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Abstract

We propose a simple and useful idea based on cross-
ratio constraint for wide-baseline matching and 3D recon-
struction. Most existing methods exploit feature points and
planes from images. Lines have always been considered
notorious for both matching and reconstruction due to the
lack of good line descriptors. We propose a method to gen-
erate and match new points using virtual lines constructed
using pairs of keypoints, which are obtained using standard
feature point detectors. We use cross-ratio constraints to
obtain an initial set of new point matches, which are sub-
sequently used to obtain line correspondences. We develop
a method that works for both calibrated and uncalibrated
camera configurations. We show compelling line-matching
and large-scale 3D reconstruction.

1. Introduction
3D reconstruction from images using points is one of the

success stories in computer vision [36, 40, 13, 10]. The suc-
cess can be attributed to several well-researched and well-
engineered tools: the availability of a variety of feature
point descriptors, the key insight to use millions of uncal-
ibrated images from wild, RANSAC, 5-point motion esti-
mation [27] and optimization packages [1, 40]. As shown
in Figure 1, lines are dominant in most urban scenes. How-
ever, lines are not used in 3D reconstruction algorithms as
much as points and planes. Although numerous fundamen-
tal results have been derived on line reconstruction, these
techniques are seldom applied in practice. The primary rea-
son is the lack of good line descriptors and the noise in
line detection algorithms. This makes us wonder if line-
reconstruction can leverage from the existing machinery for
points. We address this question by proposing a novel ap-
proach to transfer the point correspondences to line corre-
spondences.

The basic idea proposed in this paper is simple. Con-
sider Figure 1(a). We show two images of an urban scene
with keypoint matches marked in blue obtained using stan-
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Figure 1. The basic idea of line-sweeping. (a) We consider pairs of
keypoint correspondences (shown in blue) obtained using standard
feature detectors to form virtual lines (white) to identify several
hundreds of additional point matches (shown in red) using cross-
ratio constraints. (b) Using 32 images, we generate line-based 3D
reconstruction of the bridge of Sighs in Oxford, where lines are
represented as pencil of points.

dard feature detectors. By considering pairs of such key-
point matches, we can form virtual lines across the images.
By looking at places where they intersect straight lines in
images, and using cross-ratio constraints, we match pix-
els lying on one image line to another. By accumulating
such correspondences (shown in red) we can match line
segments. Note that many prior line detection algorithms
only match lines from one image to another. There is no
pixel-wise correspondence between lines. In our approach
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we compute pixel-wise correspondence between line seg-
ments. We use these pixel-wise correspondences to obtain a
semantically more meaningful 3D reconstruction as shown
in Figure 1(b).

2. Related Work
3D Reconstruction from lines is one of the oldest topics

in computer vision [22, 37]. As with many vision problems,
the earliest formulation of this problem was over-ambitious
with the goal of obtaining line reconstruction from a sin-
gle image. Several geometrical and constraint satisfaction
algorithms were proposed to solve this problem and these
techniques are mostly applied on synthetic line drawings. In
the context of multi-view geometry, several algorithms were
proposed for matching and reconstruction of lines using tri-
focal tensors [16]. While single-view line reconstruction is
still a challenging theoretical problem, the case of multi-
view is more-or-less solved in the geometrical sense. How-
ever, the challenges in real images are completely different.
Both the classical and purely geometrical approaches relied
on the fact that the lines are detected up to sub-pixel ac-
curacy and matched without outliers. In contrast to points,
the descriptors for lines mostly rely on nearby points and
are not robust in matching lines across images. The issues
in detection and matching of lines lead to severe degrada-
tion of the final line reconstruction. While 3D reconstruc-
tion from points can be done from random internet images
with unknown camera parameters, line reconstruction still
require careful calibration to obtain any useful results.

