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Abstract

This paper originally proposes the clique-graph and fur-

ther presents a clique-graph matching method by preserv-

ing global and local structures. Especially, we formulate

the objective function of clique-graph matching with re-

spective to two latent variables, the clique information in

the original graph and the pairwise clique correspondence

constrained by the one-to-one matching. Since the objective

function is not jointly convex to both latent variables, we

decompose it into two consecutive steps for optimization:

1) clique-to-clique similarity measure by preserving local

unary and pairwise correspondences; 2) graph-to-graph

similarity measure by preserving global clique-to-clique

correspondence. Extensive experiments on the synthetic

data and real images show that the proposed method can

outperform representative methods especially when both

noise and outliers exist.

1. Introduction

Graph matching is very essential in the fields of com-

puter vision and pattern recognition. It has been widely

used in many applications such as 3D image retrieval[13],

object recognition[1, 6], biomedical identification[5], mul-

tiple object tracking[14], etc. Given two sets of feature

points lying in different subspaces, each set can be consid-

ered as one graph, which consists of two important com-

ponents, nodes and edges, respectively representing feature

points and the relations between pariwise feature points.

Graph matching aims to discover each feature point’s coun-

terpart in the other subspace while well preserving both

global relations with the other nodes in the same graph

(global structure) and the local relations with the neighbor

nodes (local structure). Although much work has been done

for this task, it is still challenging due to the difficulty in

discriminative visual feature representation, precise salient

point localization, deformation of the correlation between

pairwise points due to the viewpoint change, affine trans-

formation, etc.

Previous literatures on this task mainly focus on node-

to-node mapping by leveraging the first & second order at-

tributes [8, 16, 12, 11]. Since this node-wise mapping can

not well preserve both global and local structure in the fea-

ture subspaces, many researchers have been involved into

designing the high order attributes for the formulation of

the objective function [4, 20]. Consequently, this task can

be naturally generalized into the problem of hyper-graph

matching [10]. However, hyper-graph matching usually

faces several non-trivial problems. On one hand, it is not

easy and intuitive to define scale-invariant similarity mea-

sure between two hyper-edges. On the other hand, it is

mathematically difficult to impose the mapping constraints

on the objective function to induce the stable solution. Fur-

thermore, the node order on each hyper-edge is usually ig-

nored [10], which might lead to the variation of the similar-

ity between pairwise hyper-edges and further directly have

negative influence on the robustness of graph matching.

In this paper, we originally propose the clique-graph and

further propose the method for clique-graph matching by

preserving global and local structure. Different from the

classic graph or hyper-graph, we replace individual node

(the basic unit in the graph/hyper-graph) by one clique,

which consists of K nearest neighbors in the specific fea-

ture subspace and can convey the local structural attributes

in the star model. For clique-graph matching, we formu-

late the objective function with respective to two latent vari-

ables, the clique information in individual clique-graph and

the clique correspondence between pairwise clique-graphs.

Since the objective function is not jointly convex to both

parameters, we further decompose it into two consecutive

steps. First, the local graph matching with unary and pair-

wise correspondences is implemented to align both cliques

from two clique-graphs. In this way, we can discover the

correspondences of nodes and edges in both cliques and fur-

ther compute the clique-wise similarity. Second, the clique-

graph matching can be realized by clique-to-clique match-

ing only with the unary attribute since the clique-wise sim-

ilarity already conveys local structure.

The main contributions of the proposed method are sum-
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marized as follows:

• The proposed clique-graph can be considered as the

generalized form of both classic graph and hyper-

graph. Individual clique can convey arbitrary order at-

tributes to represent the local structure;

• The proposed clique-graph matching method can ben-

efit simplifying the hyper-edge correspondence into

the formulation only with clique-wise correspondence.

Therefore, we can significantly increase the complex-

ity of the local structure with more nodes in one clique

to convey more high order attributes of local structure,

while only sacrificing little computational complexity.

Furthermore, the proposed method can benefit avoid-

ing the difficulty in defining scale-invariant similarity

measure between two hyper-edges especially when the

order is over 3;

• The proposed method can easily impose the one-to-

one constraint for clique-graph matching since the

clique-wise similarity measure already preserves the

local structure correspondence and the clique-graph

matching can be simply formulated only with the

unary attribute to preserve the global correspondence;

• The local similarity measure is unique since it is based

on the discovery of both unary and pairwise correspon-

dence between pairwise nodes/edges. It can overcome

the difficulty in discovering the node order of each

hyper-edge for hyper-edge similarity measure.

