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Abstract

We propose an effective structured learning based ap-
proach to the problem of person re-identification which out-
performs the current state-of-the-art on most benchmark
data sets evaluated. Our framework is built on the ba-
sis of multiple low-level hand-crafted and high-level vi-
sual features. We then formulate two optimization algo-
rithms, which directly optimize evaluation measures com-
monly used in person re-identification, also known as the
Cumulative Matching Characteristic (CMC) curve. Our
new approach is practical to many real-world surveillance
applications as the re-identification performance can be
concentrated in the range of most practical importance.
The combination of these factors leads to a person re-
identification system which outperforms most existing al-
gorithms. More importantly, we advance state-of-the-art
results on person re-identification by improving the rank-
1 recognition rates from 40% to 50% on the iLIDS bench-
mark, 16% to 18% on the PRID2011 benchmark, 43% to
46% on the VIPeR benchmark, 34% to 53% on the CUHKO1
benchmark and 21% to 62% on the CUHKO3 benchmark.

1. Introduction

The task of person re-identification (re-id) is to match
pedestrian images observed from multiple cameras. It has
recently gained popularity in research community due to its
several important applications in video surveillance. An au-
tomated re-id system could save a lot of human labour in
exhaustively searching for a person of interest from a large
amount of video sequences.

Despite several years of research in the computer vision
community, person re-id is still a very challenging task and
remains unsolved due to (a) large variation in visual appear-
ance (person’s appearance often undergoes large variations
across different camera views); (b) significant changes in
human poses at the time the image was captured; (c) large
amount of illumination changes and (d) background clutter
and occlusions. Moreover the problem becomes increas-
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ingly difficult when persons share similar appearance, e.g.,
people wearing similar clothing style with similar color.

To address these challenges, existing research on this
topic has concentrated on the development of sophisticated
and robust features to describe the visual appearance un-
der significant changes. However the system that relies
heavily on one specific type of visual cues, e.g., color, tex-
ture or shape, would not be practical and powerful enough
to discriminate individuals with similar visual appearance.
Existing studies have tried to address the above problem
by seeking a combination of robust and distinctive feature
representation of person’s appearance, ranging from color
histogram [12], spatial co-occurrence representation [40],
LBP [44], color SIFT [46], etc.

One simple approach to exploit multiple visual features
is to build an ensemble of distance functions, in which each
distance function is learned using a single feature and the
final distance is calculated from a weighted sum of these
distance functions [6,44,46]. However existing works on
person re-id often pre-define these weights, which need to
be re-estimated beforehand for different data sets. Since
different re-id benchmark data sets can have very different
characteristics, i.e., variation in view angle, lighting and oc-
clusion, combining multiple distance functions using pre-
determined weights is undesirable as highly discriminative
features in one environment might become irrelevant in an-
other environment.

In this paper, we introduce effective approaches to learn
weights of these distance functions. The first approach opti-
mizes the relative distance using the triplet information and
the second approach maximizes the average rank-k recog-
nition rate, in which £ is chosen to be small, e.g., k < 10.
Setting the value of k to be small is crucial for many real-
world applications since most surveillance operators typi-
cally inspect only the first ten or twenty items retrieved.

The main contributions of this paper are twofold: 1) We
propose two principled approaches to build an ensemble of
person re-id metrics. The first approach aims at maximizing
the relative distance between images of different individuals
and images of the same individual such that the CMC curve
approaches one with a minimal number of returned candi-
dates. The second approach directly optimizes the probabil-
ity that any of these top k matches are correct using struc-
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tured learning. Our ensemble-based approaches are highly
flexible and can be combined with linear and non-linear
metrics. 2) Extensive experiments are carried out to demon-
strate that by building an ensemble of person re-id metrics
learned from different visual features, notable improvement
on rank-1 recognition rate can be obtained. Experimental
results show that our approach achieves the state-of-the-art
performance on most person re-id benchmark data sets eval-
uated. In addition, our ensemble approach is complemen-
tary to any existing distance learning methods.

Related work Existing person re-id systems consist of
two major components: feature representation and metric
learning. In feature representation, robust and discrimi-
native features are constructed such that they can be used
to describe the appearance of the same individual across
different camera views under various changes and condi-
tions [2,3,6,9,12,40,46,47]. We briefly discuss some of
these work below. More feature representations, which have
been applied in person re-id, can be found in [10].