Our work builds on top of many existing line match-
ing and reconstruction algorithms in the literature. Hart-
ley and many others studied the trifocal tensor constraints
and degeneracies involved in the process of line recon-
struction from three views [16]. Schmid and Zisserman
showed a method for matching lines from two or three im-
ages using cross-correlation score from the neighborhood of
a line [34]. There are several line matching algorithms in the
literature and most or all of them use nearby points or color
to match the lines [12]. A recent survey can provide more
details about several line descriptors in the literature [38].
The cross-ratio constraint has been used before for match-
ing points. For example, Duchenne et al [7] finds matches
for given keypoints using cross-ratio constraint. In particu-
lar, the cross-ratio constraint is used to enforce projective
invariance on three non-collinear points while matching.
Our approach, on the other hand, finds new point matches
using cross-ratio and all these points lie on a single line.

Bartoli et al. [2] proposed a method to solve the 3D re-
construction of lines by considering pencil of points (POPs)
on lines. Many line matching and reconstruction algorithms
match infinite lines and reconstruct them using intersection
of planes. On the other hand, [2] use explicit pixel-wise
correspondences for individual points on lines. Our work

is closely related to this work and we also compute corre-
spondences for points lying on lines. Our main contribu-
tion is an accurate and efficient method to compute corre-
spondences among points on lines. There are a few single-
view line reconstruction algorithms that use Manhattan or
Atlanta world priors [33, 29, 30], but we do not use these
priors. Jain et al. [20] showed that connectivity constraints
can be very useful for obtaining accurate line reconstruction
from multiple images. Hofer et al. [19] showed impressive
3D reconstruction of wiry objects using a semi-global line
reconstruction technique. Many of these approaches solve
an optimization problem for various locations of 3D line
segments to best match its projections. Recently, Micusik
and Wildenauer [25] showed large-scale line-based 3D re-
construction of indoor scenes. Lines have also been lever-
aged for image-based localization [28, 26].

There are many tracking based edge/line reconstruction
algorithms [6, 3, 8, 9]. In particular LSD-SLAM [9] showed
impressive monocular SLAM results by reconstructing im-
age patches that correspond to edges. The main difference
between our framework and LSD-SLAM is the same dif-
ference that exist between Bundler [36] and PTAM [23].
Our method is slower, but can handle wide-baseline images.
LSD-SLAM is faster, but cannot handle wide-baseline im-
ages.

At a cursory glance, the use of cross-ratio constraint may
appear very similar to many cross-correlation methods [34]
used in line matching. Most prior methods match lines by
looking at intensity and color profiles in the local neighbor-
hood or in patches close to the line. Our method uses a very
different approach by considering pairs of points that can
be anywhere in the image. Despite the apparent simplic-
ity, the proposed idea is very useful to transfer point corre-
spondences to line correspondences. Computationally, our
approach also provides a strong advantage. By using two
anchor points from keypoint matches, we also significantly
reduce the search space.

The virtual lines joining pairs of keypoints allow us to
match points from one image to another. This reminds us of
the popular plane-sweeping technique, where we use virtual
planes to compute depth maps from multiple images [5].
We will refer to our approach as line-sweeping. In addi-
tion to plane-sweeping, there are many impressive dense re-
construction methods such as PMVS [13], SURE [31], and
CMPMVS [21]. Most of these prior method require calibra-
tion. The use of cross-ratio, which is one of the projective
invariants, allows us to obtain dense correspondences even
in uncalibrated setups without any camera calibration and
relative camera poses.

3. Algorithm

We briefly define cross-ratio below.



Cross-Ratio: In projective geometry, cross-ratio is one
of the fundamental invariants [35, 17]. In Figure 2 we show
a pencil of lines from center O intersecting a line l1 at four
points (A,B,C,D). The same pencil of lines also intersect
another line l2 at four other points (A′, B′, C ′, D′). The
cross-ratio for the four collinear points on l1 is defined as
the following quantity:

{A,B;C,D} =
|AC| × |AD|
|BC| × |BD|

. (1)

We can compute a cross-ratio {A′, B′;C ′, D′} using the
four collinear points on line l2. By using the property
of invariance of cross-ratio, we have {A,B;C,D} =
{A′, B′;C ′, D′}. In the case of perspective projection, we
have cross-ratio from four collinear points observed from
different viewpoints as shown in Figure 2(b). Here we have
{A1, B1;C1, D1} = {A2, B2;C2, D2}.

