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Abstract

Action recognition and pose estimation from video are

closely related tasks for understanding human motion, most

methods, however, learn separate models and combine them

sequentially. In this paper, we propose a framework to in-

tegrate training and testing of the two tasks. A spatial-

temporal And-Or graph model is introduced to represent ac-

tion at three scales. Specifically the action is decomposed

into poses which are further divided to mid-level ST-parts

and then parts. The hierarchical structure of our model

captures the geometric and appearance variations of pose

at each frame and lateral connections between ST-parts at

adjacent frames capture the action-specific motion informa-

tion. The model parameters for three scales are learned dis-

criminatively, and action labels and poses are efficiently in-

ferred by dynamic programming. Experiments demonstrate

that our approach achieves state-of-art accuracy in action

recognition while also improving pose estimation.

1. Introduction

1.1. Motivation and Objective

Action recognition and pose estimation are both im-

portant tasks for vision-based human motion understand-

ing. They are widely used in applications, such as, intel-

ligent surveillance systems and human-computer interac-

tion systems. Despite their different goals, the two tasks

are highly coupled and it is desirable to study them in

a common framework. However, existing methods train

models for the two tasks separately and combine the infer-

ence sequentially: taking pose estimation as input for ac-

tion recognition[15, 34, 25, 8, 27, 24]. For certain actions

defined by specific geometric configuration of body parts,

pose estimation from a single image may be sufficient for

action recognition [15, 28, 5, 32].

The main drawback of such methods is that the accura-

cy of action recognition highly relies on the obtained pose

estimations. Due to the large pose variation and complex

Figure 1. (a) Single frame human poses estimated by [29]. (b)

Action recognition and poses estimation by our approach.

background in action datasets, the most discriminative parts

(such as ’arms’, ’hands’, ’legs’ and ’feet’) are often missed

in pose estimation, thereby deteriorating subsequent action

recognition. However, those human parts have large motion

in actions and can be recovered by motion information. For

example, Fig. 1 shows that the arms and legs mis-detected

by a pose estimation method [29] are successfully detected

by our method. Besides the motion information on arms and

legs, action recognition also provides strong priors on the

pose sequences. Furthermore, if actions are limited to pre-

defined categorizes, the actions provide strong constraints

on the plaussible poses in space and time [7].

Many methods for action recognition bypass body pos-

es and achieve promising results by using coarse/mid-level

features for action classification on some datasets[6, 10,

26, 12, 18, 2, 33, 30]. In this paper, we will jointly train

coarse/mid-level features with pose estimation so that these

features are better aligned with body parts and improve the

results.

The prevailing methods for pose estimation from stil-

l images adopt probabilistic and compositional graphical

models where nodes represent part appearance and edges

represent geometrical deformation[29, 19, 17, 20]. Errors

mainly arise from small parts, like forearms and wrists due
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Figure 2. (a) Our spatial-temporal AOG model for action ”Baseball pitch”. The action is decomposed into poses, ST-parts, and parts. Each

ST-part is an Or-Node that represents the mixture components. For simplicity we only draw all nodes at the second frame. The orange edges

represent geometric deformations between ST-parts and parts. (b) The three feature levels. Action nodes, ST-part nodes and part nodes

connect to terminal nodes that represent coarse-level, mid-level and fine-level features respectively. (c) An example of temporal relation

on ST-part ’left arm’. The purple edges connecting five ST-parts at adjacent frames capture the temporal co-occurrence and deformation

relations. During inference we select the best component (red rectangle) for each ST-part.

to large variation and blending with background features.

Video pose estimation methods capture motion informa-

tion by adding many pairwise terms among parts at sub-

sequent frames to the graphical model[3, 36, 21], however,

these models are loopy and require approximate inference.

The smoothness features on pairwise terms are restricted to

videos with slow motion and small appearance variation,

but such prior assumptions break in action datasets. Human

motion can become much larger and the changing of view-

point makes appearance inconsistent at adjacent frames. As

illustrated in Fig. 1, we improve the estimation of part loca-

tions by using action specific information.

1.2. Method Overview

This paper integrates the training and testing of action

recognition and video pose estimation. During training, in-

formation from both tasks is utilized to optimize model pa-

rameters and in testing the action labels and part locations

are inferred jointly.

