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Abstract

In this paper, we introduce Cellular Automata–a dynam-

ic evolution model to intuitively detect the salient objec-

t. First, we construct a background-based map using col-

or and space contrast with the clustered boundary seeds.

Then, a novel propagation mechanism dependent on Cellu-

lar Automata is proposed to exploit the intrinsic relevance

of similar regions through interactions with neighbors. Im-

pact factor matrix and coherence matrix are constructed to

balance the influential power towards each cell’s next state.

The saliency values of all cells will be renovated simulta-

neously according to the proposed updating rule. It’s sur-

prising to find out that parallel evolution can improve all

the existing methods to a similar level regardless of their o-

riginal results. Finally, we present an integration algorith-

m in the Bayesian framework to take advantage of multiple

saliency maps. Extensive experiments on six public datasets

demonstrate that the proposed algorithm outperforms state-

of-the-art methods.

1. Introduction

Recently, saliency detection aimed at finding out the

most important part of an image has become increasingly

popular in computer vision [1, 14]. As a pre-processing

procedure, saliency detection can be used for many vi-

sion tasks, such as visual tracking [26], object retargeting

[11, 39], image categorization [37] and image segmentation

[35].

Generally, methods of saliency detection can be catego-

rized as either top-down or bottom-up approaches. Top-

down methods [3, 27, 31, 50] are task-driven and require

supervised learning with manually labeled ground truth. To

better distinguish salient objects from background, high-

level information and supervised methods are incorporat-

ed to improve the accuracy of saliency map. In contrast,

bottom-up methods [15, 18, 22, 40, 41, 48] usually ex-

ploit low-level cues such as features, colors and spatial

distances to construct saliency maps. One of the most

used principles, contrast prior, is to take the color con-

trast or geodesic distance against surroundings as a region’s

saliency[7, 8, 18, 21, 22, 33, 43]. In addition, several re-

cent methods formulate their algorithms based on boundary

prior, assuming that regions along the image boundary are

more likely to be the background [19, 23, 44, 49]. Admit-

tedly, it is highly possible for the image border to be the

background, which have been proved in [5, 36]. However,

it is not appropriate to sort all nodes on the boundary into

one category as most previous methods. If the object ap-

pears on the image boundary, the chosen background seeds

will be imprecise and directly lead to the inaccuracy of re-

sults.

In this paper, we propose effective methods to address

the aforementioned problem. Firstly, we apply the K-

means algorithm to classify the image border into differ-

ent clusters. Due to the compactness of boundary clusters,

we can generate different color distinction maps with com-

plementary advantages and integrate them by taking spa-

tial distance into consideration. Secondly, a novel prop-

agation method based on Cellular Automata [42] is intro-

duced to enforce saliency consistency among similar image

patches. Through interactions with neighbors, boundary

cells misclassified as background seeds will automatically

modify their saliency values. Furthermore, we use Single-

layer Cellular Automata to optimize the existing methods

and achieve favorable results.

Many effective methods have been established to deal

with saliency detection and each of them has their own

superiorities [7, 17, 23, 33, 52]. In order to take advan-

tage of different methods, we propose an integration model

called Multi-layer Cellular Automata. With different salien-

cy maps as original inputs, the integrated result outperforms

all the previous state-of-the-arts.

In summary, the main contributions of our work include:

1). We propose an efficient algorithm to integrate global dis-

tance matrices and apply Cellular Automata to optimize the

prior maps via exploiting local similarity.

2). Single-layer Cellular Automata can greatly improve all

the state-of-the-art methods to a similar precision level and

is insensitive to the previous maps.

3). Multi-layer Cellular Automata can integrate multiple

saliency maps into a more favorable result under the Bayes

framework.



2. Related works

Recently, more and more bottom-up methods prefer to

construct the saliency map by choosing the image boundary

as the background seeds. Considering the connectivity of

regions in the background, Wei et al. [44] define each re-

gion’s saliency value as the shortest-path distance towards

the boundary. In [19], the contrast against image bound-

ary is used as a new regional feature vector to characterize

the background. In [49], Yang et al. compute the salien-

cy of image regions according to their relevance to bound-

ary patches via manifold ranking. In [52], a more robust

boundary-based measure is proposed, which takes the spa-

tial layout of image patches into consideration.

