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Abstract

Continuous-wave Time-of-flight (TOF) range imaging
has become a commercially viable technology with many
applications in computer vision and graphics. However, the
depth images obtained from TOF cameras contain scene de-
pendent errors due to multipath interference (MPI). Specifi-
cally, MPI occurs when multiple optical reflections return to
a single spatial location on the imaging sensor. Many prior
approaches to rectifying MPI rely on sparsity in optical re-
flections, which is an extreme simplification. In this paper,
we correct MPI by combining the standard measurements
from a TOF camera with information from direct and global
light transport. We report results on both simulated exper-
iments and physical experiments (using the Kinect sensor).
Our results, evaluated against ground truth, demonstrate a
quantitative improvement in depth accuracy.

1. Introduction

Time-of-flight (TOF) cameras represent an increasingly
popular method to obtain depth maps at full framerates of
30 FPS. The recent release of the TOF-based Kinect sen-
sor [47] will result in the wide-spread adaption of TOF
cameras for various traditional and non-traditional applica-
tions [35, 23, 31, 34, 24, 2, 44] in computer vision, graph-
ics and physics. In this paper we restrict our discussion to
continuous-wave TOF cameras, which calculate depth by
measuring the phase difference between an emitted and re-
ceived optical signal. In Section 3 we provide an overview
of the technology and a more extensive overview can be be
found in [7, 21].

Even though TOF cameras represent an attractive tech-
nology for generating depth images in real-time, they suffer
from many sources of error [9]. We focus on perhaps the
main source of error: the problem of multi-path interfer-
ence (MPI). The MPI problem occurs when multiple reflec-
tions of light in a scene return to a single pixel on the cam-
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Figure 1. Multipath interference in time of flight cameras. In (a)
the typical operation of TOF cameras is shown. A single optical
path returns to the image sensor. In (b) an indirect bounce from
point q to p causes two optical paths to return to the image sensor.
In (c), subsurface scattering causes many optical paths to return to
the sensor (one possible path is shown).

era sensor. This problem is particularly significant for TOF
sensors, where depth calculations assume a single optical
reflection.

Figure 1 illustrates three different measurement scenar-
ios for a TOF sensor. In Figure la, the standard operation
is shown, where a single reflection from point p strikes the
image sensor. Figure 1b and Figure 1c illustrate cases of
MPI where multiple optical reflections strike the imaging
sensor. The former considers a simple two-bounce reflec-
tion and the latter subsurface scattering, which cannot be
described by a discrete model.

Most prior MPI correction algorithms assume sparsity in
optical reflections. Since sparsity is a weak approximation
for the complexity of scattering, the space of sparse solu-
tions has, to date, been restricted to toy scenes [3, 10, &].
Other techniques rely on optical computing, which involves
significant optical and electronic modifications to the cam-
era [40, 32].

In this paper we cast the problem of MPI into the realm



| Paper | Multipath Type | Solution Type | Quantitative Analysis Hardware Modifications
Fuchs [11] Continuous Iterative Limited None
Dorrington et al. [8] 2-sparse Iterative Limited Frequency sweep
Godbaz et al. [12] 2-sparse Closed-form None Frequency sweep
Kadambi et al. [32] K-sparse Iterative None Custom code
Kirmani et al. [33] K -sparse Iterative Simulations only Frequency sweep
Freedman et al. [10] K -sparse Iterative Simulations only None
Jiminez et al. [29] K -sparse Iterative Limited None
O’Toole et al. [40] Continuous None None Extensive
Guptaetal. [19] Continuous Closed-form Yes Extensive
This Paper Continuous Closed-form Yes External projector

Table 1. This paper proposes a closed form approach to correcting multipath, by relying on light transport information.

of direct-global illumination. Recall that direct illumina-
tion represents optical paths from source, to scene point to
camera (Figure 1a). In contrast, global illumination repre-
sents optical paths that reach the scene point through indi-
rect means (Figure 1b and Figure Ic). The crux of this paper
is as follows: we develop a closed-form solution that com-
bines the measurements from standard TOF sensors with
direct and global radiance maps (cf. Nayar et al. [38]).

1.1. Contributions

Our key contribution is a novel image formation model
for TOF sensors that incorporates direct-global separation
into phase and amplitude calculations. We use this model to
significantly reduce errors caused by multipath interference.
Another important contribution is our quantitative evalua-
tion of the benefit of our technique using ground truth data.

Our approach uses both the direct and global compo-
nents of radiance to modify the traditional depth calculation
in time of flight sensing. Direct and global components can
be acquired with the use of a projector [38]. For compar-
ison, O’Toole et al. [40] use an involved, optical setup to
filter out the scattered radiance. In addition, where most
previous methods provide limited or no quantitative anal-
ysis of their results [11, 12, 32, 40], we report errors for
all scenes in the paper by evaluating our technique against
ground truth results (e.g., from an accurate laser scanner).