Bazzani et al. represent a person by a global mean color
histogram and recurrent local patterns through epitomic
analysis [2]. Farenzena et al. propose the symmetry-driven
accumulation of local features which exploits both symme-
try and asymmetry, and represents each part of a person by
a weighted color histogram, maximally stable color regions
and texture information [6]. Gray and Tao introduce an en-
semble of local features which combines three color chan-
nels with 19 texture channels [12]. Schwartz and Davis pro-
pose a discriminative appearance based model using par-
tial least squares, in which multiple visual features: tex-
ture, gradient and color features are combined [35]. Zhao et
al. propose dcolorSIFT which combines SIFT features with
color histogram. The same authors also propose mid-level
filters for person re-identification by exploring the partial
area under the ROC curve (pAUC) score [47].

A large number of metric learning and ranking algori-
thms have been proposed [4,5,8,16,17,37,41-44]. Many of
these have been applied to the problem of person re-id. We
briefly review some of these algorithms. Interested read-
ers should see [45]. Chopra et al. propose an algorithm to
learn a similarity metric from data [4]. The authors train a
convolutional network that maps input images into a target
space such that the /1 -norm in the target space approximate
the semantic distance in the image space. Gray and Tao use
AdaBoost to select discriminative features [12]. Koestinger
et al. propose the large-scale metric learning from equiva-
lence constraint which considers a log likelihood ratio test
of two Gaussian distributions [17]. Li et al. propose a fil-
ter pairing neural network to learn visual features for the
re-identification task from image data [20]. Pedagadi et al.
combine color histogram with supervised Local Fisher Dis-
criminant Analysis [31]. Prosser et al. use pairs of simi-
lar and dissimilar images and train the ensemble RankSVM

such that the true match gets the highest rank [32]. Shen
et al. applies the idea of boosting to Mahalanobis distance
learning [37]. Weinberger et al. propose the large mar-
gin nearest neighbour (LMNN) algorithm to learn the Ma-
halanobis distance metric, which improves the k-nearest
neighbour classification [41]. LMNN is later applied to a
task of person re-identification in [14]. Wu et al. applies the
Metric Learning to Rank (MLR) method of [25] to person
re-id [43].

Although a large number of existing algorithms have ex-
ploited state-of-the-art visual features and advanced met-
ric learning algorithms, we observe that the best obtained
overall performance on commonly evaluated person re-id
benchmarks, e.g., iLIDS and VIPeR, is still far from the
performance needed for most real-world surveillance appli-
cations.

Notation Bold lower-case letters, e.g., w, denote col-
umn vectors and bold upper-case letters, e.g., P, denote
matrices. We assume that the provided training data is for
the task of single-shot person re-identification, i.e., there
exist only two images of the same person — one image
taken from camera view A and another image taken from
camera view B. We represent a set of training samples by
{(zs,®])}" | where x; € RP represents a training ex-
ample from one camera (i.e., camera view A), and m;” is
the corresponding image of the same person from a differ-
ent camera (i.e., camera view B). Here m is the number
of persons in the training data. From the given training
data, we can generate a set of triplets for each sample x;
as {(:c“mj,:c;])} fori =1,--- ,mand i # j. Here we
introduce x; ; € X; where X, denotes a subset of images
of persons with a different identity to x; from camera view
B. We also assume that there exist a set of distance func-
tions d; (-, -) which calculate the distance between two given
inputs. Our §oal is to learn a weighted distance function:
d(-,-) = >_;_; wdy(-,-), such that the distance between
x; (taken from camera view A) and :cj' (taken from cam-
era view B) is smaller than the distance between x; and any
z; (taken from camera view B). The better the distance
function, the faster the cumulative matching characteristic
(CMC) curve approaches one.

2. Our Approach

In this section, we propose two approaches that can learn
an ensemble of base metrics. We then discuss base metrics
and visual features that will be used in our experiment.