The rest of the paper is organized as follows. The related

work is reviewed in Section 2. Then we detail the clique-

graph matching method in Section 3. We further present the

experimental results in Section 4. Section 5 concludes this

paper.

2. Related Work

Most of the previous methods focus on leveraging unary

and pairwise attributes for graph matching. Gori et al. [9]

proposed the random walk based models, which can en-

hance the graph topological features at node level, and in-

troduced a polynomial algorithm for the classic graph iso-

morphism problem, under the restriction of dealing with

Markovian spectrally distinguishable graphs. Minsu et al.

[2] converted the graph matching into the ranking problem

and utilized the random walk for solution. Gold et al. [8]

proposed the graduated assignment algorithm by combining

graduated nonconvexity, two-way constraints, and sparsity,

which was not restricted to any special class of graph and

achieved large improvements in accuracy and speed even in

the presence of high noise. Wyk et al. [16] introduced a

novel projections onto convex sets (POCS) graph match-

ing algorithm, in which two-way assignment constraints

were enforced without using elaborate penalty terms, gradu-

ated nonconvexity, or sophisticated annealing mechanisms

to escape from poor local minima. Leordeanu et al. [11]

proposed the spectral matching method, which utilized the

spectral property to calculate rank-1 approximation of the

affinity matrix. Zaslavskiy et al. [19] proposed a convex-

concave programming approach for the labeled weighted

graph matching problem. This method can easily integrate

the information on graph label similarities into the opti-

mization problem, and therefore, benefit performing labeled

weighted graph matching.

Since the unary and pairwise relations are not discrimi-

native enough to represent the characteristics of local struc-

ture, many researchers are involved into formulating this

problem in the higher-graph matching [21, 18, 17, 7]. Zass

et al. [20] proposed a hyper-graph matching method, which

introduced a novel view that the matching problem and its

corresponding solution were related by the kronecker pro-

duce. Duchenne et al. [4] proposed the graph matching

based on Tensor Matching, which was interpreted as a high

order extension of spectral matching. It utilized rank-1 ap-

proximation of the affinity tensor as a solution by using

high order tensor iteration. Lee et al.[10] proposed a hyper-

graph matching formulation by reinterpreting the random

walk concept on the hyper-graph in a probabilistic manner.

3. Clique-graph Matching

In this section, we will respectively introduce the meth-

ods for clique-graph generation and matching.

3.1. Clique-graph Generation

A classic graph G = (V,E,A) consists of the node

set V = {vi}
I
i=1

, the edge set E = {ej}
J
j=1

, and the at-

tribute set A = {aj}
J
j=1

associated with the corresponding

edges as shown in Fig.1(a). Given two attributed graphs

Gp = (V p, Ep, Ap) and Gq = (V q, Eq, Aq), graph match-

ing aims to determine the correct correspondences inbe-

tween. This is usually realized by leveraging the unary at-

tribute with respect to individual node, the pairwise attribute

with respect to individual edge, and the high-order attributes

with respect to different scales of local structures. Dif-

ferent from previous graph matching methods which con-

sider each node as the basic unit, we propose to regard

each clique as the basic unit for matching, which consists

of several neighbor nodes in the feature space and can im-

plicitly convey arbitrary order attributes with the specific

structure. Consequently, we originally propose the concept

of clique-graph and further present the novel method for

clique-graph matching. As shown in Fig.1 (b), a clique-

graph G̃ = {Ṽ , Ã} is composed of two kinds of elements,

the clique set Ṽ and the attribute set Ã associated with in-

dividual cliques. Each clique Ṽi ∈ Ṽ can be represented

by the star model, Ṽi = {c̃i, {l̃ij}
k
j=1

, {ẽij}
k
j=1
}, where
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Figure 1. Example of clique-graph generation. (a) graph G =
(V,E,A); (b) clique-graph G̃ = {Ṽ , Ã}. The yellow and blue

nodes separately denote the center and leaf nodes of each clique.

c̃i denotes the center of the clique, {l̃ij}
k
j=1

denotes k leaf

nodes of the clique, {ẽij}
k
j=1

denotes k edges linking the

center node and k leaf nodes. The order of one clique,

δ(Ṽi), equals to the number of the nodes in it. Ãi ∈ Ã
is the attribute of the ith clique, which represents the im-

portance of this clique in the entire clique-graph and can

be calculated based on the term frequency by dividing the

total frequency of the nodes in Ṽi by the produce of the

clique number and the node number in each clique. Since

each clique implicitly convey the compact local structure

information, the edge between two cliques can be ignored

by assuming the relation between two cliques is too weak.