We start by building a spatial-temporal And-Or graph

model[37][23][14][13] to represent actions and poses joint-

ly. Hierarchical structure of our model can represent top-

down part geometric configurations in a single frame and

lateral temporal pose relation in subsequent frames. On

the top layer, the low-resolution action information is cap-

tured by coarse-level features and the action is decomposed

into poses at each frame. Each pose is decomposed into

five independent mid-level ’ST-parts’ (ST means Spatio-

Temporal) that cover a large portion of human bodies and

are robust to image variations. All fine-level parts are condi-

tioned on their ST-part parents. Each ST-part is discretized

into several components by clustering. The ST-parts with

the same component can be seen as a poselet[1] that has

small variation of appearance and deformation and each

component is represented by mid-level features and fine-

level part features from single image pose estimation.

In order to capture the specific motion information of

each action, ST-parts at adjacent frames are connected to

represent temporal co-occurrence and deformation. The

model parameters at three levels are trained separately by

S-SVM and combined by a mixture of experts method. Due

to the independence between ST-parts of each pose, we can

infer both action label and poses efficiently by DP.

2. Related Works and Our Contributions

Action recognition and pose estimation are both popular

topics in computer vision and there are numerous literature.

This section refers to some recent work on both topics. Ac-

tion recognition methods are grouped into two categories:

coarse/mid-level feature based and pose feature based. Pose

estimation methods are reviewed with two aspects: single

image pose estimation and video pose estimation.
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Coarse/mid-level feature based methods. The most

successful framework is built on spatial-temporal interest

points such as cubiods[6] and 3D Harris corner[10]. This

framework extends object detection using 2D spatial inter-

est points. After the interest points are detected, appear-

ance and motion features like HOG[4] and HOF[11] are

extracted and the bag-of-words representation is used for

classification. Instead of using interest points, Wang et al.

[26] extracts dense trajectories by optical flow and build-

s a bag-of-words representation on trajectory aligned fea-

tures. While it has achieved good performance on many ac-

tion datasets, it highly relies on the quality of optical flow.

Although the coarse/mid-level features based methods suc-

ceed on some datasets, they offer no intuition about the re-

lation between pose and action. The learning and inference

with these methods is simple and fast, and they can work on

the low-resolution videos.

Pose feature based methods. Recently, due to the great

progress made in pose estimation, many action recognition

methods try to borrow strength from high-level pose infor-

mation. Yao et al. [34] represents action as several key-

poses with an AOG model. Each key pose corresponds

to a latent variable in a HMM model. Wang et al. [25]

first runs pose estimation on video frames and builds pose

features directly on the estimated poses, classifying with a

bag-of-words framework. Jiang Wang et al. [27] develop-

s MST-AOG model for cross-view action recognition. The

3D skeleton training data is applied to help mine the dis-

criminative parts.

Single image pose estimation methods. The most pop-

ular framework used in single image pose estimation is to

build a part graphical model based on human joints. Yang

and Ramanan [29] build a tree-structure spring model to

capture both spatial and co-occurrence relations between

parts. Brandon et al. [19] uses a compositional AOG model

to represent large appearance and geometry variation and

image segmentation is employed to help distinguish the

parts from cluttered background. Pishchulin et al. [17]

builds a more flexible graphical model with strong local

appearance representations and the mid-level semi-global

poselets are combined with fine part appearance model.

Video pose estimation methods. Cherian et al. [3]

extends the graphical model with temporal edges between

parts at adjacent frames. The geometric and appearance

comparability between parts is captured by temporal edges

and approximate inference is performed on the highly loopy

graphical model. Instead of using a graphical model Shen et

al. [22] formulates the video pose estimation as a matching

problem that tries to match the dense trajectories from 2D

video with the projection of the 3D trajectories of human

motion under different viewpoints in a 3D database.

To the best of our knowledge Yao et al. [31] is the only

paper that tries to couple action recognition and pose esti-

mation. It formulates the pose estimation as an optimization

over a set of action specific manifold and conducts the two

tasks iteratively. In training it requires that each video is

from multiple views however we can work on datasets in

which each sample is from only one view.