2. Related Work
2.1. Multipath Interference Correction

We summarize the important related publications on
MPI correction in table 1. Fuchs [11] and Jiminez et al [29]
solve for the MPI-free phase using an optimization prob-
lem and a forward model for TOF imaging. Dorrington et
al. [8], Godbaz et al. [12] and Kirmani et al. [33] model
MPI using two bounce approximation and propose iterative
or closed form solutions using multiple frequency measure-
ments (or ‘frequency sweep’). Bhandari et al. [4, 3] and

Freedman et al. [10] propose iterative solutions for gener-
alized MPI using multiple frequency measurements. These
solutions based on K -sparse models (table 1) are tied to the
sparsity assumption, which leads to errors when scene re-
turns are not sparse (e.g., subsurface scattering). Kadambi
et al. [32] introduce a ‘coded’ illumination technique for
TOF imaging and demonstrate results for MPI correction
on scenes containing translucent objects. This technique,
while promising, requires modifications in hardware, and
precludes real-time performance.

We now turn to an emerging research trend, which in-
corporates light transport information to correct for MPL.
Our work is of this flavor and is closely related to two re-
cent papers by O’Toole et al. [40] and Gupta et al. [19].
Building on [41], O’Toole et al. [40] propose a hardware
solution to block the global component of light transport
during the capture process, thus eliminating MPI. O’ Toole’s
optical computing approach is accurate, but requires exten-
sive optical modifications. The work by Gupta et al. [19]
centers on a theoretical justification of temporal light trans-
port. Specifically, Gupta shows that the global light trans-
port vanishes at high frequencies. In related work, Gupta et
al. [18, 15] have also tackled the problem of structured light
scanning in presence of global illumination using coded il-
lumination patterns. For a more complete overview, we en-
courage the reader to review the work by O’Toole et al. and
Gupta et al.

2.2. Light Transport Acquisition

Since our work ties light transport acquisition to MPI
correction, we provide a brief overview of this work. Seitz
et al. [46] introduced the problem of ‘inverse light trans-
port’, where the goal is to decompose an image into a
sum of n-bounce images. Nayar et al. [38] propose a fast
method for separating the direct component of light trans-
port from the global component using high frequency illu-
mination patterns. Ng et al. [39] introduce a stratified light
transport matrix which allows computation of the inverse
light transport using matrix multiplications. Chandraker
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et al. [0] treat inverse light transport acquisition as a dual
of forward rendering and propose an algorithm that needs
only matrix-vector multiplication. Reddy et al. [45] intro-
duce a method to decompose the light transport in a scene
into direct (zero-th bounce), near- range (subsurface scatter-
ing and local inter-reflections) and far- range (diffuse inter-
reflections) components. An exciting approach by O’ Toole
et al. [42] exploits coaxial optical setups to separate distinct
bounces of optical paths.

Light transport has been successfully applied to a vari-
ety of practical problems, including rendering of complex
phenomena [ 16, 49, 50], imaging in poor visibility environ-
ments [17], and recovery of surface reflectance [26, 35, 28,

]. In addition, light transport techniques have been very
successful for the challenging problem of 3-D scanning of
translucent objects [25, 20] and high quality structured light
scanning [36, 13, 37, 14].

While there are several light transport techniques to con-
sider, we incorporate the method by Nayar et al. [38]. We
believe it remains the simplest method to acquire and sep-
arate the direct and global components of light transport;
it requires few images (two in theory) and, importantly, no
calibration.

3. Continuous Wave TOF Measurements

A continuous-wave TOF camera (hereafter, TOF cam-
era) is able to measure the phase delay of optical paths and
obtain depth through the following relation:

cp
z =
Arfa’

where fy is the modulation frequency of the camera and c is
the speed of light. To estimate ¢ with high precision, a TOF
camera contains an active illumination source that is strobed
according to a periodic illumination signal. In this paper we
consider standard implementations (e.g. MS Kinect) where
the emitted signal takes the form of a sinusoid

ey

g(t) = cos (fut) - 2)

Suppose the light is reflected from a scene point p. Then at
the sensor plane, the received optical signal can be written
as

s(t;p) = aP cos (fut + ©P) + B, (3)

where P is the attenuation in the projected radiance and 5P
is the intensity of ambient light. Note the time-invariance of
parameters aP, P, and fP—it is assumed that they are con-
stant within the exposure time. A TOF camera computes the
cross-correlation of the emitted and received signals, which
evaluates to

P
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Note that the same information from Equation 3—
amplitude, phase, and ambient light—is present in the
cross-correlation function. However, the cross-correlation
equation is in the domain of 7, which is easier to sample (in
fact, the TOF sensor directly reads ¢(7; p) from the sensor).
As our technique does not incorporate spatial parametriza-
tion, hereafter we consider ¢(7) as the received signal.

