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Abstract

Estimating surface normals from just a single image
is challenging. To simplify the problem, previous work
focused on special cases, including directional lighting,
known reflectance maps, etc., making shape from shading
impractical outside the lab. To cope with more realistic set-
tings, shading cues need to be combined and generalized to
natural illumination. This significantly increases the com-
plexity of the approach, as well as the number of parameters
that require tuning. Enabled by a new large-scale dataset
for training and analysis, we address this with a discrim-
inative learning approach to shape from shading, which
uses regression forests for efficient pixel-independent pre-
diction and fast learning. Von Mises-Fisher distributions in
the leaves of each tree enable the estimation of surface nor-
mals. To account for their expected spatial regularity, we in-
troduce spatial features, including texton and silhouette fea-
tures. The proposed silhouette features are computed from
the occluding contours of the surface and provide scale-
invariant context. Aside from computational efficiency, they
enable good generalization to unseen data and importantly
allow for a robust estimation of the reflectance map, extend-
ing our approach to the uncalibrated setting. Experiments
show that our discriminative approach outperforms state-
of-the-art methods on synthetic and real-world datasets.

1. Introduction

Estimating surface normals from just a single image is
a severely under-constrained problem. Previous work has
thus made a number of simplifying assumptions, e.g., pre-
suming smooth surfaces, uniform albedo, and directional
lighting from a single light source of known direction. Yet,
relying on a single directional light, or assuming a given re-
flectance map renders shape from shading impractical. To
go beyond the lab, some of these assumptions need to be
relaxed. We thus investigate estimating the reflectance map
of a diffuse object with uniform albedo together with its
surface under uncontrolled illumination, given only a single
image (Fig. 1). Moreover, we aim to avoid strong spatial
regularization to recover fine surface detail. To address this

Figure 1. Qualitative results for shape and reflectance estimation
from a single image: input image [30], estimated normals and re-
flectance map from our method, and novel view (from left to right).

challenging setting, shading cues need to be generalized to
more realistic lighting and also combined due to their com-
plementary strengths. This increases the model and compu-
tational complexity, as well as the number of parameters.

We approach these challenges with a discriminative
learning approach to shape from shading. This notably
makes it easy to combine several shading cues. We begin
by considering (1) color, which helps under hued illumina-
tion [18], and can be exploited with a second order approx-
imation to Lambertian shading [25]. While powerful, our
experimental investigation (Sec. 8.1) shows that correlated
color channels (e.g., in near white light) or the presence of
noise severely impair accuracy. We thus add (2) local con-
text, which aids disambiguation [33], but until now has been
limited to directional lighting. Instead of using colors from
a neighborhood directly, we choose a Texton filter bank [28]
for capturing local context. Employing these filters in a
learning framework allows for automatic adaptation to un-
controlled lighting and fine surface detail. We finally ex-
ploit (3) silhouette features. Previous work has constrained
surface normals at the occluding contour [16, 20], and prop-
agated this information to the surface interior during global
reasoning. We generalize the occluding contour constraint
to the surface interior and provide (spatial) contour informa-
tion at every pixel. These silhouette features yield a coarse
estimate of the surface from just the silhouette, which we
additionally exploit for estimating the reflectance map.

Adopting a learning approach to uncalibrated shape from
shading poses several challenges: First, example-based



Figure 2. Pipeline for training and testing. For each test image,
we estimate a reflectance map to train the regression forests on
synthetically generated data. We optionally enforce integrability
on their pixel-wise predictions.

approaches require a database of surfaces imaged under
the same conditions as the object in question. Captur-
ing all possible combinations of surfaces and lighting con-
ditions is next to impossible, and placing known objects
in the scene [14] often impractical. Recent learning ap-
proaches [5, 19] thus created a database on-the-fly by ren-
dering synthetic shapes under a known lighting condition.
We follow this avenue, but capture the variation of realistic
surfaces with a significantly larger database of 3D models
created by artists. Second and unlike [5, 19], we aim to
cope with unknown illumination at test time. We address
this by estimating the reflectance map from silhouette fea-
tures, and only then training the discriminative approach on
the estimated reflectance. Third, (re-)training a model for a
lighting condition at test time requires efficient learning and
inference. Adapting regression forests to store von Mises-
Fisher distributions in the leaves, as well as leveraging the
set of cues discussed above enables us to perform efficient
pixel-independent surface normal prediction. To further re-
fine the estimate, we optionally enforce integrability on the
predicted surface. Fig. 2 depicts the entire pipeline.