This paper combines action recognition and video pose

estimation in a unified framework with a spatial-temporal

And-Or Graph model. This paper makes three contributions

to both action recognition and video pose estimation prob-

lems:

i) It proposes a spatial-temporal AOG model to integrate

action recognition and video pose estimation. The two tasks

are mutually benefit from each other in training and testing.

ii) It represents actions at three scales. Coarse and mid-

dle level features are trained jointly with pose features.

iii) It outperforms state-of-art action recognition and

pose estimation methods on two action datasets: Penn Ac-

tion dataset and sub-JHMDB dataset.

3. Representation and Modeling

3.1. Spatial­Temporal And­Or Graph Model

Fig.2 shows our spatial-temporal AOG model for repre-

senting action and poses. There are three kinds of nodes:

And nodes, Or nodes and Terminal nodes. The And node

captures the decomposition of a large entity. In our case the

action and poses are represented by And nodes because they

are decomposed into several children. The Or node repre-

sents structural variations. Here each ST-part is an Or node

because it has different components. The Terminal node is

observable and directly associates with image evidence. We

have three kinds of terminal nodes to represent actions at

different scales. The terminal nodes associated with action

and ST-parts represent coarse and mid-level features and the

terminal nodes at bottom level represent fine part features.

To unify action recognition and video pose estimation

each action exampleA is represented by the poses pt at each

frame:

A = {p1, p2, ..., pT } (1)

T is the number of frames. Each pose pt is represented

by an And node and decomposed into several ST-parts li
(Fig. 2(a)):

pt = {l1, l2, ..., lM} (2)

M is the number of ST-parts. Each ST-part li is a mixture

components model with several parts oj :

li = {o0, ..., oNi−1, ci} (3)

oj = {xj , yj} denotes the position of part j which

should be one of the human joints, oj ∈ Ωpart,Ωpart =
{′head′,′ torso′,′ leftarm′,′ rightarm′, ...}, Ni is the

number of parts that belong to parent i, o0 is the root part for

this ST-part. ci is the component id and ci ∈ {1, 2, ..., zi},
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zi is the number of components of ST-part i. The ST-parts

with the same component have small appearance and geo-

metrical variations and represent a motion status of the ac-

tion. The learning of ST-parts will be discussed in the next

section.

We divide the feature vector of ST-part into two cate-

gories: classification feature for action classification and

detection feature for regularization.

Classification feature includes two terms: ψ(li) and

ψ(ci). ψ(li) = [d1 d2 ... dzi ]
T where dj = (o0 − uj) is the

normalized Euclidean distance between the root part and

the component center. ψ(ci) = [0, 0,1(ci), ..., 0, 0] is a zi
dimension indicator where the entry corresponding to com-

ponent ci is one and the others are zero.

Detection feature contains two portions: the part score∑Ni

j=0 S(oj) and the deformation score
∑Ni

j=1 S(oj , o0).
The two scores are directly obtained from a single image

pose estimation[29] and used to regularize action classifica-

tion.

There are two kinds of edges in our model: orange edges

represent the geometric deformation in a single frame and

purple edges represent the smoothness and temporal co-

occurrence of ST-parts at adjacent frames.

Deformation feature is a four-dimension vector which

models deformation between ST-part and part as a 2D gaus-

sian distribution: ψ(Ed) = [dx, dy, dx2, dy2]T , Ed ∈ ΩD.

Temporal co-occurrence feature at ST-part i of

frame t is a zi × zi dimension indicator: ψ(Eo) =
[0, 0,1(ct)1(ct+1), ..., 0], Eo ∈ ΩO which means that only

the entry corresponding to components ct and ct+1 is one

and the others are zero.

Smoothness feature d(lti , l
t+1
i ) is the negative Eu-

clidean distance between the root parts of lti and lt+1
i .

Although the action is represented by a sequence of pos-

es, it is insufficient to only use pose features for action

recognition because low resolutions makes part detection

unreliable. Here we borrow the strength from coarse-level

and mid-level features for compensation. For the coarse

feature ψL, we follow the framework of [26] to extract the

bag-of-words feature on the dense trajectories. For the mid-

level feature ψM , we use the method from [27] to train

HOG/HOF templates for each selected ST-part component,

using the filter responses as features.

