 38.46 41.18 2838 3391 35.62 23.08 25 30.97

transfer only | 35.27 10.75 31.75 30.77 19.66 83.78 2696 50.68 50.56 46.43 | 38.66
proposal only | 51.69 54.84 3254 8571 1453 75.68 55.65 5342 51.69 3929 | 515
combined 56.04 30.11 39.68 85.71 2479 87.83 5565 60.27 618 51.79 | 55.37

463 402 653 484 39 25 50.1

Table 3. CorLoc results on the YouTube-Objects dataset. Similar to the PASCAL VOC 2007 dataset, we compare three different methods:
(3rd row) using only the appearance model transferred from familiar objects w; (4th row) using only the appearance model from the object
proposals w,, ; (5th row) using the combined appearance model w. We also compare with previous work [15] (1st row) and [21] (2nd

row) that uses the same dataset.

method aero bird boat car

cat cow dog horse bike train avg

transfer only | 40.34 43.86 4041 2842 2635 47.15 3437 28.67 26.12 24.28 34
proposal only | 42.23 51.24 29.54 67.76 1475 50.2 47.02 22.18 1644 18.84 | 36.02
combined 45.74 5547 3951 5875 26.51 55 4351 3371 3276 25.63 | 41.66

Table 4. CorLoc results of different methods on the YouTube-Objects-Subset dataset.

5.1. Implementation details

We use the 4096 dimensional CNN-feature implemented
in Caffe [14] as our feature representation for an object pro-
posal. This feature has been proved to be one of the state-
of-the-art feature representations in many visual recognition

tasks. In order to construct the set of familiar objects, we
use the 200 object classes in [10]. These object models are
trained from a subset of the ImageNet images with bound-
ing box annotations using the Caffe-based CNN features.
Some of the object classes do not have word vectors asso-
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Figure 6. (Best viewed in PDF with magnification) Visualization of the © parameters for novel object classes. For each novel object class,
we show the top 10 familiar objects with the corresponding 6 values.

5.2. PASCAL VOC 2007

ciated with them, possibly because they does not appear in
the corpus used for learning the word vectors. We filter out
those object classes and select 142 familiar object classes in

The dataset contains images of 20 object classes from
the end.

the train+val subsets of PASCAL VOC 2007 dataset. We
consider each of them as the novel object and apply our al-

We set the free parameters of our method by validating
over a small set of images/videos. For the images in the
PASCAL VOC 2007 dataset, we extract 100 object propos-
als on each image and set A = 1 and 8 = 0.3. For videos in
the YouTube-Objects dataset, we extract 20 object propos-
als on each frame and set A = 1 and 8 = 0.1.

gorithm on the images that contain at least one instance of
this novel object. Since the object classes in PASCAL over-
lap with those of the 142 familiar objects, we remove the
novel object class from the set of familiar objects when do-
ing the appearance transfer. For example, when we consider
“dog” as the novel object, we remove the “dog” model from
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Figure 7. Qualitative examples of our approach on the YouTube-Objects-Subset dataset.

method CorLoc

[15] (image model) 24.6
[27] 30.2
[29] 30.4
[28] 32.0
[26] 36.2
[2] 38.8

ours 58.84

Table 2. Comparison with previous work on the PASCAL VOC
2007 dataset in term of the average CorLoc.

the 142 familiar object classes.

We use the CorLoc defined in [4] to measure the perfor-
mance. It is defined as the percentage of images in which
a method correctly localizes the novel object according to
the PASCAL criterion %ﬂ%g > 0.5, where B, is the
localized bounding box and By is a ground-truth bounding
box. Table 1 shows the CorLoc results of three methods: 1)
using only the transferred appearance wy; 2) using only the
appearance model from the object proposals w; 3) using
the combined appearance model w. The results of using the
combined appearance model achieve the best performance
on 18 out of the 20 object classes.

Table 2 shows the comparison with other published re-
sults. Our approach significantly outperforms others. Some
examples of our localization results are shown in Fig 5.

Figure 6 visualizes the © parameters obtained via Eq. 3.
For each novel class, we show the top 10 familiar object
classes according to the descending order of their corre-
sponding 6 values.

5.3. YouTube-Objects

The Youtube-Objects dataset [22] consists of videos of
10 object classes. For each class, bounding box annota-
tions are provided for one frame per shot for 100-290 shots.

We apply our method on each video in the dataset by con-
sidering the frames in this video as the image collection.
Similarly, we remove the novel object class from the set of
familiar objects when doing the appearance transfer. Only
frames with annotations are considered in the evaluation. In
Table 3, we compare our results with previous work that
uses the same dataset.

5.4. YouTube-Objects-Subset

We also evaluate our method on the subset of the
YouTube-Objects dataset collected in [32]. This dataset
contains ground-truth segment-level object annotations on
all frames in many video shots. The results on this dataset
are shown in Table 4. Fig. 7 shows some qualitative results
on this dataset.

6. Conclusion

We have proposed an approach for localizing novel ob-
jects from weakly labeled data. The novelty of our work
is that in addition to learning appearance models from the
weakly labeled data, we also exploit appearance models
available from other familiar objects that are related to the
novel object. Our experimental results demonstrate that our
proposed method outperforms other baseline approaches.
As future work, we plan to use the proposed method as a
building block for large-scale incremental learning of ob-
ject models from Internet data.