To assess the contribution of the different cues, we first
evaluate their importance statistically and as a component
of our approach. Moreover, we evaluate and compare our
method on both synthetic and real-world data, where it out-
performs several state-of-the art algorithms.

2. Related Work
Shape from shading has an extensive literature [9, 34],

limiting us to the most relevant, recent work here. For
decades, Lambertian shape from shading has been stud-
ied under the assumption of a single white point light
source, presuming that this simplifies the problem. How-
ever, chromatic illumination not only resembles real-world
environments much better, it also constrains shape estima-
tion significantly, permitting substantially increased perfor-
mance [15, 18]. Nevertheless, these methods rely heavily on
favorable illumination and neglect to exploit shape statistics
under nearly monochromatic lighting. Their assumption of
known illumination further limits practical applicability.

In addition to eliminating the point light assumption, re-
cent work aimed to infer the shape jointly with material
properties or illumination. Oxholm and Nishino [22] es-
timated shape together with the object’s bidirectional re-
flectance function (BRDF) by exploiting orientation cues
present in the lighting environment. However, a high-
quality environment map needs to be captured. Barron and
Malik [1, 2] estimate shape as part of a decomposition of a
single image into its intrinsic components. Since they opti-
mize a generative model, training and inference take signif-
icant time and extending the model with additional cues is
complicated. Moreover, strong regularity assumptions need
to be made, limiting the recovery of fine surface detail.

Learning approaches to shape from shading have so far
been limited by the lack of suitable training data. They have
relied on range images or synthetic data [3, 19, 31], both
causing problems of their own: While the noise of range
images is a severe problem in predicting fine-grained sur-
face variations, synthetic datasets often fail to capture the
variation of real-world environments. Recently, Khan et
al. [19] trained a Gaussian mixture model on the isophotes,
using synthetic data and a database of laser scans. Barron
and Malik [1] learned their shape priors from half the MIT
intrinsic image dataset [13]. In addition, example-based
methods [5, 23] have shown reasonable qualitative perfor-
mance; quantitative results have not been reported though.
While learning methods tend to perform better than their
hand-tuned counterparts, they have been limited by simplis-
tic shape priors and the lack of adequate training data.

The work of Hertzmann and Seitz [14] also bears some
relations, which used objects of known geometry imaged
under the same illumination to reconstruct shape from pho-
tometric stereo. Multiple images are required and a known
object needs to be present in each image. In contrast, we
only need one image of an unknown object and use “exam-
ple geometry” only to synthesize our training data.

Our regression tree-based predictor is most related
to Geodesic Forests [21]; both approaches make pixel-
independent predictions by incorporating spatial informa-
tion directly into the tree-based approach. However,
Kontschieder et al. [21] use it for discrete labeling tasks,
such as semantic segmentation, have a complex entangle-
ment, and use generalized geodesic distances as spatial fea-
tures. We instead predict a two-dimensional continuous
variable (normal direction), employ the proposed silhouette
features, and use only a single stage.

3. Overview
We begin with an overview of our discriminative ap-

proach (Fig. 2). Given a test image of a diffuse object with
uniform albedo, we first extract color, textons and our sil-
houette features (Sec. 6). Based on the silhouette features,
we estimate the reflectance map (Sec. 7), with which in turn



we render patches of objects from our database. The fea-
tures (same as for testing) and surface normal of the central
pixel of each synthetic patch form the training dataset, on
which the regression forest (Sec. 5) is trained. After train-
ing, the forest predicts surface normals for each pixel of the
test image from the features we extracted at the beginning.
Optionally, we enforce integrability of the normal field.