2.1. Ensemble of base metrics

The most commonly used performance measure for eval-
uating person re-id is known as a cumulative matching char-
acteristic (CMC) curve [11], which is analogous to the ROC
curve in detection problems. The CMC curve represents
results of an identification task by plotting the probability
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of correct identification (y-axis) against the number of can-
didates returned (x-axis). The faster the CMC curve ap-
proaches one, the better the person re-id algorithm. Since
a better rank-1 recognition rate is often preferred [47], our
aim is to improve the recognition rate among the & best can-
didates, e.g., &k < 20, which is crucial for many real-world
surveillance applications. Note that, in practice, the system
that achieves the best recognition rate when k is large (e.g.,
k > 100) is of little interest since most users inspect or
consider only the first ten or twenty returned candidates.

In this section, we propose two different approaches
which learn an ensemble of base metrics (discussed in the
next section). The first approach, CMC Pt aims at min-
imizing the number of returned list of candidates in order
to achieve a perfect identification, i.e., minimizing & such
that the rank-k recognition rate is equal to one. The sec-
ond approach, CMC *°P, optimizes the probability that any
of these k best matches are correct.

2.1.1 Relative distance based approach (CMC triPlet)

In order to minimize k such that the rank-k recognition
rate is equal to 100%, we consider learning an ensemble of
distance functions based on relative comparison of triplets
[34]. Given a set of triplets { (z;, @], x; J)} g ,in which x;

is taken from camera view A and {a;", z; , } are taken from
camera view B, the basic idea is to learn a distance func-
tion such that images of the same individual are closer than
any images of different individuals, i.e., x; is closer to :132+

than any ;. For a triplet {(;, =", x; ])} , the follow-

ing condltlon must hold d(z;, z; ;) > d(z;, x; ), V5,4 # 5.

Following the large margin framework with the hinge loss,

the condition d(z;, z; ;) > 1+ d(zi, z; ) should be sat-
isfied. This condition means that the dlstance between two
images of different individuals should be larger by at least a
unit than the distance between two images of the same indi-
vidual. Since the above condition cannot be satisfied by all
triplets, we introduce a slack variable to enable soft margin.
By generalizing the above idea to the entire training set, the
primal problem that we want to optimize can be written as,

m m—1

}:}:&J )

1
%lgg\lwllg
’ =1 j5=1

St’lU(d _d+)>1_§1j;v{1]}1¢]7

w>0; £€>0.
Here v > 0 is the regularization parameter and d; =
[dl(wlam ]) dt(mlv )] d+ [dl(wiawj)a Tty
di(z;, )] and {dl( Dy ,dt( ,+) } represent a set of base
metrics. Note that we introduce the regularization term

||w]|3 to avoid the trivial solution of arbitrarily large w.
We point out here that any smooth convex loss function
can also be applied. Suppose that A(-) is a smooth convex

function defined in R and w(-) is any regularization func-
tion. The above optimization problem which enforces the
relative comparison of the triplet can also be written as,

)+V§:Mm) @)

wydy (x4, wedy (s, ), VT3
E: §:

w >0,
where 7 being the triplet index set. In this paper, we con-
sider the hinge loss but other convex loss functions [38] can
be applied.

Since the number of constraints in (1) is quadratic in the
number of training examples, directly solving (1) using off-
the-shelf optimization toolboxes can only solve problems
with up to a few thousand training examples. In the follow-
ing, we present an equivalent reformulation of (1), which
can be efficiently solved in a linear runtime using cutting-
plane algorithms. We first reformulate (1) by writing it as:

min w(w
w

s.t. pr =

1
min 5wl +v¢ 3)

1 T
PR S—
i m(m — 1)w Z
=1 j=1
V{i,j}.i#j; w=0; £=0.
Note that the new formulation has a single slack variable.

Later on in this section, we show how the cutting-plane
method can be applied to solve (3).