3.2. Score Functions

In this section, we introduce the score functions of our

model in a bottom-up fashion. For simplicity we drop the

action label in all formulations in this section.

The terminal nodes in the bottom layer ground all parts

to image data. Instead of training part templates with action,

we train them independently by single image pose estima-

tion [29]. The part scores and part deformation scores are

obtained directly from [29].

The score of ST-part i is defined by:

S(li) = Sd(li) + Sh(li) + λ

Ni∑

j=0

S(oj) + λ

Ni∑

j=1

S(oj , o0)

(4)

There are four terms contributing to the ST-part score.

The first two terms are classification scores and the last t-

wo terms are detection scores. Sd(li) =< ωli
d , ψ(li) >

measures the compatibility of component ci. Sh(li) =<
ωli
h , ψ(ci) > is the histogram score of component ci. S(oj)

is the score of part j and S(oj) = P (oj) where P (oj) is the

part marginal score from pose estimation. S(oj , o0) =<

ωij , ψ(Eij
d ) > is the deformation score of part j related to

the root part. Parameter λ is the weight for detection score.

The inference algorithm will search all possible ST-parts in

the feature pyramid and output a top candidate list for each

frame.

Each pose is composed of M ST-parts thus the score is

written as a summation of their scores.

S(pt) =

M∑

i=1

S(lti) (5)

The relation between ST-parts in a single image is ig-

nored so they are independent of each other, avoiding the

loopy graph structure that is a common case in video pose

estimation. The details will be discussed in section 5.

In our model, each action example is a sequence of poses

following the transitions between poses at adjacent frames.

Thus, the fine-level score of an action can be formulated as:

SH(A) =

T∑

t=1

S(pt) +

T−1∑

t=1

S(pt+1|pt) (6)

S(pt) is defined in Eq. (5) and S(pt+1|pt) measures the

transition score between two poses. The transition relation

of two poses is captured by transitions between their ST-

parts and it is thus written as a summation of transition s-

cores of ST-parts.

S(pt+1|pt) =
M∑

i=1

S(lt+1
i |lti) (7)

The transition score between two ST-parts is defined as:

S(lt+1
i |lti) = S(cti, c

t+1
i ) + βd(lti , l

t+1
i ) (8)

It includes two components: the co-occurrence score

S(cti, c
t+1
i ) =< ωli

o , ψ(E
ct
i
,c

t+1

i

o ) > and smoothness score

βd(lti , l
t+1
i ), where β is the weight for the smoothness.

The fine-level score of one image sequence is rewritten

as follows, combining eqns. (5), (6) and (7).

SH(A) =
M∑

i=1

(
T∑

t=1

S(lti) +
T−1∑

t=1

S(lt+1
i |lti)) (9)
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In this form, the fine-level score is only related to the ST-

parts. The inference algorithm will search for the positions

and components of ST-parts that maximize this score.

With coarse-level and mid-level scores, the action score

can be written as,

S(A) = πL(A)SL(A) + πM (A)SM (A) + πH(A)SH(A)
(10)

SL(A) =< ωL, ψL(A) > is coarse-level score and

SM (A) =< ωM , ψM (A) > is mid-level score. The weight-

s πL(A) =< ω′
L, φ

′
L(A) >, πM (A) =< ω′

M , φ
′
M (A) >

and πH(A) =< ω′
H , φ

′
H(A) > are linear functions on fea-

tures of action example A.

4. Inference

t=1 t=2 t=3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

(a) (b) 

Figure 3. An example of our inference method. (a) For each frame

we generate several ST-part candidates and obtain the best path for

each ST-part by DP. (b) The ST-part is represented by the mid-level

features (HOG and HOF template) and fine-level features (scores

of knee and ankle).

The objective of our inference is to find the action la-

bel and part locations. The coarse-level score SL(A) and

mid-level score SM (A) are computed directly by linear-

SVM. As illustrated in Fig.3 (a), The fine-level action score

SH(A) is divided into M independent terms each of which

corresponds to the summation of unary scores and binary

transition scores for one ST-part, thus dynamic program-

ming can be used to find the best ST-part path:

[l1i , l
2
i , ..., l

T
i ] = argmax

T∑

t=1

S(lti) +

T−1∑

t=1

S(lt+1
i |lti) (11)

This procedure is repeated M times to find the total M

best paths for each action label. Finally the action label

with maximum score is obtained in Eq. (10).

