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Abstract

Topological data analysis offers a rich source of valu-
able information to study vision problems. Yet, so far we
lack a theoretically sound connection to popular kernel-
based learning techniques, such as kernel SVMs or kernel
PCA. In this work, we establish such a connection by de-
signing a multi-scale kernel for persistence diagrams, a sta-
ble summary representation of topological features in data.
We show that this kernel is positive definite and prove its
stability with respect to the 1-Wasserstein distance. Ex-
periments on two benchmark datasets for 3D shape clas-
sification/retrieval and texture recognition show consider-
able performance gains of the proposed method compared
to an alternative approach that is based on the recently in-
troduced persistence landscapes.

1. Introduction

In many computer vision problems, data (e.g., images,
meshes, point clouds, etc.) is piped through complex pro-
cessing chains in order to extract information that can be
used to address high-level inference tasks, such as recogni-
tion, detection or segmentation. The extracted information
might be in the form of low-level appearance descriptors,
e.g., SIFT [20], or of higher-level nature, e.g., activations
at specific layers of deep convolutional networks [18]. In
recognition problems, for instance, it is then customary to
feed the consolidated data to a discriminant classifier such
as the popular support vector machine (SVM), a kernel-
based learning technique.

While there has been substantial progress on extract-
ing and encoding discriminative information, only recently
have people started looking into the topological structure
of the data as an additional source of information. With the
emergence of topological data analysis (TDA) [4], compu-
tational tools for efficiently identifying topological structure
have become readily available. Since then, several authors
have demonstrated that methods of TDA can capture char-
acteristics of the data that other methods often fail to reveal,
cf. [26, 19].

Along these lines, studying persistent homology [11] is

a particularly popular method for TDA, since it captures the
birth and death times of topological features, e.g., connected
components, holes, etc., at multiple scales. This informa-
tion is summarized by the persistence diagram, a multiset
of points in the plane. The key feature of persistent ho-
mology is its stability: small changes in the input data lead
to small changes in the Wasserstein distance of the asso-
ciated persistence diagrams [10]. Considering the discrete
nature of topological information, the existence of such a
well-behaved summary is perhaps surprising.

Note that persistence diagrams together with the Wasser-
stein distance only form a metric space. Thus it is not pos-
sible to directly employ persistent homology in the large
class of machine learning techniques that require a Hilbert
space structure, like SVMs or PCA. This obstacle is typi-
cally circumvented by defining a kernel function on the do-
main containing the data, which in turn defines a Hilbert
space structure implicitly. While the Wasserstein distance
itself does not naturally lead to a valid kernel (see supple-
mentary material for details), we show that it is possible to
define a kernel for persistence diagrams that is stable w.r.t.
the 1-Wasserstein distance. This is the main contribution of
this paper.

Contribution. We propose a (positive definite) multi-
scale kernel for persistence diagrams (see Fig. 1). This ker-
nel is defined via an L2-valued feature map, based on ideas
from scale space theory [16]. We show that our feature map
is Lipschitz continuous with respect to the 1-Wasserstein
distance, thereby maintaining the stability property of per-
sistent homology. The scale parameter of our kernel con-
trols its robustness to noise and can be tuned to the data.
We investigate, in detail, the theoretical properties of the
kernel, and demonstrate its applicability on shape classifi-
cation/retrieval and texture recognition benchmarks.

2. Related work

Methods that leverage topological information for com-
puter vision or medical image analysis can roughly be
grouped into two categories. In the first category, we iden-
tify previous work that directly utilizes topological infor-
mation to address a specific problem, such as topology-
guided segmentation. In the second category, we identify
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Figure 1: Visual data (e.g., functions on surface meshes, textures, etc.) is analyzed using persistent homology [11]. Roughly speaking,
persistent homology captures the birth/death times of topological features (e.g., connected components or holes) in the form of persis-
tence diagrams. Our contribution is to define a kernel for persistence diagrams to enable a theoretically sound use of these summary
representations in the framework of kernel-based learning techniques, popular in the computer vision community.

approaches that indirectly use topological information. That
is, information about topological features is used as input to
some machine-learning algorithm.