(a) (b)

Figure 2. (a) Classical cross-ratio constraint in projective geom-
etry. Sets of four points have same cross-ratios on the incident
pencil of lines as shown. (b) In two different perspective projec-
tions observing the same set of four collinear points, the associ-
ated cross-ratios are same.

Figure 3. We show two perspective images, taken from different
viewpoints, with 4 initial keypoint matches (shown in red) obtained
using standard feature detectors. By choosing pairs of keypoint
matches, we can form virtual lines (dotted lines) where we can
search for new point correspondences. By choosing several virtual
lines, we generate 9 new point matches (shown in green).

Our main idea: We refer to the lines obtained by join-
ing pairs of keypoint matches as virtual lines. It is important
to distinguish them from real lines in the image such as the
ones in the rectangular windows in Figure 3. For example,
the line joining A and B is referred to as a virtual line. Given

a pair of keypoint matches, we consider a virtual line join-
ing them to generate new point correspondences. The new
points are first generated at regions where the virtual lines
intersect the real lines. These newly generated points on the
virtual lines are matched based on the cross-ratio constraint.
In Figure 3, we show 4 initial point matches (marked in red)
in two perspective images taken from different viewpoints.
These 4 initial point matches can be obtained using feature
descriptors. We consider several pairs of keypoint matches
to generate newer ones. It can be observed that by using as
few as 4 point matches, we are able to obtain 9 new matches
(marked in green). In real images with numerous lines and
keypoints, we typically have a combinatorial number of vir-
tual lines and additional points.

We illustrate our algorithm for three different camera se-
tups: uncalibrated, calibrated and rectified stereo configura-
tions.

3.1. Uncalibrated cameras

Given keypoint matches between two images, we study
the problem of generating new point correspondences, with
no knowledge of the intrinsic and extrinsic camera param-
eters. Consider a pair of point matches {(A,A′), (B,B′)}
as shown in Figure 3. Let the virtual line passing through
A and B be denoted by AB. We refer to the point where a
virtual line intersects a real line as a line-crossing. For ex-
ample, points E and F are referred to as the line-crossings
on AB.

We use a simple search strategy to identify point matches
on pairs of virtual lines using cross-ratio property. Let us
hypothesize one additional match (E,E′) using one line-
crossing each in AB and A′B′. Using the three point
matches {(A,A′), (B,B′), (E,E′)}, we can identify all
other additional matches. In order to do this, we first com-
pute the cross-ratio {A,B;E,F} for a line-crossing F ly-
ing on AB. Using this point F and the computed cross-ratio
{A,B;E,F}, we can find the corresponding point F ′ on
A′B′ by assuming that {A,B;E,F} = {A′, B′;E′, F ′} .
We consider the pair (F, F ′) to be a match if F ′ is a line-
crossing on A′B′. In the same manner, we search for all
additional matches that satisfy the cross-ratio constraint us-
ing the hypothesized match (E,E′). Our goal is to find
one additional match (E,E′) that generates the maximum
number of newer matches on the corresponding virtual lines
AB and A′B′. For identifying this one additional match,
we can have n2 possibilities where n is the number of line-
crossings on AB. While generating point matches on a pair
of virtual lines, we also ensure that we identify a minimum
number of point correspondences given by a search thresh-
old Tuc. We assume that the corresponding points on virtual
lines are ordered and this reduces the number of possibili-
ties significantly.