4. Data for Analysis and Training

High-quality training data for learning surface variation
has been scarce. With the advent of low-cost depth sensors,
the situation has improved, but real world range images are
often too noisy to learn fine-grained structures. Alterna-
tively, large amounts of synthetic data have been generated,
which often resembles simple geometric shapes like cylin-
ders or blobs [3, 5, 18, 31]. However, the employed para-
metric models often fail to capture real-world surface vari-
ations, like self-occlusions or wrinkles from clothing.

By instead leveraging a dataset of shapes created by an
artist [8], we combine the advantages of both range maps
and synthetic data: First, being manually created by a mod-
eling expert, the shapes resemble real-world objects with
complex phenomena like self-occlusions. Second, having a
large set of 3D models allows to render them in different ori-
entations and to generate a virtually infinite set of training
images. The 3D models we use cover a range of categories,
mainly with an organic shape, such as humans and animals.

It is important to note that our dataset is much larger (100
objects) and more varied than the ones considered in other
learning approaches to shape from shading. [19] used only
6 realistic surfaces of the same object class (faces), while
[2] used 10 objects by taking half of the MIT intrinsic im-
age dataset for training (the other for testing). Although we
trained our algorithm on a dataset that is qualitatively rather
different from all test datasets, we achieve state-of-the-art
performance for a variety of test datasets (see Sec. 8).

5. Discriminative Prediction of Normals

Motivated by the success of decision and regression tree-
based methods in diverse areas, such as human pose estima-
tion [27], image restoration [17], or semantic labeling [21],
we propose to use regression forests for shape from shading.
Note that we only describe the basic learning approach here,
and defer a more thorough discussion of the used features to
Sec. 6. A key motivation for choosing regression forests is
that learning and prediction steps are computationally effi-
cient, a crucial requirement as both learning and prediction
have to be carried out at test time once the reflectance map
has been estimated (Fig. 2). The different trees of the for-
est can be trained in parallel. Moreover, as we predict the
surface normals of objects independently for each pixel, es-
timation is efficient and parallelizable. Since the prediction

does not necessarily result in an integrable normal field, in-
tegrability can be enforced in a post-processing step.

Basic regression forest model. Regression forests form
a prediction of the output variable (here, at a single pixel)
by traversing a tree, such that the traversal path allows the
model to choose an appropriate prediction based on the in-
put features [4]. To that end, each (non-leaf) node has a split
criterion, here a threshold on one input feature, as usual.
Depending on the feature response, the traversal follows
the left or right branch, until a leaf is reached. The leaves
each store a probability distribution over the output vari-
able, which ultimately enables prediction. For robustness,
the predictions of several trees in a forest are averaged.

Normal vectors as output. Predicting normal vectors
comes with a unique set of challenges. First, the output
is a continuous variable, which is normally addressed by
storing in each leaf the average of all training samples that
have been associated with that particular leaf. This can
be thought of as storing the mean of a multivariate Gaus-
sian, which is sensible when the posterior is reasonably ap-
proximated by a Gaussian distribution in Rd. The second
challenge in predicting surface normals is that they are dis-
tributed on a 3-dimensional unit hemisphere; thus a Gaus-
sian assumption is not appropriate. We address this by mod-
eling the prediction in each leaf as a von Mises-Fisher dis-
tribution [10]; we store the mean and dispersion parameters.

More specifically, the von Mises-Fisher distribution
models unit vectors on a d-dimensional hypersphere. In our
case of d = 3, its density function is given as

p(n;µ, κ) =
κ

2π(eκ − e−κ)
exp(κµTn), (1)

where the normal n ∈ S2 is distributed around a mean vec-
tor µ, ||µ||= 1 with a dispersion κ ∈ R (analogous to the
precision of a Gaussian distribution).

Learning. Learning proceeds mostly as for standard re-
gression forests. For every tree of the forest, we randomly
choose a 90% subset of the training data. During learning,
for each node a random set of features is chosen from which
the best is picked as split criterion. The feature chosen is the
one that minimizes the aggregated entropy of the the new
child nodes compared to the entropy of their parent node.
The entropy is calculated from the distribution of the output
variable.

We estimate the parameters of the von Mises-Fisher dis-
tributions following Dhillon and Sra [7], who showed that
the maximum likelihood estimate is approximated well by

µ̂ =
r

||r||
and κ̂ =

3R̄− R̄3

1− R̄2
, (2)

where r =
∑N
i=1 ni is the resultant vector, and R̄ = ||r||

N is
the average resultant length.