m—1

(d; —df)] =1-¢,

2.1.2 Top recognition at rank-k (CMC °P)

Our previous formulation assumes that, for any triplets, im-
ages belonging to the same individual should be closer than
images belonging to different individuals. Our second for-
mulation is motivated by the nature of the problem, in which
person re-id users often browse only the first few retrieved
matches. Hence we propose another approach, in which
the objective is no longer to minimize k (the number of
returned matches before achieving 100% recognition rate),
but to maximize the correct identification among the top &
best candidates. Built upon the structured learning frame-
work [15,27], we optimize the performance measure com-
monly used in the CMC curve (recognition rate at rank-k)
using structured learning. The difference between our work
and [27] is that [27] assumes training samples consist of
mo positive instances and m_ negative instances, while
our work assumes that there are m individuals in camera
view A and m individuals in camera view B. However there
exists ranking in both works: [27] attempts to rank all pos-
itive samples before a subset of negative samples while our
works attempt to rank a pair of the same individual above
a pair of different individuals. Both also apply structure
learning of [15] to solve the optimization problem.
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Given the training individual ; (from camera view A)
and its correct match ;” from camera view B, we can rep-
resent the relative ordering of all matching candidates in
camera view B via a vector p € R™', in which p; is 0 if
:c (from camera view B) is ranked above x; (from cam-
era view B) and 1 if a: is ranked below x; i Here m/ is
the total number of 1nd1v1duals from camera view B who
has a different identity to ;. Since there exists only one
image of the same individual in the camera view B, m/ is
equal to m — 1 where m is the total number of individu-
als in the training set. We generalize this idea to the entire
training set and represent the relative ordering via a matrix

P € {0,11"™™ as follows:

e 4 _
Py = {O if 1§ ranked above x; ; @
1 otherwise.

The correct relative ordering of P can be defined as P~

where p}; = 0,Vi, j. The loss among the top & candidates

can then be written as,
A(P*,P) = k Zzpz ) &)

=1 j=1

where (j) denotes the index of the retrieved candidates

ranked in the j-th position among all top k best candidates.

We define the joint feature map, w, of the form:

where S represent a set of trlplets generated from the
training data, d; = [di(z;, @, ), , di(xi, ;)] and
df = [di(zi,z]), -+, di(xi,x})]. The choice of
(S, P) guarantees that the variable w, which opti-
mizes w' (S, P), will also produce the distance function
d(-,-) = Zle wedy (-, -) that achieves the optimal average
recognition rate among the top k candidates. The above
problem can be summarized as the following convex opti-
mization problem:

¥(S, P) d; —df), (6

. 1
min  —|lw||3 +v¢ (7
w,& 2

st.w' (Y(S,P*) —¢(S,P)) > A(P*,P) - ¢,
VP and £ > 0. Here P* denote the correct relative or-
dering and P denote any arbitrary orderings. Similar to
CMC "iPlet | we use the cutting-plane method to solve (7).

2.1.3 Cutting-plane optimization

In this section, we illustrate how the cutting-plane method
can be used to solve both optimization problems: (3) and
(7). The key idea of the cutting-plane is that a small sub-
set of the constraints are sufficient to find an e-approximate
solution to the original problem. The cutting-plane algo-
rithm begins with an empty initial constraint set and itera-

Algorithm 1 Cutting-plane algorithm for solving coeffi-
cients of base metrics (CMC *°P)

Input:
1) A set of base metrics of the same individual and different
individuals {df , d; };
2) The regularization parameter, v/;
3) The cutting-plane termination threshold, €;
Output: The base metrics’ coefficients w,
Initialize: The working set, C = &;
g(Sv‘P7w) = A(P*7P) -
Repeat
® Solve the primal problem using linear SVM,

ar i pigw' (df —d));
1,

min O [wll3 +v¢ st g(S, P,w) S§ VP EC

w,

@ Compute the most violated constraint,

P= P, w);
mgxg(S, ;w);

®e <— {P}
Until (S, P,w) < ¢

tively adds the most violated constraint set. At each itera-
tion, the algorithm computes the solution over the current
working set. The algorithm then finds the most violated
constraint and add it to the working set. The cutting-plane
algorithm continues until no constraint is violated by more
than e. Since the quadratic program is of constant size, the
cutting-plane method converges in a constant number of it-
erations. We present our proposed CMC '°P in Algorithm 1.