Acknowledgement

This work was supported by NSERC and the University
of Manitoba Research Grants Program (URGP). We grate-
fully acknowledge the support of NVIDIA Corporation with
the GPU donation used in this research.

4322



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2010.

R. G. Cinbis, J. Verbeek, and C. Schmid. Multi-fold mil
training for weakly supervised object localization. In /[EEE
Conference on Computer Vision and Pattern Recognition,
2014.

J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does clas-
sifying more than 10,000 image categories tell us? In Euro-
pean Conference on Computer Vision, 2010.

T. Deselaers, B. Alexe, and V. Ferrari. Weakly supervised
localization and learning with generic knowledge. Interna-
tional Journal of Computer Vision, 100(3):257-293, 2012.
I. Endres and D. Hoiem. Category independent object pro-
posals. In European Conference on Computer Vision, 2010.
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL visual object classes
(VOC) challenge. International Journal of Computer Vision,
88(2):303-338, 2010.

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing
objects by their attributes. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2009.
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 28(4):594-611, April 2006.

A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,
M. Ranzato, and T. Mikolov. DeViSE: A deep visual-
semantic embedding model. In Advances in Neural Infor-
mation Processing Systems, 2013.

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic
segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition, 2014.

G. Hartmann, M. Grundmann, J. Hoffman, D. Tsai, V. Kwa-
tra, O. Madani, S. Vijayanarasimhan, I. A. Essa, J. Rehg,
and R. Sukthankar. Weakly supervised learning of object
segmentations from web-scale video. In ECCV Workshop on
Web-scale Vision and Social Media, 2012.

J. Hoffman, S. Guadarrama, E. S. Tzeng, J. Donahue, T. Dar-
rell, K. Saenko, and R. B. Girshick. LSDA: Large scale de-
tection through adaptation. In Advances in Neural Informa-
tion Processing Systems. MIT Press, 2014.

E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Im-
proving word representations via global context and multiple
word prototypes. In Annual Meeting of the Asscoation for
Computational Linguistics, 2012.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv:1408.5093,
2014.

A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and
video co-localization with frank-wolfe algorithm. In Euro-
pean Conference on Computer Vision, 2014.

A. Karpathy, A. Joulin, and L. Fei-Fei. Deep fragment em-
beddings for bidirectional image-sentence mapping. In Ad-
vances in Neural Information Processing Systems, 2014.

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

4323

C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to
detect unseen object classes by between-class attribute trans-
fer. In IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 2009.

Y. J. Lee and K. Grauman. Object-graphs for context-aware
category discovery. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2010.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean.
Distributed representations of words and phrases and their
compositionality. In Advances in Neural Information Pro-
cessing Systems. MIT Press, 2013.

M. H. Nguyen, L. Torresani, F. de la Torre, and Carsten.
Weakly supervised discrimiative localization and classifi-
caition: a joint learning approach. In IEEE International
Conference on Computer Vision, 2009.

A. Papazoglou and V. Ferrari. Fast object segmentation in
unconstrained video. In IEEE International Conference on
Computer Vision, 2013.

A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Fer-
rari. Learning object class detectors from weakly annotated
videos. In IEEE Conference on Computer Vision and Pattern
Recognition, 2012.

M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowl-
edge transfer and zero-shot learning in a large-scale setting.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2011.

M. Rohrbach, M. Stark, G. Szarvas, 1. Gurevych, and
B. Schiele. What helps where - and why? semantic related-
ness for knowledge transfer. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2010.
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. Berg, and L. Fei-Fei. ImageNet large scale visual recog-
nition challenge. arXiv, 2014.

Z. Shi, T. M. Hospedales, and T. Xiang. Bayesian joint topic
modelling for weakly supervised object localization. In IEEE
International Conference on Computer Vision, 2013.

P. Siva, C. Russell, and T. Xiang. In defense of negative
mining for annotating weakly labelled data. In European
Conference on Computer Vision, 2012.

P. Siva, C. Russell, T. Xiang, and L. Agapito. Looking bey-
ong the image unsupervised learning for object saliency and
detection. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 2013.

P. Siva and T. Xiang. Weakly supervised object detector
learning with model drift detection. In IEEE International
Conference on Computer Vision, 2011.

M. Stark, M. Goesele, and B. Schiele. A shape-based object
class model for knowledge transfer. In /EEE International
Conference on Computer Vision, 2009.

K. Tang, A. Joulin, L.-J. Li, and L. Fei-Fei. Co-localization
in real-world images. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2014.

K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei. Discrimi-
native segment annotation in weakly labeled video. In /IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 2013.



(33]

(34]

(35]

(36]

T. Tommasi and B. Caputo. The more you know, the less you
learn: from knowledge transfer to one-shot learning of object
categories. In British Machine Vision Conference, 2009.

L. van der Maaten and G. E. Hinton. Visualizing data using t-
SNE. Journal of Machine Learning Research, 9:2579-2605,
2008.

A. Vezhnevets, V. Ferrari, and J. M. Buhmann. Weakly su-
pervised semantic segmentation with a multi-image model.
In IEEE International Conference on Computer Vision,
2011.

C. L. Zitnick and P. Doll. Edge boxes: Locating object pro-
posals from edges. In European Conference on Computer
Vision, 2014.

4324