In addition, some effective algorithms have been pro-

posed in the Bayesian framework. In [34], Rahtu et al.

first apply Bayesian theory to optimize saliency maps and

achieve better results. In [46, 47], Xie et al. use the low

level visual cues derived from the convex hull to compute

the observation likelihood. In [51], the salient object can

naturally emerge under a Bayesian framework due to the

self-information of visual features. Besides, Li et al. [23]

attain saliency maps through dense and sparse reconstruc-

tion and propose a Bayesian algorithm to combine saliency

maps. All of them demonstrate the effectivity of Bayesian

theory in the optimization of saliency detection.

Cellular Automata, which was first put forward in [42],

is a dynamic system with simple construction but complex

self-organizing behaviour. The model consists of a lattice

of cells with discrete states, which evolve in discrete time

steps according to definite rules. Each cell’s next state will

be determined by its current state and the states of its nearest

neighbors. Cellular Automata has been applied to simulate

the evolution process of many complicated dynamic sys-

tems [4, 9, 10, 28, 29]. Considering that salient objects tend

to be clustered, we apply Cellular Automata to exploit the

intrinsic relationship of neighbors and reduce the difference

in similar regions. Combined with Bayesian theory, Cellu-

lar Automata is introduced into this field as a propagation

mechanism which can lay the roots for the optimization of

saliency maps.

3. Proposed Algorithm

In this section, we first construct global color distinc-

tion and spatial distance matrix based on clustered bound-

ary seeds and integrate them into a background-based map.

Then, a novel propagation method based on Cellular Au-

tomata is proposed to intuitively exploit the intrinsic rele-

vance of similar regions. We further discuss its great effi-

ciency and robustness in optimizing other existing methods.

3.1. Global Distance Matrix Integration

To better capture intrinsic structural information and im-

prove computational efficiency, an input image is segment-
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Figure 1. Integration of global color distinction (GCD) maps in

Eqn 1 and global spatial distance (GSD) maps in Eqn 2 .

ed into N small superpixels by the simple linear iterative

clustering (SLIC) algorithm [2]. The mean color features

and coordinates of pixels are used to describe each super-

pixel. In order to achieve more optimal background seeds,

we apply the K-means algorithm to divide the image bound-

ary into K clusters based on their CIE LAB color features.

We empirically set the number of boundary clusters K = 3
in this paper. The number of boundary superpixels belong-

ing to cluster k is represented as pk (k = 1, 2, · · · ,K).

Based on K different clusters, we can construct K differ-

ent global color distinction (GCD) maps. The element sk,i
in the GCD matrix S = [sk,i]K×N represents the saliency

of superpixel i in the k-th GCD map and is computed as:

sk,i =
1

pk

pk

∑

j=1

1

e
−

‖ci,cj‖

2σ1
2 + β

(1)

where ‖ ci, cj ‖ is the Euclidean Distance between the

superpixel i and j in CIE LAB color space. We set the bal-

ance weight σ1 = 0.2 and β = 10. The result is insensitive

to β ∈ [7, 15].
We can see from Figure 1 that GCD maps constructed

upon the boundary clusters are not satisfying, but each of

them has certain superpixels with high precision. Due to

the compactness of optimized boundary clusters, K GCD

maps are complementary to each other. And a superpixel’s

saliency value is more accurate when it is computed based

on the nearest background clusters. Therefore, we introduce

global spacial distance (GSD) matrix W = [wk,i]K×N to

balance the importance of different GCD maps. wk,i repre-

sents the spacial distance between superpixel i and all back-

ground seeds in the k-th cluster. It is computed as:

wk,i =
1

pk

pk

∑

j=1

e
−‖ri,rj‖

2
2

2σ2
2 (2)



where ri and rj are the coordinates of the superpixel i and

j, σ2 is a constant to control the strength of weight and ro-

bust in [1.1, 1.5]. In this work, we set σ2 = 1.3. Then,

the background-based map S
bg = [Sbg

1 , · · · , Sbg
N ]T is con-

structed by combining the geodesic information wk,i with

the color information sk,i:

S
bg
i =

K
∑

k=1

wk,i × sk,i (3)

As Figure 1 shows, the geodesic constraint enforced on

GCD maps greatly facilitates saliency accuracy by strength-

ening the contrast in local regions. Through effectively

integrating the superiorities of different GCD maps, the

background-based map is much more convincing and pre-

cise.