In order to recover the phase and amplitude from the re-
ceived signal, the “four bucket principle” is typically used
(see [8, 3]). In this method, the TOF camera evenly sam-
ples ¢(7) four times over the length of a period, for instance,
7 =[0,Z, 7, 2%]T. Then the calculated phase can be writ-
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and calculated amplitude as

a=3\/(crm) - @) — () @)’ ©

This method is a closed-form technique—in the absence of
factors such as multipath interference and sensor noise, the
calculated variables ¢ and a are equal to ground truth values
w and a.

4. Multipath Interference

To calculate accurate depth it is necessary to obtain the
time of flight of the direct light path. However, the light
received from a TOF sensor is a combination of direct and
global illumination [38]. Multipath interference refers to
the undesirable mixing of global illumination with direct il-
lumination, which, in a TOF camera, causes a deviation in
the measured phase wrt. the direct phase only. We now pro-
vide the mathematical intuition behind MPI, starting with
the most general case.

4.1. Generalized MPI

In the presence of global illumination, the received sig-
nal includes contributions from illumination reflected from
multiple scene points. Specifically, we denote illumination
that has reflected from K locations in the scene as a K-
bounce sinusoid with phase ¢ and amplitude a . In this
context, the received signal is a composite of multi-bounce
sinusoids and can be written as

K

« Q5

o) = 70005 (fam+00)+ Y - cos (fur + i) +6,
=1

Direct Contribution

Global Contribution
(7
where the problem is not constrained to finite-dimensions,
i.e., K = oo is possible. Substituting Equation 7 into Equa-
tions 5 and 6 results in the following expressions for the
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measured phase and amplitude

. K .
agsingpg + Y-, aising; ) ®

@ = arctan i
Qo COS o + Y ;-4 0 COS ;

K K K
a*=a2+ Zaf + 2220@0@ cos (¢; — ;). (9
i=1

i=0 j=0

i#]
Not surprisingly, the measured phase ¢ is not equal to the

phase contribution from the direct bounce ¢qy. As a result,
the measured depth will be distorted.

4.2. Approximating Global Illumination

In this paper, we approximate global illumination using
only the lowest order, indirect bounce (i.e., K = 1). This
simplification has been exploited in previous techniques for
multipath interference correction (e.g., [1 1, 8, 12, 33]). Un-
der this assumption, the received signal can be modeled as

(e «
or) = 2 cos (fur + )+ 25 cos (T +96) +5.

Direct Approximate Global

(10)
where subscripts D and G explicitly denote parameters
of direct and approximate global illumination. The to-
tal projected radiance o is equal to ap + «g, where
0 < ap, ag, < 1 and the total radiance is equal to unity.

After substituting the measurement from Equation 10
into Equations 5 and 6, we obtain

aDsinch+aGsin<pg) (11

@ = arctan <
ap CoOSYp + Qg CoS Pg

a* = a3 +aZ +2apagcos (pp — va) - (12)

4.3. Direct-Global Separation for MPI Correction

Accurately estimating ¢p would make it possible to
ameliorate MPI and obtain a robust measurement of depth.
Recall that the fast method from Nayar et al. [38] can be
used to obtain the radiance of direct and global illumination.
For instance, in the case of generalized MPI (Section 4.1),
direct-global separation allows us to obtain radiance values
ap and Zfil «o;. However, these two measurements are
not helpful in the context of general MPI, where Equations 8
and 9 consist of 2N+2 variables, of which only «y is known.

We now turn to the case of approximate global illumi-
nation, where we use the lowest-order indirect bounce to
approximate contributions from global illumination. Under
this approximation, direct-global separation returns values
for ap and ag. Notice that between Equations 11 and 12
there are four variables, two of which are provided by the

1 O

'4RGB TOF-IR Source..

Projector

Figure 2. We demonstrate our method with no hardware modifica-
tions to the TOF hardware. Our capture setup (left) consists of a
Kinect One sensor and a DLP Lightcommander Infrared projector.
The capture setup is placed ~1 meter away from the scene (right).

Nayar method. Given that there are two equations and only
two unknown variables, the direct phase can be computed
in closed-form as:

apy + ag (sin (¢p — ¢g) +ycos (pp — wc)))

ap +ag (cos(pp — ) — vsin(¢p — 9%*))(13)

where v = tan (¢). In summary, relaxing the problem to
the second bounce approximation provides a closed-form
solution for ameliorating multipath interference. In the re-
mainder of the paper, we evaluate this closed-form correc-
tion through simulations and captured data.