The optimization problem for finding the most violated
constraint (Algorithm 1, step @) can be written as,

P = max A(P*,P) —w' (4(S,P*) — (S, P))  (®)

— Y pyw’
S
:maxZ(ZpZ(]) 1—w di

=1 j=1
where d o) = d( J d . Since p;; in (8) is independent,
the solutlon to (8) can be solved by maximizing over each
element p;;. Hence P that most violates the constraint cor-
responds to,
~ 1('wT(df — dj)
PiG) = { =

1(w'(d;, —df)

_ * - gt
_mgXA(P ,P) — (d; —d")

m’

j=k+1

), ifje{l, -k}

<1
<0), otherwise.

For CMC t"iPlet one replaces g(S, P, w) in Algorithm 1
with (S, w) =1~ qyw' {Z”(d; —d})| and re-
peats the same procedure.

In this section we assume that the base metrics,
{dy(+,+), - -,di(+, )}, are provided. In the next section, we
introduce two base metrics adopted in our proposed ap-
proaches.
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2.2. Base metrics

Metric learning can be divided into two categories: lin-
ear [5,17,41] and non-linear methods [4, 8, 16,42,44]. In
the linear case, the goal is to learn a linear mapping by esti-
mating a matrix M such that the distance between images
of the same individual, (z; — =) M (z; — =), is less
than the distance between images of different individuals,
(xi—z; ;) M(z;—x; ;). The linear method can be easily
extended to learn non-linear mapping by kernelization [36].
The basic idea is to learn a linear mapping in the feature
space of some non-linear function, ¢, such that the distance
(d(zx;) — d(x )T M (d(;) — (] )) is less than the dis-
tance (9(x:) — () M(9(x:) — dle;,)).

Metric learning from equivalence constraints The ba-
sic idea of KISS metric learning (KISS ML) [17], is to learn
the Mahalanobis distance by considering a log likelihood
ratio test of two Gaussian distributions. The likelihood ra-
tio test between dissimilar pairs and similar pairs can be
written as,

1 1, Tyv—1,,
7 exp(—52;; X5 @ij)

; €))

r(x;, x;) = lo
( 2l ]) géexp(—% LEglmij)
where x;; = x; —xj, cq = \/27|Ep|, ¢s = \/27|Zs|, Xp
and Xg are covariance matrices of dissimilar pairs and sim-
ilar pairs, respectively. By taking log and discarding con-
stant terms, (9) can be simplified as,
;) (S5 = Sp") (@i —z;),  (10)
Hence the Mahalanobis distance matrix M can be written
as Egl - 251. The authors of [17] clip the spectrum of
M by eigen-analysis to ensure M is positive semi-definite.
This simple algorithm has shown to perform surprisingly
well on the person re-id problem [20, 33].

Kernel-based metric learning There exist several non-
linear extensions to metric learning. In this section,
we introduce recently proposed kernel-based metric learn-
ing, known as kernel Local Fisher Discriminant Analysis
(KLFDA) [44], which is a non-linear extension to the previ-
ously proposed LFDA [31] and has demonstrated the state-
of-the-art performance on iLIDS, CAVIAR and 3DPeS data
sets. The basic idea of KLFDA is to find a projection ma-
trix M which maximizes the between-class scatter matrix
while minimizing the within-class scatter matrix using the
Fisher discriminant objective. Similar to LFDA, the pro-
jection matrix can be estimated using generalized eigen-
decomposition. Unlike LFDA, kKLFDA represent the projec-
tion matrix with the data samples in the kernel space ¢(-).

r(@i, ;) = (zi —

2.3. Visual features

We introduce visual features which have been applied in
our person re-id approaches.

SIFT/LAB patterns Scale-invariant feature transform
(SIFT) has gained a lot of research attention due to its in-

variance to scaling, orientation and illumination changes
[24]. The descriptor represents occurrences of gradient ori-
entation in each region. In this work, we combine discrim-
inative SIFT with color histogram extracted from the LAB
colorspace.

LBP/RGB patterns Local Binary Pattern (LBP) is an-
other feature descriptor that has received a lot of attention
in the literature due to its effectiveness and efficiency [28].
The standard version of 8-neighbours LBP has a radius of
1 and is formed by thresholding the 3 x 3 neighbourhood
with the centre pixel’s value. To improve the classification
accuracy of LBP, we combine LBP histograms with color
histograms extracted from the RGB colorspace.