3.2. Parallel Evolution via Cellular Automata

In Single-layer Cellular Automata (SCA), each cell de-

notes a superpixel generated by the SLIC algorithm. We

make three major modifications to the previous models

[38, 42]. Firstly, the states of cells in most existing Cel-

lular Automata models are discrete [30, 45]. However, in

this paper, we use the saliency value of each superpixel as

its state, which is continuous between 0 and 1. Secondly,

we give a broader definition of neighborhood which is sim-

ilar to the concept of z-layer neighborhood (here z = 2) in

graph theory. A cell’s newly defined neighbors include cells

surrounding it as well as sharing common boundaries with

its adjacent cells. Also we consider that superpixels on the

image boundaries are all connected to each other because

all of them serve as background seeds. Finally, unlike the

well applied Cellular Automata models, the influences of all

neighbors are not fixed but closely related to the similarity

between any pair of cells in color space.

3.2.1 Impact Factor Matrix

It is intuitive to accept that neighbors with more similar

color features have a greater influence on the cell’s next s-

tate. The similarity of any pair of superpixels is measured

by a defined distance in CIE LAB color space. We construct

impact factor matrix F = [fij ]N×N by defining the impact

factor fij of superpixel i to j as:

fij =

{

exp(
−‖ci,cj‖

σ3
2 ) j ∈ NB(i)

0 i = j or otherwise
(4)

where ‖ ci, cj ‖ denotes the Euclidean Distance in CIE

LAB color space between the superpixel i and j, σ3 is a pa-

rameter to control strength of similarity. We set σ3
2 = 0.1

as in [49]. NB(i) is the set of neighbors of cell i. In or-

der to normalize impact factor matrix, a degree matrix D =
diag{d1, d2, · · · , dN} is generated, where di =

∑

j fij . Fi-

nally, a row-normalized impact factor matrix can be clearly

calculated as follows:

F
∗ = D

−1 · F (5)

(a) (b) (c) (d)
Figure 2. Effects of Single-layer Cellular Automata. (a) Input im-

ages. (b) Background-based maps. (c) Background-based maps

optimized via Single-layer Cellular Automata. (d) Ground truth.

3.2.2 Coherence Matrix

Considering that each cell’s next state is determined by

its current state as well as its neighbors’, we need to balance

the importance of the two decisive factors. For one thing,

if a superpixel is quite different from all neighbors in color

space, its next state will be primarily relied on itself. For

the other, if a cell is similar to neighbors, it is more likely

to be assimilated by the local environment. To this end, we

build a coherence matrix C = diag{c1, c2, · · · , cN} to bet-

ter promote the evolution of all cells. Each cell’s coherence

towards its current state is calculated as:

ci =
1

max(fij)
(6)

In order to control ci ∈ [b, a + b], we construct the co-

herence matrix C
∗ = diag{c∗1, c

∗
2, · · · , c

∗
N} by the formu-

lation as:

c∗i = a ·
ci −min(cj)

max(cj)−min(cj)
+ b (7)

where j = 1, 2, · · · , N . We set the constant a and b as

0.6 and 0.2. If a is fixed to 0.6, our results are insensitive

to the interval when b ∈ [0.1, 0.3]. With coherence matrix

C
∗, each cell can automatically evolve into a more accurate

and steady state. And the salient object can be more easily

detected under the influence of neighbors.