Pp = arctan (

5. Implementation

We first describe our simulation setup, followed by de-
tails on the physical setup.

5.1. Simulations

To perform simulations, we use the time of flight simu-
lator described by Gupta et al. [19]. Given certain scene pa-
rameters, for instance, camera and scene specifications, the
simulator outputs the raw measurements from a TOF cam-
era in the presence of scattering.! Following from Section
3, we obtain four phase samples of the cross-correlation (cf.
Equation 4), which are then used to obtain amplitude and
phase images, derived using Equations 5 and 6.

Recall that our proposed algorithm requires both the di-
rect and global components of light transport. To obtain
such values in simulation we place constraints on the num-
ber of bounces. Specifically, we follow the convention
from [19], where direct and global simulations constrain the
maximum number of bounces to zero and four, respectively.
The ground truth depth map is obtained by applying, in or-
der, Equation 5 and then Equation 1, to the measurements
from direct illumination only.

To establish the simulated experiments as a reasonable
proxy for Kinect measurements, we incorporate the noise
model described by Hasinoff et al [22]. In particular, we

I'Specifically, we use the following camera parameters: a spatial reso-
lution of 512 x 512 pixels, a focal length of 368 pixels and an illumination
frequency of 120 MHz.

76



True Shape Measured Shape

L

-

Corrected Shape

Error: Measured Error: Corrected
25 mm
0 mm

Error = 16.1 mm Error = 3.3 mm

100 mm

0 mm

Error = 57.3 mm Error = 16.2 mm
20 mm
0 mm

Error = 4.8 mm Error =1.9 mm

Figure 3. Our MPI correction algorithm reduces the root mean squared error on a variety of objects (simulated experiments). The first
column shows the ground truth point cloud for a given object. The second column depicts the measured point cloud, simulated using
rendering software. The output of our algorithm is shown in the third column. Finally, error comparisons with ground truth are shown in

the fourth and fifth columns.

consider two types of additive noise: (i) scene-dependent
shot noise, and (ii) scene-independent read-out noise.

5.2. Physical Implementation

All physical experiments are performed using the Mi-
crosoft Kinect One sensor, which provides amplitude and
phase measurements (we use a modulation frequency of
120 MHz). To separate the direct and global components of
light transport we follow the Nayar method [38], which re-
quires high-frequency coded illumination. Instead of mod-
ifying the Kinect One to project such patterns, we use an
external projector. Since the Kinect sensor has an IR-pass,
VIS-block filter, we use the DLP Lightcommander projec-
tor, which can project patterns at near infrared wavelengths
(850 nm).” Figure 2 summarizes the experimental setup.

We must also remark that the internal light source of the
Kinect One sensor is much brighter (~8 times) than the ex-
ternal projector. Therefore, it is necessary to perform ra-
diometric calibration. To encourage reproducibility, further
details on the capture process (including radiometric cali-
bration and details on projected patterns) can be found in

2Projector website: http://www.ti.com/tool/dlplightcommander

supplemental material.

Ground Truth Datasets: A key contribution of this pa-
per lies in the evaluation of our technique in the context of
ground truth datasets. To capture ground truth for the corner
scene in Figure 4, we use the Kinect sensor to capture each
planar component of the corner separately. Then, we fit a
plane through each point cloud using least-squares, which
are then fused together to obtain the ground truth 3D model.
For complex scenes, as in Figure 6, we obtain ground truth
by capturing a scan of the object using a multi-stripe, trian-
gulation, laser scanner.’

6. Experimental Results

We divide our results into simulations and physical ex-
periments. For all scenes, we evaluate our corrected depth
maps using ground truth data. Following standard protocol
(e.g., [48]), we report errors using the root-mean-squared
error (RMSE) metric. This metric provides less weight to
outliers.

3Laser Scanner Website: http:/www.nextengine.com/assets/pdf/scanner-
techspecs.pdf
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Figure 4. Correcting MPI in scenes with corners (physical experiments). Given an input scene containing a corner, we use the Nayar method
to separate out direct and global components (zoom crop shown). Our correction algorithm shows a reduction in root mean squared error
for corners of varying angles. For each angle, we plot a cross-section of the reconstruction. The dashed line represents ground truth, while
the red and magenta lines represent measured and corrected cross-sections.

6.1. Simulations

To validate the algorithm in a controlled setting we per-
form simulated experiments. Ground-truth 3-D models—
obtained from an online database—are illustrated in the first
column of Figure 3. In particular we select three Lamber-
tian objects: a 90 degree corner, a concave bowl, and an
eigenfunction of the wave equation (i.e. the Matlab logo).