This simplification will benefit directly imposing the one-

to-one constraint for clique-graph matching and effectively

avoid the complicated discretization step in previous meth-

ods [12, 11, 8, 16].

Given two clique-graphs, G̃p = {Ṽ p, Ãp} and G̃q =
{Ṽ q, Ãq}, the similarity measure of both can be repre-

sented by J(X, G̃p, G̃q), which means the similarity of both

clique-graphs can be computed by considering their struc-

ture characteristics (G̃p and G̃q) and the clique-to-clique

correspondence X . Therefore, the clique-graph match-

ing can be formulated as maximizing the score function

J(X, G̃p, G̃q):

(X, G̃p, G̃q)∗ = arg max
X,G̃p,G̃q

J(X, G̃p, G̃q) (1)

3.2. Optimization

Clique-graph matching (Fig.2) aims to discover the

clique-to-clique correspondence with one-to-one constraint.

Thus, the original graph matching can be realized by

achieving the correspondences between each pair of centers,

which is consistent with the discovered clique-to-clique

Clique-graph Q

Clique1

Clique2

Clique3

Clique-graph P

Clique a

Clique b

Clique c

Figure 2. Framework of clique-graph matching.

correspondence. By denoting the clique-to-clique similar-

ity as Si,m, where Ṽi ∈ G̃p and Ṽm ∈ G̃q , the vector

S = {Si,m}i=1,...,Np,m=1,...,Nq ∈ RNpNq×1, where Np

and Nq respectively denote the clique numbers in G̃p and

G̃q, can be used to represent the similarities between all

pairwise cliques.

We define the solution of clique-graph matching as a bi-

nary indicator matrix X̄ ∈ {0, 1}N
p×Nq

. If Ṽi ∈ G̃p is

matched to Ṽm ∈ G̃q , Xi,m = 1. Otherwise, Xi,m = 0. In

the proposed framework for clique-graph matching shown

in Fig.2, it is natural to impose one-to-one constraint that

makes X̄ as a permutation matrix:

X̄ · 1Nq×1 ≤ 1Np×1, X̄⊤ · 1Np×1 ≤ 1Nq×1, (2)

where 1Np×1/1Nq×1 denotes an all-ones vector with size

Np/Nq and the inequalities hold for every element. For a

convenient representation, we use X to represent the vec-

torized version of X̄ .

The problem of clique-graph matching can be formu-

lated as an integer linear programming to discover the in-

dicator vector X∗ that maximizes the following objective

function:

(X, G̃p, G̃q)∗ = arg max
X,G̃p,G̃q

(S⊤ ·X),

s.t. X̄·1Nq×1 ≤ 1Np×1, X̄⊤ · 1Np×1 ≤ 1Nq×1

(3)

Till now, we have converted clique-graph matching into

the optimization of the objective function above. How-

ever, it is non-trivial to optimize Eq.3 directly since both

the clique structure information in individual clique-graph

and the similarity measure of pairwise cliques from differ-

ent clique-graphs are latent variables. We will detail the

solution of both as follows. After achieving the clique-to-



clique similarity, the objective function in Eq.3 can be easily

solved by integral linear programming.

1) Clique discovery In our work, individual node of one

clique-graph is considered as the center of one clique. We

adopt the sparse-subspace clustering method to discover the

neighbor nodes of individual center and consequently con-

struct the clique with the center and its neighbors. Suppos-

ing individual node can be represented by the feature vector

fi (fi ∈ R
d) and all nodes in G can be represented by the

feature set, {fi}
I
i=1

. Motivated by sparse representation, fi
can be reconstructed by the linear combination of the other

nodes F = {fj}j=1,...,I,j 6=i:

fi = Fri s.t. rii = 0, (4)

where ri , [ri1 ri2 . . . riI ]
⊤; rik, the kth dimension of co-

efficient ri, denotes the weight of the kth node and implic-

itly means the relatedness between the ith and kth nodes;

the constraint rii = 0 avoids the trivial solution of recon-

structing fi by itself.