3.2.3 Synchronous Updating Rule

In Single-layer Cellular Automata, all cells update their

states simultaneously according to the updating rule. Giv-

en an impact factor matrix and coherence matrix, the syn-

chronous updating rule f : SNB → S is defined as follows:

S
t+1 = C

∗ · St + (I −C
∗) · F ∗ · St (8)

where I is the identity matrix, C∗ and F
∗ are coherence

matrix and impact factor matrix respectively. The initial St

when t = 0 is Sbg in Eqn 3, and the ultimate saliency map

after N1 time steps (a time step is defined as one traversal

iteration through all cells) is denoted as SN1 .



(a) (b) (c)

Figure 3. Saliency maps when objects touch the image bound-

aries. (a) Input images. (b) Saliency maps achieved by BSCA.

(c) Ground truth.

We propose the updating rule based on the intrinsic char-

acteristics of most images. Firstly, superpixels belonging

to the foreground usually share similar color features. Vi-

a exploiting the intrinsic relationship in the neighborhood,

Single-layer Cellular Automata can enhance saliency con-

sistency among similar regions and form a steady local en-

vironment. Secondly, there is a great difference between the

object and its surrounding background in color space. Influ-

enced by similar neighbors, a clear boundary will naturally

emerge between the object and the background. We denote

the background-based map optimized via Single-layer Cel-

lular Automata as BSCA. Figure 2 shows that Single-layer

Cellular Automata can uniformly highlight the foreground

and suppress the background.

In addition, Single-layer Cellular Automata can effec-

tively deal with the problem mentioned in Section 1. When

salient superpixels are selected as the background seeds by

mistake, they will automatically increase their saliency val-

ues under the influence of local environment. Figure 3

shows that when the object touches the image boundary, the

results achieved by our algorithm are still satisfying.

3.2.4 Optimization of State-of-the-Arts

Due to the connectivity and compactness of the object,

the salient part of an image will naturally emerge after evo-

lution. Moreover, we surprisingly find out that even if the

background-based map is poorly constructed, the salient ob-

ject can still be precisely detected via Singly-layer Cellular

Automata, as exemplified in Figure 4 (b). Therefore, we use

several classic methods as the prior maps and refresh them

according to the synchronous updating rule. The saliency

maps achieved by different methods are taken as St when

t = 0 in Eqn 8. The optimized results via Single-layer Cel-

lular Automata are shown in Figure 4. We can see that even

though the original results are not satisfying, all of them are

greatly improved to a similar accuracy level after evolution.

(a) (b) Ours (c) FT (d) CA (e) IT

Figure 4. Comparison of different methods and their optimized

version after parallel evolutions. (a) The first and third row are

input images. The second and fourth row are the ground truth.

(b)-(e) The first and third row are the original results of different

methods. From left to right: our background-based maps, salien-

cy maps generated by FT [1], CA [13], IT [16]. The second and

fourth row are their optimized results via Single-layer Cellular Au-

tomata.

That means our method is independent to prior maps and

can make an effective optimization towards state-of-the-art

methods.

4. Multi-layer Cellular Automata

Many innovative methods by far have been put forward

to deal with saliency detection. And different methods have

their own advantages and disadvantages. In order to take

advantage of the superiority of each method, we propose an

effective method to incorporate M saliency maps generated

by M state-of-the-art methods, each of which serves as a

layer of Cellular Automata.

In Multi-layer Cellular Automata (MCA), each cell rep-

resents a pixel and the number of all pixels in an image is

denoted as H . The saliency values consist of the set of cell-

s’ states. Different from the definition of neighborhood in

Section 3.2, in Multi-layer Cellular Automata, pixels with

the same coordinates in different maps are neighbors. That

is, for any cell on a saliency map, it may have M −1 neigh-

bors on other maps and we assume that all neighbors have

the same influential power to determine the cell’s next state.

The saliency value of pixel i stands for its probability to be

the foreground F , denoted as P (i ∈ F ) = Si, while 1− Si

stands for its possibility to be the background B, denoted

as P (i ∈ B) = 1 − Si. We binarize each map with an

adaptive threshold generated by OTSU [32]. The threshold

is only related to the initial saliency map and remains the

same all the time. The threshold of the m-th saliency map

is denoted as γm.