To obtain the measurements, we use a raytracing ap-
proach, as detailed in Section 5.1. The measurements
are shown in the second column of Figure 3, and the er-
ror caused by MPI can be observed. In particular, MPI
is most significant for the corner and bowl scenes. Both
scenes encourage multipath interference in the form of
interreflections—between the planes (for the corner) and in-
side the concave region (for the bowl). To summarize the
3-D measurements: the corner is now rounded, the bowl
has been drastically flattened, and the features of the Mat-
lab logo are slightly less distinctive.

The third column of Figure 3 shows the point cloud after
applying the proposed MPI-correction algorithm. Notably,
the corrected corner regains part of its original sharpness,
and the bowl returns to its original geometry. Quantitative
results are shown in the final two columns of Figure 3. In
all cases the corrected RMSE is lower than the measured
RMSE.

The simulated results also reveal a drawback of our
proposed technique: the MPI-corrected results are noisy,
jagged, and overall lack the smoothness of the measure-
ments (compare columns two and three of Figure 3). How-
ever, we believe the MPI-corrected results are preferable.
First, the overall error is reduced after MPI correction.
Moreover, errors from additive noise can be corrected by
using smoothing filters, already a common element of the
depth sensing pipeline (see supplement for a smoothed re-
sult). For comparison, MPI errors cannot be solved by sim-
ple filtering (e.g., the bowl in Figure 3).

In summary, the simulated results suggest that a proper
physical implementation of our technique should reduce the

RMSE on real scenes.

6.2. Experiments with Real Scenes

The results from physical experiments closely mirror the
simulations, in the sense that the MPI-corrected results re-
duce the error in depth maps for each scene we tested. We
now describe results for three separate scenes that exhibit
different forms of MPI. Specifically, this includes MPI from
interreflections, subsurface scattering, and geometric sur-
face variations.

Corner Scene: Figure 4 illustrates a simple corner scene,
where interreflections contribute to MPI. Following from
our method, we first separate the original scene radiance
into direct and global components. Note that, as expected,
the direct component is brightest at the center of the corner
and at the outer edges, which is where the global compo-
nent is at a minimum. To make the problem a bit more in-
teresting, we apply our correction algorithm on corners with
different angles. As illustrated in Figure 4, at all angles, the
measured depth is overestimated and the measured profile
lacks sharpness. After applying our correction algorithm,
at all angles, we report reduced error in the depth map (see
Figure 4). For all angles, the corrected shape is most accu-
rate at the center and the outer edges of the corner, since the
global component is much weaker as compared to the direct
component.

Our proposed technique works best on wide corners
(with angles greater than 60 degrees). Note that the corner
problem becomes harder as the angle becomes increasingly
acute due to increasing amounts of global illumination.

Subsurface Scattering Scene: As illustrated in Figure 5,
this test scene consists of a block of wax placed in front of
a cardboard background. The wax material exhibits strong
subsurface scattering, and therefore the expected MPI is of
the form described earlier in Figure 1c. Note that subsurface
multipath is a continuous phenomena—it is not possible to
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Figure 5. MPI-correction reduces error on scenes with subsurface scattering (physical experiment). The original scene (left) consists of
a wax candle. The direct and global components are obtained following the Nayar method. The measured depth of the wax candle is
overestimated due to the subsurface scattering. After applying our correction algorithm, we observe a 70 percent reduction in RMSE error.

provide a finite K for the number of optical reflections [43].
After separation with the Nayar method, we note that (as ex-
pected), the wax is significantly brighter than the cardboard
in the global image.

After applying our correction technique to the data, we
observe that the measured depth has an RMSE of about 4.25
cm, while the corrected depth has an RMSE of about 1.34
cm. Note that the error that remains in the corrected depth
map is close to the depth precision of the TOF sensor (this
value is about 0.5 cm [30]).

Geometric Scene: We evaluate our method on a plastic
facial mannequin, which exhibits relatively complex geom-
etry. The ground truth point cloud—obtained with a laser
scanner—is illustrated in Figure 6. Since the face is made of
plastic it lacks significant subsurface scattering. Therefore,
we expect that the MPI should arise from concave sections
in the surface geometry.

The measured shape in Figure 6 exhibits speckle like ar-
tifacts, which at first glance look like random noise. How-
ever, these artifacts arise because the plastic face has fine
pits in the surface, which causes similar MPI artifacts to
those observed in the large bowl from Figure 3. After apply-
ing our correction technique, the recovered shape is more
representative of the surface. Quantitatively, the correction
reduces the RMSE error by 39 percent. After correction,
the distribution of residual error is uniform over the surface
geometry, and at 5.35 mm, the error is very nearly at the
depth precision of the TOF sensor [30].