Region covariance patterns Region covariance is an-
other texture descriptor which has shown promising results
in texture classification [39]. The covariance descriptor is
extracted from the covariance of several image statistics in-
side a region of interest [39]. Covariance matrix provides
a measure of the relationship between two or more set of
variates. The diagonal entries of covariance matrices repre-
sent the variance and the non-diagonal entries represent the
correlation value between low-level features.

Neural patterns Large amount of available training data
and increasing computing power have led to a recent suc-
cess of deep convolutional neural networks (CNN) on a
large number of computer vision applications. CNN ex-
ploits the strong spatially local correlation present in natural
images by enforcing a local connectivity pattern between
neurons of adjacent layers. In the deep CNN architecture,
convolutional layers are placed alternatively between max-
pooling and contrast normalization layers [18].

Implementation See supplementary for detailed imple-
mentation.

3. Experiments

Datasets There exist several challenging benchmark
data sets for person re-identification. In this experi-
ment, we select four commonly used data sets (iLIDS,
3DPES, PRID2011, VIPeR) and two recently introduced
data sets with a large number of individuals (CUHKOI and
CUHKO03). The iLIDS data set has 119 individuals cap-
tured from eight cameras with different viewpoints [48].
The number of images for each individual varies from 2 to
8, i.e., eight cameras are used to capture 119 individuals.
The data set consists of large occlusions caused by people
and luggages. The 3DPeS data set is designed mainly for
people tracking and person re-identification [1]. It contains
numerous video sequences taken from a real surveillance
environment with eight different surveillance cameras and
consists of 192 individuals. The number of images for each
individual varies from 2 to 26 images. The Person RE-ID
2011 (PRID2011) data set consists of images extracted from
multiple person trajectories recorded from two surveillance
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static cameras [13]. Camera view A contains 385 individ-
uals, camera view B contains 749 individuals, with 200 of
them appearing in both views. Hence, there are 200 person
image pairs in the dataset.

VIPeR is one of the most popular used data sets for per-
son re-identification [11]. It conntains 632 individuals taken
from two cameras with arbitrary viewpoints and varying il-
lumination conditions. The CUHKO1 data set contains 971
persons captured from two camera views in a campus envi-
ronment [19]. Camera view A captures the frontal or back
view of the individuals while camera view B captures the
profile view. Finally, the CUHKO3 data set consists of 1360
persons taken from six cameras [20] The data set consists of
manually cropped pedestrian images and images cropped
from the pedestrian detector of [7]. Due to the imperfec-
tion in the pedestrian detector, which causes some misalign-
ments of cropped images, we use images which are manu-
ally annotated by hand.

Evaluation protocol In this paper, we adopt a single-
shot experiment setting, similar to [22,31,44,47,49]. For
all data sets except CUHKO3, all the individuals in the data
set are randomly divided into two subsets so that the training
set and the test set contains half of the available individuals
with no overlap on person identities. For data set with two
cameras, we randomly select one image of the individual
taken from camera view A as the probe image and one im-
age of the same individual taken from camera view B as the
gallery image. For multi-camera data sets, two images of
the same individual are chosen: one is used as the probe im-
age and the other as the gallery image. For CUHKO3, we set
the number of individuals in the train/test split to 1260/100
as conducted in [20]. To be more specific, there are 59, 96,
100, 316, 485 and 100 individuals in each of the test split
for the iLIDS, 3DPeS, PRID2011, VIPeR, CUHKO1 and
CUHKO3 data sets, respectively. The number of probe im-
ages (test phase) is equal to the number of gallery images
in all data sets except PRID2011, in which the number of
probe images is 100 and the number of test gallery images
is 649 (all images from camera view B except the 100 train-
ing samples). This procedure is repeated 10 times and the
average of cumulative matching charateristic (CMC) curves
across 10 partitions is reported. The CMC curve provides
a ranking for every image in the gallery with respect to the
probe.