3.2. Calibrated cameras

In the presence of camera calibration and relative motion
between the cameras, the task of generating new point cor-
respondences becomes much simpler and computationally
efficient. Let us consider a pair of feature point matches
{(A,A′), (B,B′)} as shown in Figure 4. Since we can
compute the depth using calibration information, we can
also compute the 3D points P (A) and P (B). We compute
the 3D point P (C) for the line-crossing C by assuming that
P (C) lies on the 3D line P (A)P (B). Let C ′ be projec-
tion of P (C) on A′B′. We consider the pair (C,C ′) to be
a match if C ′ is a line-crossing on A′B′. While generating
point matches on a pair of virtual lines, we ensure that we
identify a minimum number of matches given by a search
threshold Tc. The complexity is O(n) on the number of
line-crossings on the virtual line. This task is faster than the
search in the uncalibrated case.

Figure 4. We show the basic idea for line-sweep operation in a
calibrated setup. We know the camera calibration and relative
motion between the two cameras. This allows us to find points
matches (C,C′) and (D,D′) very efficiently.

3.3. Stereo cameras

Consider Figure 5. In the case of rectified stereo-pairs,
line-sweep is a simple task. Let us consider two correspond-
ing virtual lines AB and A′B′. We consider the pair (C,C ′)
to be a match if it satisfies the following conditions:

• C and C ′ are line-crossings on AB and A′B′ respec-
tively.

• C and C ′ have the same y coordinate.

3.4. Line matching

In Figure 6, we illustrate the individual steps in our line-
matching algorithm. Given a pair of images, we obtain key-
point matches and detect lines. We generate and match new
points on image lines using line-sweep. Let l1 and l2 be
lines in images I1 and I2 respectively. We declare a pair of
lines (l1, l2) to be a match if they satisfy the following:

Figure 5. The basic idea behind line-sweep in a stereo case. In
the case of rectified stereo images, finding additional point corre-
spondences is a simple look-up without requiring any additional
operation.

1. Among all the lines in the second image I2, l2 is the
line that shares the maximum number of point matches
with l1.

2. Similarly, l1 is the line in the first image I1 that shares
the maximum number of point matches with l2.

3. The pair (l1, l2) share at least a minimum number of
point matches based on a threshold Tlm.

(a)

(b)

(c)

Figure 6. We show the steps involved in obtaining line-matching.
(a) We show a pair of wide-baseline images. (b) We show the
new points (red) generated on the image lines using cross-ratio
constraints along the virtual lines. (c) We show the line matches.
For simplicity, we show the lines in four different colors (white,
red, blue and green).



4. Experiments

4.1. Scene coverage

Let us consider a pair of images having n keypoint
matches between them. Our approach using pairs of points
would lead to n2 possible virtual lines. Note that these lines
extend till the boundary of the image to obtain new point
correspondences as shown in Figure 3.

(a) (b)

Figure 7. Coverage Analysis: (a) Average percentage image cover-
age achieved by virtual lines passing through different number of
image keypoints. (b) Average percentage image coverage with dif-
ferent maximum allowable distances (pixels) between two image
keypoints.

Using the first experiment, we show that we can ade-
quately cover the whole image with virtual lines using very
few keypoints. We select n SIFT keypoints on an image and
look at all possible virtual lines from pairs of keypoints. We
assume that each virtual line is of width 1 pixel. We used
images of resolution 2048×768. The total coverage is com-
puted by summing the pixels in the image that was part of
at least one virtual line. Figure 7(a) shows a plot of the av-
erage percentage coverage against the number of keypoints.
We can see from the plot in Figure 7(a) that almost 99.9%
of an image is covered using only 150 image keypoints.