With the best action label, we trace back to the best ST-

part paths for the action and obtain all joint locations. No-

tice that the joints ’left shoulder’ and ’right shoulder’ are

shared by two ST-parts and we pick them from the ST-part

’head shoulder’ because it is more robust than ’left arm’ and

’right arm’.

To speed up computation, we first run [16] for each

frame and compute response maps for all ST-parts. After

non-maximum suppression we pick the ST-part candidates

that have a score above τ . We connect all candidates on con-

secutive frames and compute their unary scores and binary

transition scores. To determine the optimal threshold τ , we

compute ST-part scores on the ground truth of all training

images and pick the highest value for the threshold that does

not prune the optimal one on training examples.

5. Learning

Our learning process includes two main stages: The first

stage is to learn ST-parts. The second stage is to learn the

model parameters for three levels including weights for u-

nary ST-part score , temporal score between ST-parts in ad-

jacent frames and classification weights for each action.

5.1. Learning ST­parts

As a mid-level representation of human pose, ST-parts

are much more robust to image variations than fine parts,

especially on action datasets containing large appearance,

geometric and motion variations that make fine parts hard

to detect. With pose annotations we can learn ST-parts from

training data.

5.1.1 ST-part Representation

We use 13 joints to represent the human subject. The 13

joints are divided into 5 ST-parts: ’head-shoulder’,’left ar-

m’,’right arm’,’left leg’,’right leg’ each of which includes 3

joints Fig.5(a). In order to compute deformation we define

5 joints as root parts for ST-parts:head, left elbow, right el-

bow, left knee, right knee. Each ST-part is encoded by a

feature vector:

f(lti) = [∆p1,∆p2,∆p
t
0,∆p

t
1,∆p

t
2] (12)

∆p1 = p1 − p0 and ∆p2 = p2 − p0 are the offsets of

parts relative to the root part. ∆pt0 = [pt−1
0 − pt0, p

t+1
0 − pt0]

is the temporal offset of root part relative to the same joint

in previous frame and the next frame. ∆pt1 and ∆pt2 are

defined in the same way. Using the temporal offset as a

feature is important because some ST-parts have the same

joint configuration and can be only distinguished by motion.

To make the feature invariant to scale, we estimate the pose

scale st at each frame by head length, and then the feature

is normalized by the scale factor: f(lti) = f(lti)/st.
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a b c

Figure 4. (a) The 13 joints used in our model. They are divided into five ST-parts each of which contains 3 joints. (b) Some examples of

pose annotations in training data and their generated ST-parts. (c) Some examples of two components for each ST-part.

5.1.2 ST-part Clustering

To capture image variations from different viewpoints and

actions each ST-part is represented as a mixture of com-

ponents model and the components are obtained by doing

k-means on the features f(lti). In order to make the ST-part

component compact in appearance and motion, we first run

k-means on the training examples with same action label

and view label to get many small clusters each of which has

small variation. Clusters that have few examples and belong

to only one video are removed as annotation errors. Finally

we combine these clusters according to their distance to let

them to be shared by different actions and viewpoints. See

some examples in Fig.5 (c).

5.2. Learning Model Parameters

5.2.1 Learning Coarse-level and Mid-level Templates

The coarse-level template ωL is learned by linear-SVM on

the dense trajectory features[26]. These features don’t need

any pose information and they capture the appearance and

short-term motion on the moving blocks. The mid-level in-

formation is captured by HOG/HOF templates of ST-parts.

Following[27], we train HOG/HOF templates on our ST-

part components with SVM and convolute them with train-

ing images. The feature vector is constructed by performing

spatial-temporal max-pooling on response maps, and the

template ωM is learned by linear-SVM.