As is common for most learning-based methods in shape
from shading [5, 19], each unseen reflectance map requires
re-training the model. To do this efficiently, we sample 5×5
normal patches from our dataset (Sec. 4) and store normals
and silhouette features ahead of time, as they are indepen-
dent from the lighting condition. When we encounter a
new illumination condition, the normals are rendered, the
remaining features computed, and the forests trained. Ren-
dering and feature extraction takes less than 1 second for
the whole dataset; training takes about 90 seconds and in-
ference less than a second. Note that an important differ-
ence to [5, 19] is that we do not require the lighting at test
time to be known, but rather estimate it as well (Sec. 7).

We create 10 training images for each of the 100 mod-
els in our dataset by placing an (orthographic) camera such
that it points to the model center from random positions.
We evaluated several numbers of patches on a validation set
(different from the models used for testing) and found that
100–200 samples per image give the best trade-off between
performance and time needed for training.

Integrability. The regression forests output a surface nor-
mal for each pixel independently of the neighboring predic-
tions. Without any spatial regularization, predicted surfaces
are more susceptible to image noise; yet penalizing discon-
tinuities usually results in oversmoothed surfaces. There-
fore, when fusing pixel-independent predictions, we only
enforce integrability, as it is necessary for deriving a valid
surface. Integrability requires the surface normal deriva-
tives to fulfill

∂2z
∂u∂v = ∂2z

∂v∂u , (3)

where the depth z is a function of the image coordinates
u, v. To penalize violations of Eq. (3), several approaches
have been proposed, e.g. [24, 26]; we evaluate different
choices in Sec. 8.2.

6. (Spatial) Features
Shape from shading, like other pixel labeling / prediction

problems, benefits from taking into account the spatial regu-
larity of the output, or in other words modeling the expected
smoothness of the recovered surface. That is, neighboring
predictions should account for the fact that their normals
are often very similar. Regression forests [4], which we use
here, perform pixelwise independent predictions and thus
do not necessarily model such regularities well. To address
this, regression tree fields [17] predict the parameters of a
Gaussian random field instead of the output variables di-
rectly; the prediction is obtained by maximum a-posteriori
(MAP) estimation in the specified conditional random field.
One drawback is that the MAP estimation step incurs a
computational overhead, which also makes learning inef-
ficient. Inspired by geodesic forests [21], which include a
geodesic distance feature to sidestep explicit modeling of

more global dependencies of the output, we here aim to ad-
ditionally devise spatial features that allow promoting spa-
tial consistency despite pixel-independent prediction.

Basic color feature. Regression trees benefit from input
features that strongly correlate with the desired output [4],
because a strong correlation allows for splits that reduce the
entropy well. Possibly the strongest correlation exists be-
tween the surface normal and the color; their relation is de-
scribed by the rendering equation. In the common Lamber-
tian case, we can take a second order approximation [25]:
Ic = n̂TMcn̂ at each point on the surface, where Ic is the
intensity of color channel c, n̂ is the surface normal in ho-
mogeneous coordinates, and Mc is a symmetric 4×4 matrix
representing the reflectance map for that color channel. A
single input image thus puts 3 nonlinear constraints onto the
2 unknowns of the surface normal at each pixel. Under ideal
circumstances, the reflectance maps are independent from
each other and thus produce small isophotes (areas with the
same luminance), such that a surface can be recovered very
well with just the color. In this case shape from shading be-
comes similar to photometric stereo [18]. However, if the
reflectance maps and corresponding constraints are more
correlated, e.g. in nearly white light, large isophotes result
in many surface patches that explain the same color. More-
over, the problem is exacerbated by image noise. Hence, to
avoid making strong assumptions about the type of lighting
present, we not only consider the color, but look for spatial
features that depend on a neighborhood of pixels as well
as the object contour, and are able to reduce the remaining
ambiguity, even in the absence of an explicit spatial model.