As a representative of the first category, Skraba et al.
[26] adapt the idea of persistence-based clustering [6] in a
segmentation approach for surface meshes of 3D shapes,
driven by the topological information in the persistence di-
agram. Gao et al. [12] use persistence information to re-
store so called handles, i.e., topological cycles, in already
existing segmentations of the left ventricle, extracted from
computed tomography images. In a different segmenta-
tion setup, Chen et al. [7] propose to directly incorporate
topological constraints into random-field based segmenta-
tion models.

In the second category of approaches, Chung et al. [8]
and Pachauri et al. [22] investigate the problem of analyzing
cortical thickness measurements on 3D surface meshes of
the human cortex in order to study developmental and neu-
rological disorders. In contrast to [26], persistence informa-
tion is not used directly, but rather as a descriptor that is fed
to a discriminant classifier in order to distinguish between
normal control patients and patients with Alzheimer’s dis-
ease/autism. Yet, the step of training the classifier with
topological information is typically done in a rather adhoc
manner. In [22] for instance, the persistence diagram is first
rasterized on a regular grid, then a kernel-density estimate
is computed, and eventually the vectorized discrete proba-
bility density function is used as a feature vector to train a
SVM using standard kernels for Rn. It is however unclear
how the resulting kernel-induced distance behaves with re-
spect to existing metrics (e.g., bottleneck or Wasserstein
distance) and how properties such as stability are affected.
An approach that directly uses well-established distances
between persistence diagrams for recognition was recently
proposed by Li et al. [19]. Besides bottleneck and Wasser-
stein distance, the authors employ persistence landscapes
[3] and the corresponding distance in their experiments.

Their results expose the complementary nature of persis-
tence information when combined with traditional bag-of-
feature approaches. While our empirical study in Sec. 5.2 is
inspired by [19], we primarily focus on the development of
the kernel; the combination with other methods is straight-
forward.

In order to enable the use of persistence information in
machine learning setups, Adcock et al. [1] propose to com-
pare persistence diagrams using a feature vector motivated
by algebraic geometry and invariant theory. The features
are defined using algebraic functions of the birth and death
values in the persistence diagram.

From a conceptual point of view, Bubenik’s concept of
persistence landscapes [3] is probably the closest to ours,
being another kind of feature map for persistence diagrams.
While persistence landscapes were not explicitly designed
for use in machine learning algorithms, we will draw the
connection to our work in Sec. 5.1 and show that they in
fact admit the definition of a valid positive definite kernel.
Moreover, both persistence landscapes as well as our ap-
proach represent computationally attractive alternatives to
the bottleneck or Wasserstein distance, which both require
the solution of a matching problem.

3. Background

First, we review some fundamental notions and results
from persistent homology that will be relevant for our work.

Persistence diagrams. Persistence diagrams are a con-
cise description of the topological changes occurring in a
growing sequence of shapes, called filtration. In particu-
lar, during the growth of a shape, holes of different dimen-
sion (i.e., gaps between components, tunnels, voids, etc.)
may appear and disappear. Intuitively, a k-dimensional hole,
born at time a and filled at time b, gives rise to a point (a, b)
in the kth persistence diagram. A persistence diagram is thus



Figure 2: A function R → R (left) and its 0th persistence dia-
gram (right). Local minima create a connected component in the
corresponding sublevel set, while local maxima merge connected
components. The pairing of birth and death is shown in the persis-
tence diagram.

a multiset of points in R2. Formally, the persistence diagram
is defined using a standard concept from algebraic topology
called homology; see [11] for details.

Note that not every hole has to disappear in a filtration.
Such holes give rise to essential features and are naturally
represented by points of the form (a,∞) in the diagram.
Essential features therefore capture the topology of the fi-
nal shape in the filtration. In the present work, we do not
consider these features as part of the persistence diagram.
Moreover, all persistence diagrams will be assumed to be
finite, as is usually the case for persistence diagrams com-
puted from data.

Filtrations from functions. A standard way of obtaining
a filtration is to consider the sublevel sets f −1(−∞, t] of a
function f : Ω → R defined on some domain Ω, for t ∈ R.
It is easy to see that the sublevel sets indeed form a filtra-
tion parametrized by t. We denote the resulting persistence
diagram by D f ; see Fig. 2 for an illustration.