5.2.2 Learning Fine-level Parameters

The parameters we need to learn for the fine-level score in-

clude ωli
d and ωli

h for the compatibility score and histogram

score of each ST-part, ωli
o for the ST-part co-occurrence s-

core. We adapt latent Structure-SVM for learning those

parameters with regularization. Although all training da-

ta have part annotations and we have ground truth for part

locations and ST-part components, only using ground truth

may hurt performance because there is a large difference be-

tween pose estimation results and ground truth in such chal-

lenging action datasets. Thus we allow the parts to move

between the top N detected parts that are within a certain

distance of the ground truth part locations. Learning iter-

ates between two steps until convergence:

i) To train parameters w = [ωl1
d ω

l1
h ω

l1
o ...ω

lM
d ωlM

h ωlM
o ],

we discard the detection scores λ
∑Ni

j=0 S(oj) and

λ
∑Ni

j=1 S(oj , o0) and the smoothness score βd(lti , l
t+1
i )

and train the parameters with detected poses hi. For the first

iteration, h0 is set to ground truth poses. This is formulated

as a supervised multi-class classification problem:

minωt

1
2
‖ωt‖2 +

C
n

∑n

i=1 ξi, (13)

s.t. maxŷ∈Y ω
T
t (φ(xi, y

t
i)− φ(xi, ŷ

t
i)) ≥ ∆(yi, ŷi)− ξi,

Here yti = (ai, h
t
i) where ai is action label. ∆(yi, ŷi) is 1 if

ai = âiand 0 otherwise. t indexes the iteration.

ii) After computing parameters at iteration t, we add the

detection score and the smoothness score back into the fine-

level score function and infer the poses for each training

example. λ and β are determined by experiments. Similar

to inference in testing, we first generate the top N ST-parts

candidates within a certain distance around the ground truth

and find the best ST-part paths among those candidates un-

der the ground truth action label by Eq. (11). Then we get

the poses ht+1
i from the poselets and go back to step 1.

After learning the parameters for the three levels, we ob-

tain the scores for the three levels separately. Finally we

learn the weights πL(A), πM (A) and πH(A) to combine

them for the final action score. We formulate this combi-

nation in the mixture of experts framework[9] where each
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expert corresponds to a classifier in each level. The weights

are computed on each action example, so different weights

indicate which expert the example prefers to use. Here we

concatenate scores of different categories at each level as

features to learn the weights.

6. Experiments

We test our method on two public action datasets: the

Penn Action dataset[35] and the sub-JHMDB dataset[8].

Both datasets are proposed for the purpose of action recog-

nition but they also provide annotations of human joints

which are required by our training approach. The perfor-

mance of both action recognition and pose estimation are

evaluated on each dataset.

6.1. Evaluation on Penn Action Dataset

The Penn Action Dataset contains 15 action categories

and the annotations include action labels, rough view la-

bels and 13 human joints for each image. The occlusion

label of each joint is also provided. We follow [35] to split

the data into 50/50 for training/testing. The action ’playing

guitar’ and several other videos are removed because less

than one third of a person is visible in those data. We find

that there exist some un-annotated joints that always remain

at the left-top corner of image. To correct those errors we

train a regression model to predict positions of un-annotated

joints by using the visible neighbor joints from videos with

the same action and view label. In order to get diverse poses

to train [29] we first cluster the training data based on whole

pose features to get 500 clusters. Then we uniformly selec-

t total 5000 images from those clusters as training images.

We use the code provided by [29], and we set part mixture

number to 8: 6 for visible joints and 2 for occluded joints.

The number of mixture components of 5 S-T parts are

43, 37, 31, 56, 58. We find that more components does not

improve performance but greatly increase training burden.

The parameters λ = 10 and β = 0.01 for detection score

and smooth score are determined by cross-validation on the

training data. Training converges in only 3 iterations. The

coarse-level and mid-level action templates are trained by

the code from [26] and [27]. The number of candidates of

the ST-part ’head-shoulder’ is around 200 and of other ST-

parts is around 1000 because the parts ’head’ and ’shoulder’

only have high scores on a few locations whereas other parts

have much larger variations on the score map.

Table.2 compares the action recognition accuracy be-

tween previous methods and ours. We use the num-

bers of STIP, Dense, Action Bank and Actemes from

[35]. Ours(fine) is trained by only fine-level features and

Ours(all) is trained with all feature levels. With only fine-

level features, the performance is not very good, but when

coarse/mid-level features are added in the performance is

improved due to the low resolution and heavy occlusion that

Method Accuracy

STIP[35] 82.9%
Dense[26] 73.4%
MST[27] 74.0%

Action Bank[35] 83.9%
Actemes[35] 79.4%

Ours(fine) 73.4%
Ours(all) 85.5%

Table 2. Recognition accuracy on Penn Action dataset. Action

Bank is not directly comparable since it uses other training dataset.

make part detection unreliable and not good enough to clas-

sify actions.