Texton features. To capture how the local variation of the
input image correlates with the output, we first compute fea-
tures from a texton filter bank [28]. Texton filters consist of
Gaussians, their derivatives, as well as Laplacians at multi-
ple scales, and have been used in many areas, such as ma-
terial classification, segmentation, and recognition. While
having been used in shape from texture [32], to our knowl-
edge this is the first application to shape from shading. Be-
fore filtering we convert the image to the L*a*b* opponent
color space. Gaussian filters are computed on all channels,
while the remaining filters are applied only to the luminance
channel. As we will see below, the local context from tex-
ton features leads to a strong increase in accuracy compared
to using color alone, as their embedding in a discriminative
learning framework allows for adaption to various types of
surface discontinuities instead of simply assuming smooth-
ness as has been common in shape from shading.

Magnifying the local context by enlarging the filters can
lead to faster convergence to an integrable surface, but re-
quires a larger dataset to capture fine detail and achieve sim-
ilar generalization. In our experiments, we used filters that
match the normal patches in size (5× 5).
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Figure 3. Objects that are convex or composed of convex parts (a)
exhibit a strong correlation between silhouette-based features like
relative distance (b) or direction to the silhouette (c) and out-of-
plane (d) and in-plane components (e) of their surface normals.

6.1. Silhouette features

Projected onto the image plane, normals are not dis-
tributed equally across the object. Most objects are roughly
convex, or composed of convex parts. Thus, normals at the
center of an object tend to face the viewer and normals at
the occlusion boundary face away from the viewer [16, 20].
Consequently, the probability of a normal facing a certain
direction is not uniform given a position within the projec-
tion. Previous work has exploited this fact only by plac-
ing priors on the normals at the occlusion boundary and
propagating information to the interior with a smoothness
prior [22]. As both priors do not consider scale, balancing
them can be challenging, even within the same object, as it
may contain parts of different scale (e.g., the tail vs. head
of the dinosaur in Fig. 3). Here, we consider a relation be-
tween the silhouette and the normal that is more explicit and
automatically adapts to scale.

To that end, let us first look at the correlation between
a point’s surface orientation and its position within the ob-
ject’s projection onto the image plane. Consider the object
in Fig. 3. As expected [16, 20] and can be seen in the visu-
alization of the out-of-plane component (d) (white – toward
the viewer, black – away), normals are orthogonal to the
viewing direction starting at the silhouette. Moving inwards
the normals change until they finally face the viewer. If we
now look further at the distance of an interior point to the
silhouette (b), we can see some apparent correlation. Simi-
larly, we can see apparent correlation between the direction
to the nearest point on the silhouette (c) and the image-plane
component of the normal (e). We now formalize and ana-
lyze this relationship.

If B denotes the set of points on the occlusion boundary,
we define the absolute distance of an interior point p to the
contour as

dabs(p) = min
b∈B
||p− b||. (4)

However, we are not interested in the absolute distance, as
it depends on the scale of the object. To make it scale-
invariant, we normalize it by the length of the shortest line
segment that passes through p and connects boundary and
the medial axis of the object. The medial axis is the set
of all points that have 2 closest points on the boundary. If
M denotes the medial axis and pb the (infinite) line that
passes through p and b, we define the relative distance to

the silhouette as

drel(p) = min
b∈B

min
m∈M∩pb

||p− b||
||m− b||

, (5)

i.e. the relative distance is normalized by the minimal line
that passes through p and connects medial axis and con-
tour. In practice, we approximate Eq. (5) using two distance
transforms, dB for the contour set and dM for the medial
axis. We thus define the scale-invariant boundary distance

d′rel(p) =
dB(p)

dB(p) + dM (p)
. (6)

Finally, we define the direction to the contour as

β(p) = − ∇d
′
rel(p)

||∇d′rel(p)||
. (7)

Statistical analysis. To analyze the correlation between the
position relative to the silhouette and surface orientation, we
calculated the relative distance and direction to the silhou-
ette for multiple datasets and plotted them against the out-
of-plane and the image-plane component of the surface nor-
mals (Fig. 4). We analyze three different datasets: synthetic
data (“blobby shapes”) [18] in the first column, real world
data from the MIT intrinsic image dataset [13] in the second
column, and a collection of 3D models generated by artists
in the third column. Across all datasets we observe a strong
correlation between the plotted variables. The direction to
the silhouette has a strong linear relation to the image-plane
component; the relative distance has a quadratic relation to
the out-of-plane component. This clearly suggests that the
proposed silhouette features should be useful for surface re-
construction from a single image. We evaluate the impor-
tance of our input features for surface prediction in Sec. 8.1.