As an example, consider a grayscale image, where Ω is
the rectangular domain of the image and f is the grayscale
value at any point of the domain (i.e., at a particular pixel).
A sublevel set would thus consist of all pixels of Ω with
value up to a certain threshold t. Another example would
be a piecewise linear function on a triangular mesh Ω, such
as the popular heat kernel signature [27]. Yet another com-
monly used filtration arises from a point cloud P embed-
ded in Rn, by considering the distance function dP(x) =

miny∈P ‖x− y‖ on Ω = Rn. The sublevel sets of this function
are unions of balls around each point in P. Computation-
ally, they are usually replaced by equivalent constructions
called alpha shapes.

Stability. A crucial aspect of the persistence diagram D f

of a function f is its stability with respect to perturbations
of f . In fact, only stability guarantees that one can infer
information about the function f from its persistence dia-
gram D f in the presence of noise.

Formally, we consider f 7→ D f as a map of metric spaces
and define stability as Lipschitz continuity of this map. This
requires choices of metrics both on the set of functions and

the set of persistence diagrams. For the functions, the L∞
metric is commonly used.

There is a natural metric associated to persistence dia-
grams, called the bottleneck distance. Loosely speaking,
the distance of two diagrams is expressed by minimizing
the largest distance of any two corresponding points, over
all bijections between the two diagrams. Formally, let F and
G be two persistence diagrams, each augmented by adding
each point (t, t) on the diagonal with countably infinite mul-
tiplicity. The bottleneck distance is

dB(F,G) = inf
µ

sup
x∈F
‖x − µ(x)‖∞, (1)

where µ ranges over all bijections from the individual points
of F to the individual points of G. As shown by Cohen-
Steiner et al. [9], persistence diagrams are stable with re-
spect to the bottleneck distance.

The bottleneck distance embeds into a more general
class of distances, called Wasserstein distances. For any
positive real number p, the p-Wasserstein distance is

dW,p(F,G) =

inf
µ

∑
x∈F

‖x − µ(x)‖p∞


1
p

, (2)

where µ again ranges over all bijections from the individual
elements of F to the individual elements of G. Note that
taking the limit p → ∞ yields the bottleneck distance, and
we therefore define dW,∞ = dB. We have the following re-
sult bounding the p-Wasserstein distance in terms of the L∞
distance:

Theorem 1 (Cohen-Steiner et al. [10]). Assume that X is
a compact triangulable metric space such that for every 1-
Lipschitz function f on X and for k ≥ 1, the degree k total
persistence

∑
(b,d)∈D f

(d−b)k is bounded above by some con-
stant C. Let f , g be two L-Lipschitz piecewise linear func-
tions on X. Then for all p ≥ k,

dW,p(D f ,Dg) ≤ (LC)
1
p ‖ f − g‖

1− k
p

∞ . (3)

We note that, strictly speaking, this is not a stability re-
sult in the sense of Lipschitz continuity, since it only estab-
lishes Hölder continuity. Moreover, it only gives a constant
upper bound for the p-Wasserstein distance when p = 1.

Kernels. Given a set X, a function k : X × X → R is
a kernel if there exists a Hilbert space H , called feature
space, and a map Φ : X → H , called feature map, such that
k(x, y) = 〈Φ(x),Φ(y)〉H for all x, y ∈ X. Equivalently, k is a
kernel if it is symmetric and positive definite [24]. Kernels
allow to apply machine learning algorithms operating on a
Hilbert space to be applied to more general settings, such as
strings, graphs, or, in our case, persistence diagrams.



A kernel induces a pseudometric dk(x, y) = (k(x, x) +

k(y, y) − 2 k(x, y))1/2 on X, which is the distance ‖Φ(x) −
Φ(y)‖H in the feature space. We call the kernel k stable
w.r.t. a metric d on X if there is a constant C > 0 such that
dk(x, y) ≤ C d(x, y) for all x, y ∈ X. Note that this is equiva-
lent to Lipschitz continuity of the feature map.

The stability of a kernel is particularly useful for clas-
sification problems: assume that there exists a separating
hyperplane H for two classes of data points with margin m.
If the data points are perturbed by some ε < m/2, then H
still separates the two classes with a margin m − 2ε.

4. The persistence scale-space kernel
We propose a stable multi-scale kernel kσ for the set of

persistence diagrams D. This kernel will be defined via a
feature map Φσ : D → L2(Ω), with Ω ⊂ R2 denoting the
closed half plane above the diagonal.