If the pixel i is measured as foreground after segmenta-

tion, it will be denoted as ηi = +1 and similarly, ηi = −1



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Effects of the Bayesian integration via Multi-layer Cellular Automata. (a) Input image. (b)-(f) Saliency maps generated respec-

tively by HS [48], DSR [23], MR [49], wCO [52] and our algorithm BSCA. (g) The integrated result SN2 . (h) Ground truth.

represents that it is binarized as background. That a pixel

is measured or binarized as foreground doesn’t mean that

it actually belongs to the foreground because the segmen-

tation may not always be correct. If pixel i belongs to the

foreground, the probability that one of its neighboring pix-

el j (with the same coordinates on another saliency map)

is measured as foreground is λ = P (ηj = +1|i ∈ F ).
Correspondingly, the probability µ = P (ηj = −1|i ∈ B)
represents that the pixel j is measured as B under the condi-

tion that pixel i belongs to the background. It is reasonable

to assume that λ is a constant and the same as µ. Then the

posterior probability P (i ∈ F |ηj = +1) can be calculated

as follows:

P (i ∈ F |ηj = +1) ∝ P (i ∈ F )P (ηj = +1|i ∈ F ) = Si·λ
(9)

In order to get rid of the normalizing constant, we define

the prior ratio Λ(i ∈ F ) as:

Λ(i ∈ F ) =
P (i ∈ F )

P (i ∈ B)
=

Si

1− Si

(10)

and then the posterior ratio Λ(i ∈ F |ηj = +1) turns into:

Λ(i ∈ F |ηj = +1) =
P (i ∈ F |ηj = +1)

P (i ∈ B|ηj = +1)
=

Si

1− Si

·
λ

1− µ
(11)

Notice that the first term is the prior ratio and it is easier

to deal with the logarithm of Λ because the changes in log-

odds l = ln(Λ) will be additive. So we have:

l(i ∈ F |ηj = +1) = l(i ∈ F ) + ln(
λ

1− µ
) (12)

In this paper, the prior and posterior ratio Λ(i ∈ F ) and

Λ(i ∈ F |ηj = +1) are also defined as:

Λ(i ∈ F ) =
St
i

1− St
i

, Λ(i ∈ F |ηj = +1) =
St+1

i

1− St+1

i
(13)

where St
i means the saliency value of pixel i at time t. And

we define the synchronous updating rule f : SM−1 → S

as:

l(St+1
m ) = l(St

m)+
M
∑

k=1
k 6=m

sign(St
k−γk ·1)·ln(

λ

1− λ
) (14)

where St
m = [St

m1, · · · , S
t
mH ]T represents the saliency val-

ue of all cells on the m-th map at time t, and the matrix

1 = [1, 1, · · · , 1]T have H elements. Intuitively, if a pixel

observes that its neighbors are binarized as foreground, it

ought to increase its saliency value. Therefore, Eqn 14 re-

quires λ > 0.5 and then ln( λ
1−λ

) > 0. In this paper, we

empirically set ln( λ
1−λ

) = 0.15. After N2 time steps, the

final integrated saliency map S
N2 is calculated as:

S
N2 =

1

M

M
∑

m=1

S
N2

m (15)

In this paper, we use Multi-layer Cellular Automata to

integrate saliency maps generated by HS [48], DSR [23],

MR [49], wCO [52] and our algorithm BSCA. From Fig-

ure 5 we can clearly see that the detected object on the inte-

grated map is uniformly highlighted and much more close

to the ground truth.

5. Experimental Evaluation

We evaluate the proposed method on six standard

datasets: ASD [1], MSRA-5000 [25], THUS [6], ECSSD

[48], PASCAL-S [24] and DUT-OMRON [49]. ASD is the

most widely used dataset and is relatively simple. MSRA-

5000 contains more comprehensive images with complex

background. THUS is the largest dataset which consists of

10000 images. ECSSD contains 1000 images with multi-

ple objects of different sizes. Some of the images come

from the challenging Berkeley-300 dataset. The PASCAL-

S dataset ascends from the validation set of PASCAL VOC

2010 [12] segmentation challenge and contains 850 natural

images surrounded by complex background. The last Dut-

OMRON contains 5168 challenging images with pixelwise

ground truth annotations.