Parameters setting For the linear base metric (KISS
ML [17]), we apply principal component analysis (PCA)
to reduce the dimensionality and remove noise. Without
performing PCA, it is computationally infeasible to inverse
covariance matrices of both similar and dissimilar pairs as
discussed in [17]. For each visual feature, we reduce the
feature dimension to 64 dimensional subspaces. For the
non-linear base metric (kLFDA [44]), we set the regulariza-
tion parameter for class scatter matrix to 0.01, i.e., we add

a small identity matrix to the class scatter matrix. For both
SIFT/LAB and LBP/RGB features, we apply the RBF-y?
kernel. For region covariance and CNN features, we apply
the Gaussian RBF kernel x(x, ') = exp(—||x — x'||/o?).
The kernel parameter is tuned to an appropriate value for
each data set. In this experiment, we set the value of o2 to
be the same as the first quantile of all distances [44].

For CMC %Pt we choose the regularization parameter
(v in (1)) from {10,103, -.,10*} by cross-validation on
the training data. For CMC *P, we choose the regulariza-
tion parameter (v in (7)) from {10%,10%1,- - - 103} by cross-
validation on the training data. We set the cutting-plane ter-
mination threshold to 1075, The recall parameter (k in (6))
is set to be 10 for iLIDS, 3DPeS, PRID2011 and VIPeR and
40 for larger data sets (CUHKO1 and CUHKO3). Since the
success of metric learning algorithms often depends on the
choice of good parameters, we train multiple metric learn-
ing for each feature. Specifically, for KISS ML, we reduce
their feature dimensionality to 32, 48 and 64 dimensions
and use all three to learn the weight w for CMC "iPlet and
CMC*P, Similarly, for kFLDA, we set the o2 to be the
same as the 5", the 10" and the first quantile of all dis-
tances.

3.1. Evaluation and analysis

Feature evaluation We investigate the impact of low-
level and high-level visual features on the recognition per-
formance of person re-identification. Fig. 1 shows the CMC
performance of different visual features and their rank-1
recognition rates when trained with the kernel-based LFDA
(non-linear metric learning) on six benchmark data sets.
On VIPeR, CUHKO1 and CUHKO3 data sets, we observe
that both SIFT/LAB and LBP/RGB significantly outper-
form covariance descriptor and CNN features. This result is
not surprising since SIFT/LAB combines edges and color
features while LPB/RGB combines texture and color fea-
tures. We suspect the use of color helps improve the over-
all recognition performance of both features. We observe
that CNN features perform poorer than hand-crafted low-
level features in our experiments. We suspect that the CNN
pre-trained model has been designed for ImageNet object
categories [18], in which color information might be less
important. However on many person re-id data sets, a large
number of persons wear similar types of clothing, e.g., t-
shirt and jeans, but with different color. Therefore color
information becomes an important cue for recognizing two
different individuals. Overall, we observe that SIFT/LAB
features perform well consistently on all data sets evaluated.

Ensemble approach with different base metrics Next
we compare the performance of our approach with two dif-
ferent base metrics: linear metric learning [17] and non-
linear metric learning [44] (introduced in Sec. 2.2). In this
experiment, we use CMC *°P to learn an ensemble. Experi-
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Figure 1: Performance comparison of base metrics with different visual features: SIFT/LAB, LBP/RGB, covariance descriptor and CNN features. Rank-1 recognition rates are
shown in parentheses. The higher the recognition rate, the better the performance. Ours-Top (CMC ®°P) represents our ensemble approach which optimizes the CMC score over

the top k returned candidates. Ours-Triplet (CMC triplet) represents our ensemble approach which minimizes the number of returned candidates such that the rank-k recognition
rate is equal to one.
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Figure 2: Performance comparison of CMC *°P with two different base metrics: linear base metric (Linear Metric Learning) and non-linear base metric (Non-lin. Metric
Learning). On VIPeR, CUHKO1 and CUHKO3 data sets, an ensemble of non-linear base metrics significantly outperforms an ensemble of linear base metrics.

mental results are shown in Fig. 2. Two observations can be
made from the figure: 1) Both approaches perform similarly
when the number of train/test individuals is small, e.g., on
iLIDS and 3DPeS data sets; 2) Non-linear base metrics out-
performs linear base metric when the number of individuals
increase. We suspect that there is less diversity when the
number of individuals is small. No further improvement

is observed when we replace linear base metrics with non-
linear base metrics.