To motivate the definition of Φσ, we point out that the set
of persistence diagrams, i.e., multisets of points in R2, does
not possess a Hilbert space structure per se. However, a per-
sistence diagram D can be uniquely represented as a sum of
Dirac delta distributions1, one for each point in D. Since
Dirac deltas are functionals in the Hilbert space H−2(R2)
[17, Chapter 7], we obtain a canonical Hilbert space struc-
ture for persistence diagrams by adopting this point of view.

Unfortunately, the induced metric on D does not take
into account the distance of the points in the diagrams or
to the diagonal, and therefore cannot be robust against per-
turbations of the diagrams. Motivated by scale-space the-
ory [16], we address this issue by using the sum of Dirac
deltas as an initial condition for a heat diffusion problem
with a Dirichlet boundary condition on the diagonal. The
solution of this partial differential equation is an L2(Ω) func-
tion for any chosen scale parameter σ > 0. In the following
paragraphs, we will
1) define the persistence scale space kernel kσ,
2) derive a simple formula for evaluating kσ, and
3) prove stability of kσ w.r.t. the 1-Wasserstein distance.

Definition 1. Let Ω = {x = (x1, x2) ∈ R2 : x2 ≥ x1} denote
the space above the diagonal, and let δx denote a Dirac
delta centered at the point x. For a given persistence di-
agram D, we now consider the solution u : Ω × R≥0 →

R, (x, t) 7→ u(x, t) of the partial differential equation2

∆xu = ∂tu in Ω × R>0, (4)
u = 0 on ∂Ω × R≥0, (5)

u =
∑
y∈D

δy on Ω × {0}. (6)

1A Dirac delta distribution is a functional that evaluates a given smooth
function at a point.

2Since the initial condition (6) is not an L2(Ω) function, this equation
is to be understood in the sense of distributions. For a rigorous treatment
of existence and uniqueness of the solution, see [17, Chapter 7].

The feature map Φσ : D → L2(Ω) at scale σ > 0 of a per-
sistence diagram D is now defined as Φσ(D) = u|t=σ. This
map yields the persistence scale space kernel kσ onD as

kσ(F,G) = 〈Φσ(F),Φσ(G)〉L2(Ω). (7)

Note that Φσ(D) = 0 for some σ > 0 implies that u = 0
on Ω×{0}, which means that D has to be the empty diagram.
From linearity of the solution operator it now follows that
Φσ is an injective map.

The solution of the partial differential equation can be
obtained by extending the domain from Ω to R2 and replac-
ing (6) with

u =
∑
y∈D

δy − δy on R2 × {0}, (8)

where y = (b, a) is y = (a, b) mirrored at the diagonal. It
can be shown that restricting the solution of this extended
problem to Ω yields a solution for the original equation. It
is given by convolving the initial condition (8) with a Gaus-
sian kernel:

u(x, t) =
1

4πt

∑
y∈D

exp
(
−
‖x − y‖2

4t

)
− exp

(
−
‖x − y‖2

4t

)
. (9)

Using this closed form solution of u, we can derive a simple
expression for evaluating the kernel explicitly:

kσ(F,G) =
1

8πσ

∑
y∈F
z∈G

exp
(
−
‖y − z‖2

8σ

)
− exp

(
−
‖y − z‖2

8σ

)
.

(10)

We refer to the supplementary material for the elementary
derivation of (10) and for a visualization of the solution (9).
Note that the kernel can be computed in O(|F| · |G|) time,
where |F| and |G| denote the cardinality of the multisets F
and G, respectively (or approximated with bounded error in
O(|F| + |G|) using the Fast Gauss Transform [14]).

Theorem 2. The kernel kσ is 1-Wasserstein stable.

Proof. To prove 1-Wasserstein stability of kσ, we show Lip-
schitz continuity of the feature map Φσ as follows:

‖Φσ(F) − Φσ(G)‖L2(Ω) ≤
1

2
√
πσ

dW,1(F,G), (11)

where F and G denote persistence diagrams that have been
augmented with points on the diagonal. Note that augment-
ing diagrams with points on the diagonal does not change
the values of Φσ, as can be seen from (9). By definition of
the Wasserstein distance, for any δ > dW,1(F,G) there exists
a matching µ between F and G with

∑
y∈F ‖y − µ(y)‖∞ ≤ δ.

Writing Ny(x) = 1
4πσ exp

(
−
‖x−y‖2

4σ

)
, we have

‖Ny − Nz‖L2(R2) =
1
√

4πσ
·

√
1 − exp

(
−
‖y − z‖2

8σ

)
.