We compare our algorithm with the most classic or the

newest methods including IT98 [16], FT09 [1], CA10 [13],

RC11 [8], XL13 [47], LR12 [36], HS13 [48], UFO13 [20],

DSR13 [23], MR13 [49], wCO14 [52]. The results of dif-

ferent methods are provided by authors or achieved by run-

ning available codes or softwares. The code of our proposed

algorithm can be found at our project site.
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Figure 6. Effects of our proposed algorithm. (a) is PR curves on

ASD dataset. (b) is PR curves on MSRA-5000 dataset.

5.1. Parameters and Evaluation Metrics

Implementation Details We set the number of superpix-

els N = 300 in all experiments. In the Single-layer Cel-

lular Automata, the number of time steps N1 = 20. In

Multi-layer Cellular Automata, the number of time steps

N2 = 5. N1 and N2 are determined respectively by the

convergence time of Single-layer and Multi-layer Cellular

Automata. The results will not change any more once the

dynamic systems achieve stabilities.

Evaluation Metrics We evaluate all methods by standard

precision-recall curves obtained by binarizing the saliency

map with a threshold sliding from 0 to 255 and compare the

binary maps with the ground truth. In many cases, high pre-

cision and recall are both required and therefore F-measure

is put forward as the overall performance measurement:

Fβ =
(1 + β2) · precision · recall

β2 · precision+ recall
(16)

where we set β2 = 0.3 as suggested in [1] to emphasize

the precision. As complementary to PR curves, we also in-

troduce the mean absolute error (MAE) which calculates the

average difference between the saliency map and the ground

truth GT in pixel level:

MAE =
1

H

H
∑

h=1

|S(h)−GT (h)| (17)

This measure indicates how similar a saliency map is to the

ground truth, and is of great importance for different appli-

cations, such as image segmentation and cropping [33].

5.2. Validation of the Proposed Algorithm

To demonstrate the effectiveness of our proposed algo-

rithm, we test the results on the standard dataset ASD and

MSRA-5000. PR curves in Figure 6 show that: 1) The

background-based maps are already satisfying; 2) Single-

layer Cellular Automata can greatly improve the precision

of the background-based maps. 3) Results integrated by

Multi-layer Cellular Automata are better. Similar results

are also achieved on other datasets but not presented here to

be succinct.

5.3. Comparison with State­of­the­Art Methods

As is shown in Figure 7, our proposed method BSCA

performs favorably against existing algorithms with higher

precision and recall values on five different datasets. And

it has a wider range of high F-measure compared to other-

s. Furthermore, the fairly low MAEs displayed in Table 1

indicate the similarity between our saliency maps and the

ground truth. Several saliency maps are shown in Figure 8

for visual comparison of our method with other results.

Improvement of the state-of-the-arts In Section 3.2.4,

we conclude that results generated by different methods can

be effectively optimized via Single Cellular Automata. PR

curves in Figure 7 and MAEs in Table 1 compare various

saliency methods and their optimized results on different

datasets. Both PR curves and MAEs demonstrate that SCA

can greatly improve any existing results to a similar perfor-

mance level. Even though the original saliency maps are

not satisfying, the optimized results are comparable to the

state-of-the-arts.

Integration of the state-of-the-arts In Section 4, we pro-

pose a novel method to integrate several state-of-the-art

methods with top performance. PR curves in Figure 7

strongly prove the effectiveness and robustness of Multi-

layer Cellular Automata which outperforms all the existing

methods on five datasets. And the F-measure curves of M-

CA in Figure 7 are fixed at high values which are insensitive

to the selective thresholds. In addition, the mean absolute

errors of Multi-layer Cellular Automata are always the low-

est on different datasets as Table 1 displays. The fairly low

mean absolute errors indicate that the integrated results are

quite similar to the ground truth. We can observe from Fig-

ure 8 that saliency maps generated by MCA are almost the

same as the ground truth.