7. Reflectance Map Estimation
Assuming distant light sources and no self-reflections

or occlusions, all observable reflectance values of an ob-
ject with uniform albedo can be mapped one-to-one onto a
hemisphere. Moreover, a Lambertian reflectance map can
be approximated well by only 9 spherical harmonics coef-
ficients per color channel [25]. Thus, to calibrate against a
reflectance map, [18] placed a calibration sphere with the
same BRDF as the object of interest in the scene. Barron
and Malik [1] obviated the sphere and jointly recovered the
reflectance map and the surface with a generative model.

In our discriminative approach, we reconstruct the re-
flectance map directly from an initial estimate of the sur-
face, which we derive solely from the object silhouette. In
particular, we map the input image to a sphere according to
our silhouette features. The features define a mapping from
a pixel p to polar coordinates on a unit sphere:

σ(p) : Ω→ S2, σ(p) =
(
cos−1 d′rel(p), β(p)

)
(8)
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Figure 4. The correlation between pixel position and surface orientation on multiple datasets. In the main columns we plot direction to
silhouette vs. image-plane component of surface normal and relative distance vs. out-of-plane component of normal for 3 datasets each:
Blobby shapes [18], MIT intrinsic images [13], and our training dataset from Sec. 4.

We now obtain the color at a polar coordinate (i.e., normal
or lighting direction) s ∈ S2 by averaging the colors of
those input pixels p, whose mapping is a k-nearest neighbor
of s:

C(s) =
1

k

k∑
i=1

I(Pi), P = {p |σ(p) ∈ k-NN(s)}, (9)

where I is the observed color. The number of neighbors k
considered is adjusted for the size of the object.

The silhouette features alone give only a coarse estimate
of the surface normals. Moreover, certain objects do not
fulfill our assumption of being composed of convex parts.
A bowl seen from above will cause problems, for example,
but likely also for other algorithms that estimate shape and
reflectance. Most objects, however, contain limited concav-
ities whose effect on the estimated reflectance map is gen-
erally compensated by other convexities.

However, since the mapping from pixels to polar coordi-
nates is many-to-one, we average the colors of points with
similar distance and direction to the silhouette. This acts
as a low-pass filter, effectively reducing estimation errors
from incorrectly mapped points. We thus obtain a robust
approximation of a calibration sphere without actually hav-
ing one. From this we can recover the spherical harmonics
coefficients of the reflectance in closed form. We found that
adjusting the mean and standard deviation of the reflectance
map to match the input image (effectively matching bright-
ness and contrast) improves the final estimate.

8. Experiments
8.1. Feature evaluation

To understand the contribution of the various input fea-
tures, we first analyze the qualitative (Fig. 5) and quanti-
tative impact on surface normal prediction. We evaluated
our unary input features on the training set of the MIT in-
trinsic image dataset, rendered under all illuminations from
[18]. Note that these illuminations stem from real environ-
ment maps and also contain nearly white illumination; this
is in contrast to [1], which re-rendered the MIT data with
illuminations sampled from their learned prior. After ren-
dering, we added Gaussian noise (σ = 0.001) to the images

and thresholded values below 0 and above 1. We trained
on the dataset described in Sec. 4. Table 1(a) shows the re-
sults evaluated using the median angular error (MAE) and
the mean-squared error of the normal (nMSE, see [1]).

We use the basic color feature (RGB) as baseline.
Adding our silhouette-based features (+Silh) increases the
overall performance. Nonetheless, they are better suited for
objects that are round or composed of convex parts with
a curved surface. Thus, the performance increases sig-
nificantly on objects fulfilling these assumptions, but only
marginally on planar objects or when self-occlusions are
present. In colorful illuminations (Fig. 5, bottom), the
silhouette features can be misleading in parts, but overall
clearly improve performance. Texton features (+Tex) work
particularly well under chromatic illumination, indicating
that the captured spatial information eliminates many am-
biguities; yet even in white illumination they yield a clear
benefit. Their combination (+Silh+Tex) works best overall
and is robust w.r.t. the illumination conditions.