The definitions of Φσ from (9) and of Ny, the Minkowski
inequality, the inequality 1−exp (−ξ) ≤ ξ, and the inequality
‖x‖2 ≤

√
2‖x‖∞ finally yield

‖Φσ(F) − Φσ(G)‖L2(Ω)

=

∥∥∥∥∥∥∥∥
∑
y∈F

(Ny − Ny) − (Nµ(y) − Nµ(y))

∥∥∥∥∥∥∥∥
L2(R2)

≤

∥∥∥∥∥∥∥∥
∑
y∈F

(Ny − Nµ(y))

∥∥∥∥∥∥∥∥
L2(R2)

+

∥∥∥∥∥∥∥∥
∑
y∈F

(Ny − Nµ(y))

∥∥∥∥∥∥∥∥
L2(R2)

= 2
∑
y∈F

‖Ny − Nµ(y)‖L2(R2)

=
1
√
πσ

∑
y∈F

√
1 − exp

(
−
‖y − µ(y)‖2

8σ

)
≤

1
√

8πσ

∑
y∈F

‖y − µ(y)‖ ≤
1

2
√
πσ

δ

for any δ > dW,1(F,G), and the claim follows. �

We refer to the left-hand side of (11) as the persistence
scale space distance dkσ . Note that the right hand side of
(11) decreases as σ increases. Adjusting σ accordingly al-
lows to counteract the influence of noise in the input data,
which causes an increase in dW,1(F,G). We will see in
Sec. 5.3 that tuning σ to the data can be beneficial for the
overall performance of machine learning methods.

A natural question arising from Theorem 2 is whether
our stability result extends to p-Wasserstein distances for
p > 1. To answer this question, we first note that our kernel
is additive: we call a kernel k on persistence diagrams addi-
tive if k(E∪F,G) = k(E,G)+k(F,G) for all E, F,G ∈ D. By
choosing F = ∅, we see that if k is additive then k(∅,G) = 0
for all G ∈ D. We further say that a kernel k is trivial if
k(F,G) = 0 for all F,G ∈ D. The next theorem establishes
that Theorem 2 is sharp in the sense that no non-trivial ad-
ditive kernel can be stable w.r.t. dW,p when p > 1.

Theorem 3. A non-trivial additive kernel k on persistence
diagrams is not stable w.r.t. dW,p for any 1 < p ≤ ∞.

Proof. By the non-triviality of k, it can be shown that there
exists an F ∈ D such that k(F, F) > 0. We prove the
claim by comparing the rates of growth of dk(

⋃n
i=1 F, ∅) and

dW,p(
⋃n

i=1 F, ∅) w.r.t. n. We have

dk

 n⋃
i=1

F, ∅

 = n
√

k(F, F).

On the other hand,

dW,p

 n⋃
i=1

F, ∅

 = dW,p(F, ∅) ·

 p
√

n if p < ∞,
1 if p = ∞.

Hence, dk can not be bounded by C · dW,p with a constant
C > 0 if p > 1. �

5. Evaluation
To evaluate the kernel proposed in Sec. 4, we investigate

conceptual differences to persistence landscapes in Sec. 5.1,
and then consider its performance in the context of shape
classification/retrieval and texture recognition in Sec. 5.2.

5.1. Comparison to persistence landscapes

In [3], Bubenik introduced persistence landscapes, a
representation of persistence diagrams as functions in the
Banach space Lp(R2). This construction was mainly in-
tended for statistical computations, enabled by the vector
space structure of Lp. For p = 2, we can use the Hilbert
space structure of L2(R2) to construct a kernel analogously
to (7). For the purpose of this work, we refer to this ker-
nel as the persistence landscape kernel kL and denote by
ΦL : D → L2(R2) the corresponding feature map. The
kernel-induced distance is denoted by dkL . Bubenik shows
stability w.r.t. a weighted version of the Wasserstein dis-
tance, which for p = 2 can be summarized as:

Theorem 4 (Bubenik [3]). For any two persistence dia-
grams F and G we have

‖ΦL(F) − ΦL(G)‖L2(R2) ≤

inf
µ

∑
y∈F

pers(y) ‖y − µ(y)‖2∞ +
2
3
‖y − µ(y)‖3∞


1
2

,
(12)

where pers(y) = b − a denotes the persistence of y = (a, b),
and µ ranges over all bijections from F to G.