Motivated by the theory of sparse representation, sparse

constraint can be imposed to achieve a sparse solution,

whose non-zero entities correspond to the related nodes.

Ideally, the L0-normal of ri can be intuitively imposed to

induce sparsity. However, this will lead to the general NP-

hard problem of finding the sparsest representation of the

given node. Therefore, we consider minimizing the tightest

convex relaxation of the L0-norm of ri with L1-norm. The

objective functions can be formulated as:

min‖R‖1 s.t. F = FR, diag(R) = 0, (5)

where R , [r1 r2 . . . rI ] is the matrix, whose ith column

corresponds to the sparse representation of fi. Eq.5 can be

efficiently solved with convex programming tools [23]. Ac-

cording to the matrix R, we selected the top k nodes which

can well reconstruct Vi in the clique Ṽi. Consequently, each

compact clique can convey the specific local structure.

2) Clique-wise similarity measure Different from previous

work, which usually focuses on measuring the similarity be-

tween two hyper-edges by the complicated tensor computa-

tion while ignoring the node order on the hyper-edges [10],

we convert the problem of clique-wise similarity measure

into the problem of graph matching. By achieving the cor-

respondence between the nodes from both graphs, we can

effectively discover the node order for similarity computa-

tion. Moreover, since the node number of each clique will

be far less than the one of the original graph and the struc-

ture of each clique is extremely simpler comparing against

the structure of the original graph, the clique-wise similarity

measure can be formulated only with the unary and pairwise

correspondences, which can simplify the complicated high-

order correspondence with the low-order correspondence

and consequently benefit avoiding the high computational

complexity.

We utilize the cosine distance for node-wise similarity

measure. It can be calculated by:

Uvsva =
fp
s · f

q
a

||fp
s ||2 · ||f

q
a ||2

, (6)

where fp
s and fq

a respectively represent the features of nodes

vs and va from Ṽ p
i (Ṽ p

i ∈ G̃p) and Ṽ q
m (Ṽ q

m ∈ G̃q).

We utilize the distance between two edges, est and eab
from both cliques, for the pairwise similarity. The similarity

can be computed by:

Eesteab
= exp(−|est − eab|

2/ǫ2), (7)

where ∀est ∈ Ṽ p
i and ∀eab ∈ Ṽ q

i , the scaling factor ǫ2 is set

to 0.15 empirically.

With both unary and pairwise similarity measure, the

similarity between the Ṽ p
i &Ṽ q

m cliques, Si,m, can be for-

mulated in the quadratic form , which is also constrained by

the one-to-one mapping:

Si,m(Z) =Ãp
i · Ã

q
m · {

∑

vsva

zvsva
Uvsva+

∑

vs 6= vt,
va 6= vb,

vs&vt ∈ Ṽ p
i ,

va&vb ∈ Ṽ q
m

zvsvt
zvavbEesteab

}

s.t. Z·1Ki×1 ≤ 1Km×1, Z⊤ · 1Km×1 ≤ 1Ki×1

(8)

where the matrix Z (Z ∈ {0, 1}KiKm) means the node cor-

respondence, i.e., zvsva
= 1 if the vs node of the graph

G̃p corresponds to the va node of the graph G̃q . Uvsva

and Eesteab
denote the unary and pairwise similarity re-

spectively. Ãp
i ∈ Ãp and Ãq

m ∈ Ãq are the attributes as-

sociated with the corresponding cliques and are imposed as

weights; Ki&Km respectively denote the node numbers in

the Ṽ p
i &Ṽ q

m cliques.

Since we aim to achieve the similarity of both cliques,

the discretization step can be ignored. This objective func-

tion can be solved by many state-of-the-art quadratic pro-

gramming methods. In our work, we implemented the

rayleigh quotients maximization method in [15]. By solving

Eq.8, we can achieve the optimal clique-wise similarity.

4. Experiment

We term the proposed clique-graph matching method

with the clique size H as CGM-H. The proposed method

is validated in three scenarios:

• varying the clique size to evaluate its effect on the per-

formance;



• testing CGM-H on the synthetic point set to evaluate

the effects of the deformation noise, the outlier number

and the edge density on the performances;

• testing CGM-H on the real image datasets to show its

performances on the real application.