8.2. Integrability

We evaluate several approaches for enforcing integrabil-
ity of the estimated surface in Tab. 1(b). As a simple starting
point we choose an l2-penalty on violations of Eq. (3). Next,
we employ an l1-penalty [26], and finally an l2-penalty un-
der perspective projection following [24]. The unary pre-
dictions are our baseline. Without any post-processing, the
surface normals can be reconstructed already with good ac-
curacy. Under synthetic illumination, the performance may
even decrease when enforcing integrability. We observed,
however, that for real images, which potentially violate the
Lambertian assumptions, integrability is particularly help-
ful. Since the objects in the MIT dataset were presumably
recorded with a long focal length, the benefits of a perspec-
tive approach are negligible. Leveraging the high perfor-
mance levels of the regression forest, we adapted the l2-
penalty to restrict surface normals to a convex combination
of samples drawn from the distributions in the leaf nodes
of the trees. This version (conv) clearly outperformed all
other approaches at the price of a much higher run-time. In
further experiments, we thus rely on the simple l2-penalty.
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Figure 5. Importance of unary features. For the images in the first column (white illumination – top, colored – bottom), we estimate
surfaces using only subsets of features; see text for details. The remaining columns depict the angular error per pixel and its median below.

Features MAE nMSE

RGB 13.77◦ 0.179
RGB+Silh 10.90◦ 0.130
RGB+Tex 7.92◦ 0.097
RGB+Silh+Tex 7.09◦ 0.069

(a) Results for unary features.

Method MAE nMSE run-time

no integrability 7.09◦ 0.069 89.0s
l2, orthographic 7.33◦ 0.057 98.5s
l2, orthographic, conv. 6.46◦ 0.056 1172.8s
l1, orthographic 7.34◦ 0.058 98.0s
l2, perspective 7.42◦ 0.059 97.2s

(b) Results for enforcing integrability.

Table 1. Influence of unary features and integrability constraints.
The run-times includes training, inference, and post-processing.

8.3. Comparison with other methods

We quantitatively compare against 2 state-of-the-art
methods on 3 different datasets, 2 of which are provided
with the respective methods, and one recorded by ourselves.

The first method we compare to is the shape-from-
shading component of the SIRFS method from Barron and
Malik [1] (termed “Cross scale”). We use source code pro-
vided by the authors and evaluate both under unknown and
given illumination. In unknown illumination, we also con-
sider the accuracy of the estimated reflectance map (lMSE,
see [1]). Tab. 2(a) gives results on the dataset of [1], a vari-
ant of the MIT intrinsic image dataset [13] re-rendered un-
der chromatic illumination.

The second baseline, the method of Xiong et al. [33]
(termed “Local context”) relies on local shading context to
infer shape from shading under known illumination. With
their method comes a dataset of 10 objects recorded under
white directional illumination. Since they also evaluated the
shape-from-shading component from [1], we simply restate
the results from their paper (Tab. 2(b), first column) and run

Method nMSE* nMSE lMSE

Cross scale 0.058 0.471 0.039
Ours 0.034 0.196 0.013

(a) Results on synthetic images (MIT intrinsic [1]).

Illumination lab[33] natural (ours)

Method MAE MAE* MAE lMSE

Local context 17.27◦ – – –
Cross scale 19.30◦ 20.29◦ 29.29◦ 0.013
Ours 15.96◦ 20.51◦ 23.07◦ 0.002

(b) Results on real images.

Table 2. Comparison to other methods. See text for further expla-
nation. * indicates that the illumination was given.

our algorithm on their dataset.
We did not train our algorithm on any of these datasets,

but use our own separate set of artist-created models as de-
scribed in Sec 4. We used the training split of the MIT in-
trinsic images once to set the hyperparameters (number of
trees, maximum tree depth, etc.) with Bayesian optimiza-
tion [29] and used these settings in all of our experiments.