For a better understanding of the stability results in The-
orems 2 and 4, we discuss two thought experiments.

For the first experiment, let Fλ = {−λ, λ} and Gλ =

{−λ + 1, λ + 1} be two diagrams with one point each and
λ ∈ R≥0. The two points move away from the diagonal
with increasing λ, while maintaining the same Euclidean
distance to each other. Consequently, dW,p(Fλ,Gλ) and
dkσ (Fλ,Gλ) asymptotically approach a constant as λ → ∞.
In contrast, dkL (Fλ,Gλ) grows in the order of

√
λ and, in

particular, is unbounded. This means that dkL emphasizes
points of high persistence in the diagrams, as reflected by
the weighting term pers(u) in (12).

In the second experiment, we compare persistence dia-
grams from data samples of two fictive classes A (i.e., di-
agrams F,F′) and B (i.e., diagram G), illustrated in Fig. 4.
We first consider dkL (F, F′). As we have seen in the previ-
ous experiment, dkL will be dominated by variations in the
points of high persistence. Similarly, dkL (F,G) will also be
dominated by these points as long as λ is sufficiently large.
Hence, instances of classes A and B would be inseparable
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Figure 3: Examples from SHREC 2014 [23] (left, middle) and OuTeX Outex TC 00000 [21] (right).
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Figure 4: Two persistence diagrams F, F′ from class A and one
diagram G from class B. The classes only differ in their points of
low-persistence (i.e., points closer to the diagonal).

in a nearest-neighbor setup. In contrast, dB, dW,p and dkσ
do not over-emphasize points of high persistence and thus
allow to distinguish classes A and B.

5.2. Empirical results

We report results on two vision tasks where persistent
homology has already been shown to provide valuable dis-
criminative information [19]: shape classification/retrieval
and texture image classification. The purpose of the ex-
periments is not to outperform the state-of-the-art on these
problems – which would be rather challenging by exclu-
sively using topological information – but to demonstrate
the advantages of kσ and dkσ over kL and dkL .

Datasets. For shape classification/retrieval, we use the
SHREC 2014 [23] benchmark, see Fig. 3. It consists of
both synthetic and real shapes, given as 3D meshes. The
synthetic part of the data contains 300 meshes of humans
(five males, five females, five children) in 20 different poses;
the real part contains 400 meshes from 40 humans (male,
female) in 10 different poses. We use the meshes in full
resolution, i.e., without any mesh decimation. For classifi-
cation, the objective is to distinguish between the different
human models, i.e., a 15-class problem for SHREC 2014
(synthetic) and a 40-class problem for SHREC 2014 (real).

For texture recognition, we use the Outex TC 00000
benchmark [21], downsampled to 32×32 pixel images. The
benchmark provides 100 predefined training/testing splits
and each of the 24 classes is equally represented by 10 im-
ages during training and testing.

Implementation. For shape classification/retrieval, we
compute the classic Heat Kernel Signature (HKS) [27] over
a range of ten time parameters ti of increasing value. For
each specific choice of ti, we obtain a piecewise linear func-
tion on the surface mesh of each object. As discussed in
Sec. 3, we then compute the persistence diagrams of the in-
duced filtrations in dimensions 0 and 1.

For texture classification, we compute CLBP [15] de-
scriptors, (cf. [19]). Results are reported for the rotation-
invariant versions of the CLBP-Single (CLBP-S) and the
CLBP-Magnitude (CLBP-M) operator with P = 8 neighbors
and radius R = 1. Both operators produce a scalar-valued
response image which can be interpreted as a weighted cu-
bical cell complex and its lower star filtration is used to
compute persistence diagrams; see [28] for details.

For both types of input data, the persistence diagrams are
obtained using Dipha [2], which can directly handle meshes
and images. A standard soft margin C-SVM classifier [24],
as implemented in Libsvm [5], is used for classification. The
cost factor C is tuned using ten-fold cross-validation on the
training data. For the kernel kσ, this cross-validation further
includes the kernel scale σ.

5.2.1 Shape classification

Tables 1 and 2 list the classification results for kσ and kL

on SHREC 2014. All results are averaged over ten cross-
validation runs using random 70/30 training/testing splits
with a roughly equal class distribution. We report results for
1-dimensional features only; 0-dimensional features lead to
comparable performance.