To show the superiority, we compare the proposed

method against several representative methods, includ-

ing SM[11], HGM[20], RRWM[2], RRWHM[10], TM[4],

FGM [22], IPFP [12]. For fair comparison, the public codes

and the assigned paramters by the authors were utilized. All

methods were implemented in Matlab and tested on the PC

with single core (CPU: 3.1 GHz; RAM: 8G). For each trial

in the experiment on synthetic point data, the same synthetic

graphs were shared for all methods. Each quantitative result

in the synthetic experiments was achieved by averaging 30

random trials.

4.1. Effect of clique size

Obviously, the clique size have direct influence on the

performance of graph matching since different clique size

will convey different local structures. In order to select

the optimal clique size, we performed cross validation on

the synthetic point set. For each trial, we randomly gener-

ated two point sets, Gp and Gq with n points respectively.

The points of Gp were generated from the uniform distribu-

tion within 0 and 1. We created the perturbed point set Gq

by adding noise. The deformation noise σ was generated

by the Gaussian noise function N(0, σ2). The accuracy is

measured by the ratio between the number of the correct

matches and the total number of the ground truth. For each

trail, we generated 30 points for Gq and Gp respectively.

The deformation noise σ was varied from 0 to 0.2 with the

step of 0.025. The experimental results are shown in Fig.3.

From Fig.3, we can find that the accuracy will increase

by augmenting the clique size before the optimal perfor-

mance (H=5) is achieved. However, the performance will

not monotonically increase. This observation is quite un-

derstandable. The proper clique size can well benefit the

representation of the local structural information and con-

sequently boost the performance of graph matching. How-

ever, either too large or too small clique size can not capture

the discriminative characteristics of local structure since too

small clique can not well describe the local correlations be-

tween the clique centers and their neighbors while too big

clique size will increase the chance that different cliques

have high overlaps and consequently degrade the discrim-

ination inbetween. By cross validation, the optimal clique

size of 5 is achieved and will be empirically set (CGM-5)

for the further experiments .

To the best of our knowledge, few literatures show the

experiment on hyper-graph matching, in which the order of

hyper-graph is over 3, since it is difficult to define scale-
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Figure 3. Experiment on different clique sizes.
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Figure 6. Experiment on different edge densities.

invariant similarity measure between two hyper-edges and

is extremely time-consuming for computation. In our ex-

periment, we show the speeds of CGM-H with the clique

order up to 9 in Fig.3 (b). It is intuitive that the proposed

clique-graph matching method only costs acceptable com-

putational complexity even with high order cliques.

4.2. Evaluation on synthetic dataset

Following the experiment protocol in [10], we performed

a comparative evaluation on the synthetic dataset. For each

trial, we constructed two graphs, Gp with np = nin + np
out

nodes and Gq with nq = nin + nq
out nodes, each consist-

ing of nin inlier nodes and np
out/n

q
out outlier nodes respec-

tively. The reference graph Gp was generated with random

edge density ρ, where each edge epst was assigned with a

random attribute apst uniformly distributing within 0 and 1.
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Figure 4. Deformation noise experiment: accuracy, score and speed.
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Figure 5. Outlier experiment: accuracy, socre and times.

Then we created a perturbed graph Gq by adding noise on

the edge attributes between inlier nodes: aqab = apst+σ. The

deformation noise σ was generated by the Gaussian func-

tion N(0, σ2). All the other edges connecting at least one

of the outlier nodes were randomly generated in the same

way as in Gp. Thus, two graphs Gp and Gq have a common

and perturbed sub-graph with nin nodes.

In our experiment, there were three kinds of independent

variables: the outlier number np
out, the deformation noise

σ and the edge density ρ. Hence, we conducted three ex-

periments to evaluate their influences on performances re-

spectively. For each parameter setting, we generated 30 dif-

ferent graph pairs and computed the average accuracy and

objective score. First, we varied the outlier number from

0 to 20 with the step of 2 while fixing the inlier number

nin = 20, the deformation noise σ = 0.5. Second, we var-

ied the deformation noise σ from 0 to 0.2 with the step of

0.025 while fixing the inlier number nin = 20, the outlier

number np
out = nq

out = 0. Third, we varied the edge den-

sity from 0 to 0.1 with the step of 0.02 while fixing the inlier

number nin = 20 and the outlier number np
out = nq

out = 0.