7. Discussion

In summary, we present a light transport technique to
mitigate MPI. Instead of relying on sparsity—an unrealis-
tic assumption—we use the data from direct-global separa-
tion to recover depth. Our system architecture employs off-
the-shelf hardware components, specifically a Kinect and a
projector. For all tested scenes, the corrected point clouds
demonstrate a reduction in RMSE error.

Error: Measured

Ground Truth Shape

Error: Corrected

Error = 8.71 mm Error = 5.35 mm

Figure 6. MPI-correction reduces error on scenes with complex
geometry (physical experiment). The original scene consists of a
plastic facial mannequin. At (left) is a laser scan of the object,
used as ground truth. The measured shape overestimates depth in
several areas. We observe a 39 percent reduction in RMSE error
after applying MPI-correction.

Approximating Global Transport: The proposed tech-
nique relies on approximating global light transport with the
first indirect bounce. This is a common simplification that
has been exploited in prior work in light transport (see Bim-
ber et al. [5]). Intuitively, the contribution of higher order
bounces rapidly diminishes due to a combination of surface
absorbance, the inverse square law, and Lambert’s law (see
supplementary material for details).

Numerical Stability: Our closed form solution for MPI
correction (Eq. 13) depends on the phase difference be-
tween the direct and approximate global bounce i.e (¢p —
©a). The scene characteristics and modulation frequency
determine the amplitude of this term. For low modulation
frequencies, this term can get buried in the noise floor in
case of small scenes, thus introducing errors in our cor-
rection. In experiments, we observe that our method is
robust to noise at the modulation frequency of 120 MHz.
Please see the supplement for the perturbation analysis of
this problem.

Real-time Performance: Correcting MPI at full framer-
ates (i.e. 30 Hz) is not a contribution of this paper. The key
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challenge lies in the time required to separate the direct-
global components of scene radiance. Specifically, while
the Nayar method requires, in theory, only two photographs,
we must take 25 photographs to compensate for projector
bleed and defocus. In a commercial setting, a more robust
implementation could be achieved by using improved pro-
jection systems or incorporating real-time direct-global sep-
aration as described in [1].

7.1. Comparisons

Our prototype combines the advantages of a light trans-
port based approach with an implementation realized in
commodity hardware. For comparison, the novel solu-
tion by O’Toole et al. [40] is tied to a particular hard-
ware architecture, which is a combination of transient imag-
ing hardware, beamsplitters and modified projective optics.
The measurement model for transient imaging [32, 23] pre-
cludes real-time performance. In contrast, our technique
relies on the Nayar model of direct-global separation [38],
which has been shown—in separate work—to work in real-
time [1].

We believe the recent work by Gupta et al. [19] rep-
resents a more fair comparison. In their paper they use
a slightly modified time of flight sensor to generate dual-
frequency measurements. To resolve MPI, they contribute
novel theory, which shows that global light transport is neg-
ligible at high modulation frequencies. However, for table-
top scenes, this vanishing property requires GHz modula-
tion frequencies. As a result, their physical experiments are
constrained to large, meter-size scenes. In comparison, our
method is not constrained to large scenes or high modula-
tion frequencies. We provide results on a variety of objects,
including specimens with subsurface scattering or complex
geometry.

7.2. Limitations

Our method reduces error on every tested scene, but can-
not be implemented in the Kinect pipeline without intro-
ducing additional limitations. In particular, to acquire the
global and direct components, we use a separate projec-
tor, requiring the use of radiometric calibration. Due to the
quality of the projector, the we oversample beyond Nayar’s
theoretical rule (25 photographs instead of 2). In addition,
the FOV of the projector is narrow, at approximately 43 de-
grees. Taken together, these three limitations on the projec-
tor restrict the current setup to small, static scenes; however
we are confident that real-time implementations are possi-
ble with improved projective capture setups now available
for direct-global separation (cf. [1]).

8. Concluding Remarks

We propose a new computational photography tech-
nique to generate higher quality 3-D scans than the stan-

dard Kinect (in the context of RMSE error). By coupling
lightweight optical complexity with a closed-form, mathe-
matical solution, the proposed technique takes a step toward
scalable MPI correction.

Acknowledgments. We would like to thank Philip Chou,
Mike Sinclair, Hrvoje Benko and the Microsoft Kinect
product team for their helpful comments on theory and
hardware implementation. We also acknowledge the help
of all the members of the Interactive Visual Media group at
Microsoft Research.