On both real and synthetic data, we observe that kσ leads
to consistent improvements over kL. For some choices of ti,
the gains even range up to 30%, while in other cases, the
improvements are relatively small. This can be explained
by the fact that varying the HKS time ti essentially varies
the smoothness of the input data. The scale σ in kσ allows
to compensate—at the classification stage—for unfavorable
smoothness settings to a certain extent, see Sec. 4. In con-
trast, kL does not have this capability and essentially relies
on suitably preprocessed input data. For some choices of ti,
kL does in fact lead to classification accuracies close to kσ.



HKS ti kL kσ ∆

t1 68.0 ± 3.2 94.7 ± 5.1 +26.7
t2 88.3 ± 3.3 99.3 ± 0.9 +11.0
t3 61.7 ± 3.1 96.3 ± 2.2 +34.7
t4 81.0 ± 6.5 97.3 ± 1.9 +16.3
t5 84.7 ± 1.8 96.3 ± 2.5 +11.7
t6 70.0 ± 7.0 93.7 ± 3.2 +23.7
t7 73.0 ± 9.5 88.0 ± 4.5 +15.0
t8 81.0 ± 3.8 88.3 ± 6.0 +7.3
t9 67.3 ± 7.4 88.0 ± 5.8 +20.7
t10 55.3 ± 3.6 91.0 ± 4.0 +35.7

Table 1: Classification performance on SHREC 2014 (synthetic).

HKS ti kL kσ ∆

t1 45.2 ± 5.8 48.8 ± 4.9 +3.5
t2 31.0 ± 4.8 46.5 ± 5.3 +15.5
t3 30.0 ± 7.3 37.8 ± 8.2 +7.8
t4 41.2 ± 2.2 50.2 ± 5.4 +9.0
t5 46.2 ± 5.8 62.5 ± 2.0 +16.2
t6 33.2 ± 4.1 58.0 ± 4.0 +24.7
t7 31.0 ± 5.7 62.7 ± 4.6 +31.7
t8 51.7 ± 2.9 57.5 ± 4.2 +5.8
t9 36.0 ± 5.3 41.2 ± 4.9 +5.2
t10 2.8 ± 0.6 27.8 ± 5.8 +25.0

Table 2: Classification performance on SHREC 2014 (real).

However, when using kL, we have to carefully adjust the
HKS time parameter, corresponding to changes in the in-
put data. This is undesirable in most situations, since HKS
computation for meshes with a large number of vertices can
be quite time-consuming and sometimes we might not even
have access to the meshes directly. The improved classifi-
cation rates for kσ indicate that using the additional degree
of freedom is in fact beneficial for performance.

5.2.2 Shape retrieval

In addition to the classification experiments, we report on
shape retrieval performance using standard evaluation mea-
sures (see [25, 23]). This allows us to assess the behavior of
the kernel-induced distances dkσ and dkL .

For brevity, only the nearest-neighbor performance is
listed in Table 3 (for a listing of all measures, see the supple-
mentary material). Using each shape as a query shape once,
nearest-neighbor performance measures how often the top-
ranked shape in the retrieval result belongs to the same class
as the query. To study the effect of tuning the scale σ,
the column dkσ lists the maximum nearest-neighbor perfor-
mance that can be achieved over a range of scales.

As we can see, the results are similar to the classifica-
tion experiment. However, at a few specific settings of the
HKS time ti, dkL performs on par, or better than dkσ . As
noted in Sec. 5.2.1, this can be explained by the changes in
the smoothness of the input data, induced by different HKS
times ti. Another observation is that nearest-neighbor per-
formance of dkL is quite unstable around the top result w.r.t.