From Fig.4-6, we can find that the proposed method can

outperform all the other state-of-the-art methods in terms

of accuracy and time. For graph matching, it is very es-

sential to extract distinct features of individual inlier and

outlier nodes for discrimination. Since the inlier and out-

lier nodes are generated from two different distributions, it

is reasonable that the inlier/outlier clique center will have

more inlier/outlier neighbors. These cliques can implicitly

convey the high-order local structure and benefit the repre-

sentation of more distinct local attributes for clique graph

matching. Therefore the proposed method can be more ro-

bust to deal with outliers. Moreover, the proposed method

can successfully convert the graph matching problem into a

linear programming problem which can greatly reduce the

computation complexity.

4.3. Evaluation on CMU House Sequence

We applied the proposed method on the standard CMU

House sequence since it has been widely used to evaluate

different graph matching algorithms. This sequence con-

sists of 110 frames and 30 feature points are manually la-

beled consistently across all frames. This allows us to com-

pare the performances of different algorithms over various

temporal intervals. The larger temporal interval between

adjacent frames will lead to more significant deformation

and consequently the graph matching will become more

challenging. We matched all possible image pairs with the

sequence gap from 10 to 100 frames and the step size of

10 frames. The average matching accuracy per sequence

was computed. According to the previous work [10], graph

matching for 2 different settings were generated with land-

mark points as nodes: (np, nq) = (30, 30), (25, 30). For

the second setting, we chose 25 points randomly among 30

landmark points. Fig.7 shows the performances by vary-

ing the sequence gaps. The proposed approach can produce

the competing performances to RRWM and RRWHM and

outperform all the others.
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Figure 7. Performances on CMU house sequence.

4.4. Evaluation on Real Image Dataset

We first implemented the proposed method on the chal-

lenging real image dataset, Caltech+MSRC [10]. The au-

thor constructed a dataset of 30 image pairs, which were

collected from Caltech-101 and MSRC datasets, and gen-

erated candidate correspondences using the MSER detec-

tor and the SIFT descriptor. With the distance between

pairwise 128-d SIFT descriptors, all the possible candidate

matches were collected if the distance of individual pair is

less than a loose threshold δ = 0.6, which can allow mul-

tiple correspondences for each feature. In [10], the authors

manually annotated the groundtruth for all candidate corre-

spondences of each image pair, and the accuracy and rela-

tive objective score were computed and compared with sev-

eral representative methods, including RRWN[2], SM[11],

SMAC[3], GAGM[8], IPFP [12]. The results are sum-

marized in Table.1 and some representative examples are

shown in Fig.8. We further evaluated the proposed method

on the Car and Motorbike image dataset [12], which con-

sists of 20 pairs of cars and 20 pairs of motorbikes selected

from VOC PASCAL 2007 with extracted contours, anno-

tated ground truth correspondences and a significant num-

ber of outliers. The corresponding experimental results are

shown in Table.2. From the comparison experiments in Ta-

ble.1-2, the proposed method can outperform the others in

term of both accuracy. Especially, CGM-5 can significantly

augment the speed comparing against RRWM and IPFP.

Table 1. Performance on Caltech+MSRC

Method Accuracy(%) Times(s)

CGM-5 74.20 0.07

RRWM[2] 64.01 0.37

SM[11] 52.08 0.05

IPFP[12] 41.2 0.12

SMAC[3] 39.74 -

GAGM[8] 58.74 -

Table 2. Performance on Car+Motor

Car-Method Accuracy(%) Time(s)

CGM-5 83.2 0.07

RRWM[2] 82.1 0.29

SM[11] 81.3 0.11

IPFP[12] 81.4 0.46

Motor-Method Accuracy(%) Time(s)

CGM-5 87.3 0.08

RRWM[2] 85.6 0.33

SM[11] 80.2 0.17

IPFP[12] 83.1 0.43

5. Conclusion

In this paper, we originally propose the clique-graph and

present the clique-graph matching method by preserving

global and local structures. We formulate the objective

function of clique-graph matching with respective to the

clique information in the original graph and the pairwise

cliques correspondence. Since the objective function is not

jointly convex to both latent variables, we optimize it by

decomposing it into two consecutive steps, clique-to-clique

similarity measure and the graph-to-graph similarity mea-

sure. Consequently, it can preserve both local unary and

pairwise correspondences and the global clique-to-clique

correspondence. Extensive experiments on the synthetic

data and real images show the superiority of the proposed

method.
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