References

[1] S. Achar, S. T. Nuske, and S. G. Narasimhan. Compensating
for motion during direct-global separation. 2013. 8
[2] A. Bhandari, C. Barsi, R. Whyte, A. Kadambi, A. J. Das,
A. Dorrington, and R. Raskar. Coded time-of-flight imaging
for calibration free fluorescence lifetime estimation. pages
2-5,2014. 1
[3] A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Fei-
gin, A. Dorrington, and R. Raskar. Resolving multipath
interference in time-of-flight imaging via modulation fre-
quency diversity and sparse regularization. Optics Letters,
39(6):1705-1708, 2014. 1,2, 3
[4] A. Bhandari, A. Kadambi, R. Whyte, L. Streeter, C. Barsi,
A. Dorrington, and R. Raskar. Multifrequency time of flight
in the context of transient renderings. In ACM SIGGRAPH
2013 Posters, page 46. ACM, 2013. 2
[5] O. Bimber, D. Iwai, G. Wetzstein, and A. Grundhofer. The
visual computing of projector-camera systems. In Computer
Graphics Forum, volume 27, pages 2219-2245, 2008. 7
[6] M. Chandraker, J. Bai, T.-T. Ng, and R. Ramamoorthi. On
the duality of forward and inverse light transport. IEEE
TPAMI, 33(10):2122-2128, 2011. 3
[7] C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo. Time-of-
Flight Cameras and Microsoft Kinect. Springer, 2012. 1
[8] A. A. Dorrington, J. P. Godbaz, M. J. Cree, A. D. Payne,
and L. V. Streeter. Separating true range measurements from
multi-path and scattering interference in commercial range
cameras. In IS&T/SPIE Electronic Imaging, pages 786404—
786404,2011. 1,2,3,4
[9] S. Foix, G. Alenya, and C. Torras. Lock-in time-of-flight
(tof) cameras: a survey. IEEE Sensors Journal, 2011. 1
[10] D. Freedman, Y. Smolin, E. Krupka, I. Leichter, and
M. Schmidt. SRA: Fast removal of general multipath for
ToF sensors. In ECCV, pages 234-249, 2014. 1,2
[11] S. Fuchs. Multipath interference compensation in time-of-
flight camera images. In /CPR, 2010. 2, 4
[12] J. P. Godbaz, M. J. Cree, and A. A. Dorrington. Closed-form
inverses for the mixed pixel/multipath interference problem
in amcw lidar. In IS&T/SPIE Electronic Imaging, 2012. 2, 4
[13] J. Gu, T. Kobayashi, M. Gupta, and S. K. Nayar. Multiplexed
illumination for scene recovery in the presence of global il-
lumination. In ICCV, pages 691-698, 2011. 3
[14] M. Gupta. Shape from scatter. Computer Vision: A Reference
Guide, pages 721-724, 2014. 3

80



[15]

[16]

(17]

(18]

(19]

(20]
(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

M. Gupta, A. Agrawal, A. Veeraraghavan, and S. G.
Narasimhan. A practical approach to 3d scanning in the pres-
ence of interreflections, subsurface scattering and defocus.
LJCV, 102(1-3):33-55, 2013. 2

M. Gupta and S. G. Narasimhan. Legendre fluids: a
unified framework for analytic reduced space modeling
and rendering of participating media. In ACM SIG-
GRAPH/Eurographics SCA, 2007. 3

M. Gupta, S. G. Narasimhan, and Y. Y. Schechner. On con-
trolling light transport in poor visibility environments. In
CVPR, pages 1-8. IEEE, 2008. 3

M. Gupta and S. Nayar. Micro phase shifting. In CVPR,
pages 813-820, June 2012. 2

M. Gupta, S. K. Nayar, M. Hullin, and J. Martin. Pha-
sor imaging: A generalization of correlation-based time-of-
flight imaging. Technical report, Jun 2014. 2, 4, 8

M. Gupta, Q. Yin, and S. K. Nayar. Structured light in sun-
light. In ICCV, pages 545-552,2013. 3

M. Hansard, O. Choi, S. Lee, and R. Horaud. Time-of-Flight
Cameras. Springer, 2013. 1

S. W. Hasinoff, F. Durand, and W. T. Freeman. Noise-
optimal capture for high dynamic range photography. In
CVPR, pages 553-560, 2010. 4

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich. Low-
budget transient imaging using photonic mixer devices. ACM
TOG, 32(4):45,2013. 1, 8

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin. Diffuse
mirrors: 3d reconstruction from diffuse indirect illumination
using inexpensive time-of-flight sensors. In CVPR, 2014. 1
M. B. Hullin, M. Fuchs, I. Ihrke, H.-P. Seidel, and H. P.
Lensch. Fluorescent immersion range scanning. ACM TOG,
27(3):87-87,2008. 3

M. B. Hullin, J. Hanika, B. Ajdin, H.-P. Seidel, J. Kautz,
and H. Lensch. Acquisition and analysis of bispectral bidi-
rectional reflectance and reradiation distribution functions.
ACM TOG, 29(4):97, 2010. 3