The confusion matrix of Ours(all) is shown in Figure. 6.

Our approach performs well on the actions such as ’bowl’,

’pull up’, ’push up’ and ’squat’, however we achieve low ac-

curacy on actions with fast movement such as ’tennis fore-

hand’ because the motion blur makes the positions of criti-

cal parts like wrists always wrong.
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Figure 6. The confusion matrix of our method on Penn Action

Dataset.

We compare pose estimation accuracy with Yang et al.

[29] and Park et al. [16]. We use their evaluation criteria

and set the threshold to 0.2. The results are illustrated in

Table. 1. Our method outperforms theirs at every part. It is

reasonable that the action specific motion information can

help our method to select better parts which are not always

the oen with highest score provided by single image based

pose estimation.

6.2. Evaluation on sub­JHMDB Dataset

The sub-JHMDB dataset contains 316 clips with 12 ac-

tion categories. It provides action labels, rough-view labels

and 15 human joints for each frame. All joints are inside

7



Penn Action Dataset

Head Shou Elbo Wris Hip Knee Ankle mean

[29] 57.9 51.3 30.1 21.4 52.6 49.7 46.2 44.2

[16] 62.8 52.0 32.3 23.3 53.3 50.2 43.0 45.3

[3] − − − − − − − −

Ours 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

sub-JHMDB Dataset

Head Shou Elbo Wris Hip Knee Ankle mean

73.8 57.5 30.7 22.1 69.9 58.2 48.9 51.6

79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

47.4 18.2 0.08 0.07 − − − 16.4

80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7

Table 1. Pose estimation accuracy in %. The left table shows the results of Penn Action Dataset and the right table shows the results of

sub-JHMDB Dataset.

Penn

sub-JHMDB

Figure 5. Some pose estimation results of our method on the two datasets. The last two columns show failure examples with red rectangle.

the image and there are no un-annotated joints. We use 13

human joints to train the single image pose estimation. We

also do clustering on all frames using the whole pose fea-

tures and select a total 1500 images from clusters for train-

ing. The part mixture number is set to 6.

We use the 3-fold cross validation setting provided by

the dataset to do experiments. The number of mixture com-

ponents of 5 ST parts are 36, 42, 39, 64 and 64. The param-

eters λ = 20 and β = 0.01 for detection score and smooth

score are decided by cross-validation and the training con-

verges in 3 iterations.

Method Accuracy

Dense[8] 46.0%
MST[27] 45.3%
Pose[8] 52.9%

Ours(fine) 55.7%
Ours(all) 61.2%

Table 3. Recognition accuracy on sub-JHMDB dataset.

Table. 3 compares our action recognition performance

with others. We use the numbers of ’Dense’ and ’Pose’

from [8]. For Pose[8], we use the highest number they ob-

tained by using pose features extracted from pose estima-

tion. With only fine-level features our method already out-

performs others. With coarse/mid features the accuracy is

increased by nearly 6 percent because there are many low-

resolution videos with large errors of pose estimation.

The comparison of pose estimation is illustrated in Ta-

ble. 1. Our method outperforms [29] the most at parts

’Head’ and ’Hip’ by nearly 7%, however for the parts ’El-

bows’ and ’Wrists’ our performance is comparable which

we believe is caused by those parts that are very subtle and

because the specific action motion information may prefer

the distinguished part locations which are never in the right

positions. To compare with [3], we re-train their method on

our dataset, and they only estimate the joints in upper body.

Results show that the pairwise smoothness features they use

are not working well in the action dataset with large motion

and appearance changing.

7. Conclusion

We have proposed a new framework to joint action

recognition and pose estimation, which are traditionally

trained separately and combined sequentially. One limi-

tation of our method is that we do not handle the self-

occlusion explicitly which always appears in action dataset-

s and is a big challenge for pose estimation. In the future,

we are going to integrate the 3D pose estimation with the

current framework, because only with the help of 3D infor-

mation we can solve the occlusion issue.
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