5.4. Run Time

The algorithm BSCA takes on average 0.470s except the

time for generating superpixels to process one image from

ASD dataset via Matlab with a PC equipped with a i7-4790k

4.00 GHz CPU and 16GB RAM. The main algorithm SCA

spends about 0.284s to process one image. Furthermore,

Multi-layer Cellular Automata (MCA) only takes on aver-

age 0.043s to integrate different methods and can achieve a

much better saliency map.

6. Conclusion

In this paper, we propose a novel bottom-up method

to construct a background-based map, which takes both

global color and spatial distance matrices into considera-

tion. Based upon Cellular Automata, an intuitive updat-

ing mechanism is designed to exploit the intrinsic connec-

tivity of salient objects through interactions with neigh-

bors. This context-based propagation can improve any giv-

en state-of-the-art results to a similar level with higher ac-
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Figure 7. PR curves and F-measure curves of different methods and their optimized version via Single-layer Cellular Automata(-SCA).

From top to bottom: MSRA, THUS, ECSSD, PASCAL-S and DUT-OMRON are tested.



FT[1] IT[16] CA[13] RC[8] XL[47] LR [36] HS[48] UFO [20] BSCA MCA

ASD 0.205 0.235 0.234 0.235 0.137 0.185 0.115 0.110 0.086 0.039

ASD∗ 0.083 0.098 0.093 0.084 0.082 0.083 0.073 0.073 - -

MSRA 0.230 0.249 0.250 0.263 0.184 0.221 0.162 0.146 0.131 0.078

MSRA∗ 0.132 0.137 0.134 0.130 0.127 0.128 0.121 0.118 - -

THUS 0.235 0.241 0.237 0.252 0.164 0.224 0.149 0.147 0.125 0.076

THUS∗ 0.128 0.125 0.129 0.125 0.121 0.126 0.117 0.116 - -

ECSSD 0.272 0.291 0.310 0.302 0.259 0.276 0.228 0.205 0.183 0.134

ECSSD∗ 0.188 0.186 0.186 0.182 0.181 0.183 0.179 0.180 - -

PASCAL-S 0.288 0.298 0.302 0.314 0.289 0.288 0.264 0.233 0.225 0.180

PASCAL-S∗ 0.227 0.225 0.225 0.220 0.226 0.223 0.220 0.215 - -

DUT-OMRON 0.217 0.256 0.255 0.294 0.282 0.264 0.233 0.180 0.196 0.138

DUT-OMRON∗ 0.180 0.186 0.189 0.184 0.194 0.185 0.181 0.180 - -

Table 1. The MAEs of different methods and their optimized versions via Single-layer Cellular Automata. The original results of different

methods are displayed in the row of ASD, MSRA, THUS, ECSSD, PASCAL-S and DUT-OMRON. The best two results are shown in red

and blue respectively. And their optimized results are displayed in the row of ASD∗ , MSRA∗ , THUS∗ , ECSSD∗, PASCAL-S∗ and

DUT-OMRON∗.

(a) Input (b) FT (c) RC (d) LR (e) HS (f) UFO (g) wCO (h) BSCA (i) MCA (j) GT

Figure 8. Comparison of saliency maps on different datasets. BSCA: The background-based maps optimized by Single-layer Cellular

Automata. MCA: The integrated saliency maps via Multi-layer Cellular Automata. GT: Ground Truth.

curacy. Furthermore, we propose an integration method

named Multi-layer Cellular Automata within the Bayesian

inference framework. It can take advantage of the superi-

orities of different state-of-the-art saliency maps and incor-

porate them into a more discriminative saliency map with

higher precision and recall. Experimental results demon-

strate that the superior performance of our algorithms com-

pared to other existing methods.
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S. Süsstrunk. Slic superpixels. Technical report, 2010. 2

[3] B. Alexe, T. Deselaers, and V. Ferrari. What is an object?

In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 73–80. IEEE, 2010. 1

[4] M. Batty. Cities and complexity: understanding cities with

cellular automata, agent-based models, and fractals. The

MIT press, 2007. 2

[5] A. Borji, D. N. Sihite, and L. Itti. Salient object detection:

A benchmark. In Computer Vision–ECCV 2012, pages 414–

429. Springer, 2012. 1

[6] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-

M. Hu. Salient object detection and segmentation. Image,

2(3):9, 2011. 5

[7] M.-M. Cheng, J. Warrell, W.-Y. Lin, S. Zheng, V. Vineet,

and N. Crook. Efficient salient region detection with soft

image abstraction. In Computer Vision (ICCV), 2013 IEEE

International Conference on, pages 1529–1536. IEEE, 2013.