In the second experiment, we would like to understand
the best strategy to choose pairs of keypoints. We assume
that nearby points are more likely to lie on a plane than
points that are separated. We fixed the number of keypoints
to be 200. We compute the percentage coverage for differ-
ent maximum allowable distance between two image key-
points, i.e. we consider a virtual line only when the distance
between the two image keypoints is less than the maximum
allowable distance. Similar to the first experiment, the aver-
age percentage coverage is reported in Figure 7(b). We can
see from the plot that almost 99.9% of the image is covered
when the maximum allowable distance is less than 200 pix-
els. As per this analysis, in all our real experiments, we only
consider a pair of keypoints that are not separated by a large
distance.

4.2. Linematching

We use the recently proposed line matching algorithm
of Fan et al. [11] as baseline. We use the publicly avail-
able code provided by the authors. The comparative results
are shown in Figure 8. The line-sweep algorithm provides

(a) Number of matched lines (b) Accuracy of line matching

Figure 8. Comparison between Fan et al. [11] and line-sweep. (a)
We show the number of line matches in different image pairs. (b)
We show the accuracy in percentage for line matching in different
image pairs.

Figure 9. We show examples of our line matching algorithm. The
lines are colored red, blue and green.

a higher number of matches in many examples and con-
sistently outperforms Fan et al. [11] in terms of accuracy.
Our method is computationally more efficient than Fan et
al. [11]. Most of the images in our test set are high resolu-
tion images (at least 2048×768). Our calibrated setup takes
about 1 to 2 seconds on most images when compared to
around 2 minutes required by [11]. In our experiments, the
pair of lines need to share at least T = 5 point matches be-
tween them. In the case of uncalibrated setup, we took less
than 10 seconds on most image pairs. We show a few exam-
ples of our line-matching results in Figure 9. As shown in
the graph 8, our average matching accuracy is 98%, whereas
[11] gets an accuracy of 90%. The calibrated line-matching
is much faster than the uncalibrated one.



(a) (b)

(c) (d)

Figure 10. We use the stereo-based line-sweeping algorithm on KITTI sequences. On top, we show one of the images in the stereo pair with
detected ORB features shown as white dots. We use the canny edge map and obtain semi-dense disparity map for these edge pixels using
line-sweep. The disparity is shown in LSV color space.

4.3. Semidense stereo reconstruction

We used KITTI stereo sequences [14] to test our stereo
method explained in section 3.3. Instead of using line seg-
ments, we used canny edges. We show the results in Fig-
ure 10. As explained before, the stereo case is a special
case and the method is computationally efficient.

Our approach computes the disparity values of all edge
pixels based on the disparities of nearby keypoints. In order
to evaluate the proposed method, we compared the results
with that of semi-global stereo (SGBM) results [18]. We
found that a large subset (85% of edge pixels) had a dispar-
ity value that is within 2 pixels with respect to the SGBM.
The average disparity difference for this subset of pixels is
given by 0.28. We did two refinements to the disparity ob-
tained using our line-sweep algorithm. First we did a simple
SAD correlation to refine the disparity values based on an
interval (about 5 pixels on both sides) centered on the dis-
parity value estimated using line-sweep. Following this, we
did a subpixel refinement based on quadratic bowl approx-
imation. As a result of these refinements, we found that
95% of edge pixels were within 2 pixels with respect to the
disparities given by SGBM. The average disparity differ-
ence for this subset of pixels is given by 0.10. We tested
our C++ code on an Intel(R) Core(TM) i7-3920XM CPU

@ 2.90GHz. We use ORB keypoint detector and descrip-
tors [32] for speed and this takes around 50 milliseconds for
obtaining 1000 keypoints. We take only 20 milliseconds for
most of our code (line-sweep, disparity search using SAD,
and quadratic approximation). Overall the disparity estima-
tion code runs at 14 Hertz.