HKS ti dkL dkσ ∆ dkL dkσ ∆

t1 53.3 88.7 +35.4 24.0 23.7 −0.3
t2 91.0 94.7 +3.7 20.5 25.7 +5.2
t3 76.7 91.3 +14.6 16.0 18.5 +2.5
t4 84.3 93.0 +8.7 26.8 33.0 +6.2
t5 85.0 92.3 +7.3 28.0 38.7 +10.7
t6 63.0 77.3 +14.3 28.7 36.8 +8.1
t7 65.0 80.0 +15.0 43.5 52.7 +9.2
t8 73.3 80.7 +7.4 70.0 58.2 −11.8
t9 73.0 83.0 +10.0 45.2 56.7 +11.5
t10 51.3 69.3 +18.0 3.5 44.0 +40.5

Top-3 [23] 99.3 – 92.3 – 91.0 68.5 – 59.8 – 58.3

Table 3: Nearest-neighbor retrieval performance. Left: SHREC
2014 (synthetic); Right: SHREC 2014 (real).

ti. For example, it drops from 91% (at t2) to 53.3% and
76.7% on SHREC 2014 (synthetic) and from 70% (at t8) to
45.2% and 43.5% on SHREC 2014 (real). In contrast, dkσ
exhibits stable performance around the optimal ti.

To put these results into context with existing works in
shape retrieval, Table 3 also lists the top three entries (out
of 22) of [23] on the same benchmark. On both real and
synthetic data, dkσ ranks among the top five entries. This
indicates that topological persistence alone is a rich source
of discriminative information for this particular problem. In
addition, since we only assess one HKS time parameter at
a time, performance could potentially be improved by more
elaborate fusion strategies.

5.3. Texture recognition

For texture recognition, all results are averaged over the
100 training/testing splits of the Outex TC 00000 bench-
mark. Table 4 lists the performance of a SVM classifier
using kσ and kL for 0-dimensional features (i.e., connected
components). Higher-dimensional features were not in-
formative for this problem. For comparison, Table 4 also
lists the performance of a SVM, trained on normalized his-
tograms of CLBP-S/M responses, using a χ2 kernel.

First, from Table 4, it is evident that kσ performs bet-
ter than kL by a large margin, with gains up to ≈11% in
accuracy. Second, it is also apparent that, for this prob-
lem, topological information alone is not competitive with
SVMs using simple orderless operator response histograms.
However, the results of [19] show that a combination of
persistence information (using persistence landscapes) with
conventional bag-of-feature representations leads to state-
of-the-art performance. While this indicates the comple-
mentary nature of topological features, it also suggests that
kernel combinations (e.g., via multiple-kernel learning [13])
could lead to even greater gains by including the proposed
kernel kσ.

To assess the stability of the (customary) cross-validation
strategy to select a specific σ, Fig. 5 illustrates classification
performance as a function of the latter. Given the smooth-



CLBP Operator kL kσ ∆

CLBP-S 58.0 ± 2.3 69.2 ± 2.7 +11.2
CLBP-M 45.2 ± 2.5 55.1 ± 2.5 +9.9

CLBP-S (SVM-χ2) 76.1 ± 2.2
CLBP-M (SVM-χ2) 76.7 ± 1.8

Table 4: Classification performance on Outex TC 00000.
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Figure 5: Texture classification performance of a SVM classifier
with (1) the kernel kσ as a function of σ, (2) the kernel kσ with σ
cross-validated and (3) the kernel kL are shown.

ness of the performance curve, it seems unlikely that pa-
rameter selection via cross-validation will be sensitive to a
specific discretization of the search range [σmin, σmax].

Finally, we remark that tuning kL has the same draw-
backs in this case as in the shape classification experiments.
While, in principle, we could smooth the textures, the CLBP
response images, or even tweak the CLBP operators, all
those strategies would require changes at the beginning of
the processing pipeline. In contrast, adjusting σ in kσ is
done at the end of the pipeline during classifier training.

6. Conclusion
We have shown, both theoretically and empirically, that

the proposed kernel exhibits good behavior for tasks like
shape classification or texture recognition using a SVM.
Moreover, the ability to tune a scale parameter has proven
beneficial in practice.

One possible direction for future work would be to ad-
dress computational bottlenecks in order to enable applica-
tion in large scale scenarios. This could include leveraging
additivity and stability in order to approximate the value of
the kernel within given error bounds, in particular, by reduc-
ing the number of distinct points in the summation of (10).

While the 1-Wasserstein distance is well established and
has proven useful in applications, we hope to improve the
understanding of stability for persistence diagrams w.r.t. the
Wasserstein distance beyond the previous estimates. Such
a result would extend the stability of our kernel from per-
sistence diagrams to the underlying data, leading to a full
stability proof for topological machine learning.

In summary, our method enables the use of topological
information in all kernel-based machine learning methods.
It will therefore be interesting to see which other application

areas will profit from topological machine learning.
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