1

[8] M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, and

S.-M. Hu. Global contrast based salient region detection.

In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 409–416. IEEE, 2011. 1, 5, 8

[9] B. Chopard and M. Droz. Cellular automata modeling of

physical systems, volume 24. Cambridge University Press

Cambridge, 1998. 2

[10] R. Cowburn and M. Welland. Room temperature magnetic

quantum cellular automata. Science, 287(5457):1466–1468,

2000. 2

[11] Y. Ding, J. Xiao, and J. Yu. Importance filtering for im-

age retargeting. In Computer Vision and Pattern Recogni-

tion (CVPR), 2011 IEEE Conference on, pages 89–96. IEEE,

2011. 1

[12] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International journal of computer vision, 88(2):303–

338, 2010. 5

[13] S. Goferman and A. L Tal. context-aware saliency detection.

Computer, 2010. 4, 5, 8

[14] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware

saliency detection. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 34(10):1915–1926, 2012. 1

[15] X. Hou and L. Zhang. Saliency detection: A spectral resid-

ual approach. In Computer Vision and Pattern Recogni-

tion, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,

2007. 1

[16] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. IEEE Transactions

on pattern analysis and machine intelligence, 20(11):1254–

1259, 1998. 4, 5, 8

[17] B. Jiang, L. Zhang, H. Lu, C. Yang, and M.-H. Yang. Salien-

cy detection via absorbing markov chain. In Computer Vi-

sion (ICCV), 2013 IEEE International Conference on, pages

1665–1672. IEEE, 2013. 1

[18] H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li.

Automatic salient object segmentation based on context and

shape prior. In BMVC, volume 3, page 7, 2011. 1

[19] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li.

Salient object detection: A discriminative regional fea-

ture integration approach. In Computer Vision and Pat-

tern Recognition (CVPR), 2013 IEEE Conference on, pages

2083–2090. IEEE, 2013. 1, 2

[20] P. Jiang, H. Ling, J. Yu, and J. Peng. Salient region detection

by ufo: Uniqueness, focusness and objectness. In Comput-

er Vision (ICCV), 2013 IEEE International Conference on,

pages 1976–1983. IEEE, 2013. 5, 8

[21] Z. Jiang and L. S. Davis. Submodular salient region detec-

tion. In Computer Vision and Pattern Recognition (CVPR),

2013 IEEE Conference on, pages 2043–2050. IEEE, 2013. 1

[22] D. A. Klein and S. Frintrop. Center-surround divergence of

feature statistics for salient object detection. In Computer Vi-

sion (ICCV), 2011 IEEE International Conference on, pages

2214–2219. IEEE, 2011. 1

[23] X. Li, H. Lu, L. Zhang, X. Ruan, and M.-H. Yang. Saliency

detection via dense and sparse reconstruction. In Comput-

er Vision (ICCV), 2013 IEEE International Conference on,

pages 2976–2983. IEEE, 2013. 1, 2, 5

[24] Y. Li, X. Hou, C. Koch, J. Rehg, and A. Yuille. The secrets

of salient object segmentation. CVPR, 2014. 5

[25] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and

H.-Y. Shum. Learning to detect a salient object. Pattern

Analysis and Machine Intelligence, IEEE Transactions on,

33(2):353–367, 2011. 5

[26] V. Mahadevan and N. Vasconcelos. Saliency-based discrim-

inant tracking. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 1007–1013.

IEEE, 2009. 1

[27] L. Marchesotti, C. Cifarelli, and G. Csurka. A framework for

visual saliency detection with applications to image thumb-

nailing. In Computer Vision, 2009 IEEE 12th International

Conference on, pages 2232–2239. IEEE, 2009. 1

[28] C. Maria de Almeida, M. Batty, A. M. Vieira Monteiro,
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