Performance at different recall values Next we com-
pare the performance of the proposed CMC 'riPlet with
CMC P, Both optimization algorithms optimize the recog-
nition rate of person re-id but with different objective crite-
ria. We compare the performance of both algorithms with
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Rank VIPeR CUHKO1 CUHKO03

Avg. \ CMC triptet \ CMC*®P [ Avg. \ CMC triptet \ CMC®™P [ Avg. \ CMC triptet \ CMCtop
1 44.9 45.7 45.9 51.9 53.0 53.4 57.4 60.5 62.1
2 58.3 59.6 60.2 63.3 64.1 64.3 71.7 73.5 76.6
5 76.3 771 77.5 75.1 76.1 76.4 85.9 87.8 89.1
10 88.2 88.9 88.9 83.0 84.0 84.4 93.1 93.5 94.3
20 94.9 95.7 95.8 89.4 90.7 90.5 96.9 97.4 97.8
50 99.4 99.5 99.5 95.9 96.4 96.4 99.5 99.7 99.7
100 99.9 100.0 100.0 98.6 98.6 98.6 100.0 100.0 100.0

Table 1: Re-id recognition rate (%) at different recall (rank). The best result is shown in boldface. Both CMC *°P and CMC **1P1¢t achieve similar performance when retrieving

> 50 candidates.
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Ours (45.89%) i
MidLevel+LADF (43.39%)
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Figure 3: CMC performance for VIPeR and CUHKO1 data sets. The higher the
recognition rate, the better the performance. Our approach outperforms all existing
person re-id algorithms.

o
Se ©

IS
o

Recognition rate (%)

Data set # Iplelduals Prev. best Ours
train | test

iLIDS 59 60 40.3% [44] | 50.3%
3DPeS 96 96 54.2% [44] | 53.3%
PRID2011 | 100 100 | 16.0% [33] | 17.9%
VIPeR 316 316 | 43.4%[47] | 45.9%
CUHKO1 486 485 | 34.3% [47] | 53.4%
CUHKO3 1260 | 100 | 20.7%[20] | 62.1%

Table 2: Rank-1 recognition rate of existing best reported results and our results. The
best result is shown in boldface.

the baseline approach, in which we simply set the value of
w to a uniform weight. Since distance functions of differ-
ent features have different scales, we normalize the distance
between each probe image to all images in the gallery to be
between zero and one. In other words, we set the distance
between the probe image and the nearest gallery image to

be zero and the distance between the probe image and the
furthest gallery image to be one. The matching accuracy is
shown in Table 1. We observe that CMC *°P achieves the
best recognition rate performance at a small recall value.
At a large recall value (rank > 50), both CMC*®P and
CMC triPlet perform similarly. Interestingly, a simple aver-
aging performs quite well on VIPeR, in which the number
of individuals in the test set is small.

3.2. Comparison with state-of-the-art results

Fig. 3 compares our results with other person re-id al-
gorithms on two major benchmark data sets: VIPeR and
CUHKOI1. Our approach outperforms all existing person
re-id algorithms. Next we compare our results with the
best reported results in the literature. The algorithm pro-
posed in [44] achieves state-of-the-art results on iLIDS and
3DPeS data sets (40.3% and 54.2% recognition rate at rank-
1, respectively). Our approach outperforms [44] on the
iLIDS (50.3%) and achieve a comparable result on 3DPeS
(563.3%). Zhao et al. propose mid-level filters for person
re-identification [47], which achieve state-of-the-art results
on the VIPeR and CUHKO1 data sets (43.39% and 34.30%
recognition rate at rank-1, respectively). Our approach out-
performs [47] by achieving a recognition rate of 45.89%
and 53.40% on the VIPeR and CUHKOI1 data sets, respec-
tively. Table 2 compares our results with other state-of-the-
art methods on other person re-identification data sets.

4. Conclusion

In this paper, we present an effective structured learning
based approach for person re-id by combining multiple low-
level and high-level visual features into a single framework.
Our approach is practical to real-world applications since
the performance can be concentrated in the range of most
practical importance. Moreover our proposed approach is
flexible and can be applied to any metric learning algori-
thms. Future works include learning mid-level features [21]
for person re-id, incorporating depth from a single monoc-
ular image [23], integrating person re-id with person detec-
tor [29, 30] and improving multiple target tracking of [26]
with the proposed approach.
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