Real-world experiment. Good performance on synthetic
data does not always translate to realistic settings [9]. We
aim to address this by quantitatively evaluating our method
on real-world data. Unfortunately, no shape-from-shading
dataset captured under natural illumination exists so far;
methods considering natural illumination were instead eval-
uated only qualitatively or on synthetic data [1, 18].

To record ground truth data with high accuracy, photo-
metric stereo methods are well established [33]. However,
the lighting environment must be carefully designed and
controlled, and only a normal map is obtained. Since we re-
quire the shape to precisely align with the captured images
and also aim to record in natural illumination, we would
need to either synthesize the illumination in the lab, vio-
lating the real-world assumption, or build a controlled light



ground truthinput image

ours, 22.3°input image local context, 28.1°ours, 11.5°input image local context, 15.3°
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14.0° 29.9°

lMSE = 0.0052

16.1° 17.2°
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Figure 6. Comparison on real images with median angular errors. For laboratory illumination (top row), we show a novel view of our best
and worst result of a reconstructed surface. The input image and the view of “local context” are taken from [33]. For natural illumination
(bottom row), we show the surface normal estimates for known (left) and unknown illumination (right), and the estimated reflectance map
for the latter case. Across all conditions, our method reconstructs fine surface detail better than previous approaches.

environment at each scene, which in many realistic scenes
is next to impossible. Instead, we took ∼ 200 pictures for
each of 4 objects and reconstructed surface meshes using
multi-view stereo [11, 12]; we then aligned the meshes with
the test images using mutual information [6]. For the test
images taken under real illumination, we painted the ob-
jects with a white diffuse paint and recorded them together
with a calibration sphere in different environments; latter al-
lows recovering the ground truth illumination. Images and
ground truth are publicly available on our website.

We give quantitative results on the dataset in the 3 right-
most columns of Tab 2(b); the reconstructed surfaces are
shown in Fig. 6. As before, our method was not specifi-
cally adapted to the dataset. The shape prior used by [1] is
neither; the shapes used for training (MIT dataset) are still
representative (i.e., of similar kind).

We show additional results in Fig. 1 and in the supple-
mentary material.

Results. The quantitative and qualitative results show
that our method robustly recovers surfaces and reflectance
maps in synthetic, laboratory, and natural illumination. We
clearly outperform the cross-scale approach [1] in all met-
rics; the only exception are the real images with known
illumination, where we perform about the same. In the
more challenging setting of unknown illumination, we per-
form significantly better, however. As can be seen in the
bottom row of Fig. 6, correctly estimating the reflectance
map is crucial to the performance of surface reconstruction.
The silhouette features allow for a robust estimate, which
is leveraged by our discriminative learning approach. The
results in Fig. 6 further highlight that our approach is able
to recover fine surface detail on real data, since it does not
need to rely on strong spatial regularizers.

We also outperform the local context approach of [33].
One point to note is that our approach can deal with images
of different scale (the images of Fig. 6, top are approxi-
mately twice the size of those in Fig. 6, bottom). This is
due to the scale-invariant nature of our silhouette features.

It may seem surprising that the performance of all meth-
ods decreases in realistic settings, since the illumination is
more colorful. However, this can be explained by observ-
ing that the real data exhibits shadows and fine surface de-
tail, which the synthetic datasets do not. Despite these chal-
lenges our discriminative approach is able to provide high-
quality surface estimates in uncalibrated illumination.

9. Conclusion

We presented a discriminative learning approach for esti-
mating the shape of an unknown diffuse object with uniform
albedo under uncontrolled illumination, given only a single
image. We adapted regression forests to predicting surface
normals, and proposed and analyzed suitable features that
provide local and scale-invariant object-level context with-
out the need for spatial regularization. Pixel-independent
predictions are fused by only enforcing integrability of the
reconstructed surface. Silhouette features further enable es-
timating the unknown reflectance map. As with other learn-
ing approaches, we need to train our model for each lighting
condition. This poses no major drawback, as the combined
training and test time of our efficient approach is on par with
the test time of other recent methods that do not use learn-
ing. We trained our model on novel, large scale training
data and evaluated it on several challenging datasets, where
it outperforms recent approaches from the literature. Exper-
iments on a new real-world dataset demonstrate its ability to
recover fine surface detail outside of the laboratory.
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