4.4. Large scale linereconstruction

We report the results on four data sets. For keypoint de-
tection and matching we used SIFT. For line detection, we
used LSD [15]. Our matching algorithm was tested on im-
ages of resolution 2272 × 1704 in both calibrated and un-
calibrated scenarios. The code is implemented in C++ and
openCV libraries without any optimization for speed. In the
calibrated case, our approach takes on an average less than
1 second for matching. In the uncalibrated case, our ap-
proach takes on an average less than 10 seconds for match-
ing. We use a search threshold Tuc = 5 for uncalibrated
case and a search threshold Tc = 3 for calibrated case. Af-
ter computing the line correspondences, we continue to use
pencil of points for bundle adjustment. The line matching
is only used to filter out noisy points by keeping only the
point matches that respect the 1-1 line correspondences. By
formulating the problem this way, we are able to use the ex-



Dataset Imgs Sparse Pts Dense Pts Lines
Oxford 32 58K 462K 1245

Barcelona 28 33K 154K 2534
Quadrangle 109 16K 575K 9201

CAB 35 37K 333K 6193
Table 1. The consecutive columns denote the data set, the number
of images, the number of sparse reconstructed points using stan-
dard approach, the number of points in our dense reconstruction,
and finally the number of lines reconstructed, respectively.

isting point-based bundle adjustment tools for our line re-
construction. Furthermore, pencil of points approach can
be more robust to line detection errors, without leading to
noisy triangulation for the 3D lines.

We gathered two data sets (109 images of a Quadrangle,
32 images in Oxford) and we used two other data sets CAB
and Barcelona from [4]. The Quadrangle dataset with 109
images comprises of a very large loop as shown in Figure 11
and we obtained loop closure using pose-graph optimiza-
tion [24].

For testing our uncalibrated case, we first compute the
dense matches from sparse SIFT correspondences. Then we
perform bundle adjustment using multicore libraries [40].
For the calibrated case, we used VisualSFM [39, 40] to gen-
erate the point-based 3D models. For testing the calibrated
case, we wrote a solver that can directly take the output files
from VisualSFM and convert it into line-based models us-
ing our approach described in 3.2. In the Table 1, we report
the statistics collected from our experiments. Qualitatively,
we obtain a semantically more-meaningful and compact 3D
models as shown in Figures 11 and 12. In the Supplemen-
tary videos, we show the 3D models reconstructed using our
approach.

5. Discussion
We show a novel method to use cross-ratio constraints

for mapping point matches to line correspondences. We
show accurate line-matching performance as well as large-
scale line reconstruction by leveraging on the existing tools
for points. We show our results for line reconstruction as
point clouds denoting pencil of points (POPs). We show a
method to convert point-cloud from Bundler [36] to line-
based models.

In several image pairs with repeated texture and nu-
merous incorrect keypoint matches, our line matching still
gives near-perfect matching as shown in Figure 9. In Fig-
ure 13, we observe a challenging image pair which suffers
from both repeated patterns and reflections. Since our line-
matching hinges on keypoint matches, it fails if there are
too many incorrect keypoint matches. In future, we plan to
explore this avenue to improve the robustness of our line-
matching algorithm to handle such challenging cases.

Acknowledgments: We thank J. Thornton, Y. Taguchi,
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Figure 13. Failure case: A challenging image pair with too many
reflections and repeated patterns. The keypoint matching fails and
this leads to failure in line-matching.
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discussions and constructive feedback.



Figure 11. In the top row, we show 7 images out of 109 images used in the 3D reconstruction of the Radcliffe Quadrangle in Cambridge
(USA). In the bottom row, we show an aerial view of the 3D model of a Quadrangle. For a small region denoted by the red ellipse, we show
the corresponding image, and 3D models associated with both line-based and point-based ones. As we can see, the line-reconstruction
looks semantically more meaningful compared to the point-based one.

Figure 12. In the top row, we show 9 images out of 32 images used in the 3D reconstruction of the Bridge of Sighs in Oxford (UK). In
the bottom row, we show an aerial view of the 3D model of a Quadrangle. For a small region denoted by the red ellipse, we show the
corresponding image, and 3D models associated with both line-based and point-based ones. As we can see, the line-reconstruction looks
semantically more meaningful compared to the point-based one.
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