M. B. Hullin, I. Ihrke, W. Heidrich, T. Weyrich, G. Damberg,
and M. Fuchs. Computational fabrication and display of ma-
terial appearance. In Eurographics State of the Art Reports,
pages 137-153, 2012. 3

M. B. Hullin, H. Lensch, R. Raskar, H.-P. Seidel, and
I. Ihrke. Dynamic display of brdfs. In Computer Graphics
Forum, pages 475-483, 2011. 3

D. Jiménez, D. Pizarro, M. Mazo, and S. Palazuelos. Model-
ing and correction of multipath interference in time of flight
cameras. Image and Vision Computing, 32(1):1-13, 2014. 2
A. Kadambi, A. Bhandari, and R. Raskar. 3d depth cam-
eras in vision: Benefits and limitations of the hardware. In
Computer Vision and Machine Learning with RGB-D Sen-
sors, pages 3-26. Springer, 2014. 7

A. Kadambi, A. Bhandari, R. Whyte, A. Dorrington, and
R. Raskar. Demultiplexing illumination via low cost sens-
ing and nanosecond coding. In /CCP, 2014. 1

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi,
A. Dorrington, and R. Raskar. Coded time of flight cameras:
sparse deconvolution to address multipath interference and
recover time profiles. ACM TOG, 32(6):167,2013. 1,2, 8

81

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

[44]

(45]

[40]
(47]

(48]

[49]

[50]

A. Kirmani, A. Benedetti, and P. A. Chou. Spumic: Simul-
taneous phase unwrapping and multipath interference can-
cellation in time-of-flight cameras using spectral methods.
In IEEE International Conference on Multimedia and Expo,
pages 1-6,2013. 2,4

N. Naik, C. Barsi, A. Velten, and R. Raskar. Estimating
wide-angle, spatially varying reflectance using time-resolved
inversion of backscattered light. JOSA A, 31(5):957-963,
2014. 1

N. Naik, S. Zhao, A. Velten, R. Raskar, and K. Bala. Sin-
gle view reflectance capture using multiplexed scattering and
time-of-flight imaging. In ACM TOG, volume 30, page 171,
2011. 1,3

S. G. Narasimhan, S. K. Nayar, B. Sun, and S. J. Koppal.
Structured light in scattering media. In ICCV, pages 420—
427, 2005. 3

S. K. Nayar and M. Gupta. Diffuse structured light. In /CCP,
pages 1-11. IEEE, 2012. 3

S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar.
Fast separation of direct and global components of a scene
using high frequency illumination. In ACM TOG, volume 25,
pages 935-944. ACM, 2006. 2, 3,4,5,8

T.-T.Ng, R. S. Pahwa, J. Bai, T. Q. Quek, and K.-H. Tan. Ra-
diometric compensation using stratified inverses. In ICCV,
2009. 2

M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich,
and K. N. Kutulakos. Temporal frequency probing for 5D
transient analysis of global light transport. ACM TOG, 33(4),
2014. 1,2, 8

M. O’Toole, J. Mather, and K. N. Kutulakos. 3d shape and
indirect appearance by structured light transport. In CVPR,
2014. 2

M. O’Toole, R. Raskar, and K. N. Kutulakos. Primal-
dual coding to probe light transport. ACM Trans. Graph.,
31(4):39, 2012. 3

R. Raskar and J. Davis. 5D time-light transport matrix: What
can we reason about scene properties. Int. Memo, 2008. 7
D. Raviv, C. Barsi, N. Naik, M. Feigin, and R. Raskar. Pose
estimation using time-resolved inversion of diffuse light. Op-
tics express, 22(17):20164-20176, 2014. 1

D. Reddy, R. Ramamoorthi, and B. Curless. Frequency-
space decomposition and acquisition of light transport under
spatially varying illumination. In ECCV, 2012. 3

S. M. Seitz, Y. Matsushita, and K. N. Kutulakos. A theory of
inverse light transport. In /CCV, 2005. 2

J. Sell and P. O’Connor. The xbox one system on a chip and
kinect sensor. IEEE Micro, 34(2):44-53, Mar 2014. 1

T. Weise, H. Li, L. Van Gool, and M. Pauly. Face/off: Live
facial puppetry. In ACM SIGGRAPH/Eurographics SCA,
pages 7-16. ACM, 2009. 5

D. Wu, G. Wetzstein, C. Barsi, T. Willwacher, M. OToole,
N. Naik, Q. Dai, K. Kutulakos, and R. Raskar. Frequency
analysis of transient light transport with applications in bare
sensor imaging. In ECCV, pages 542-555.2012. 3

L.-Q. Yan, M. Hasan, W. Jakob, J. Lawrence, S. Marschner,
and R. Ramamoorthi. Rendering glints on high-resolution
normal-mapped specular surfaces. ACM TOG, 33(4):116,
2014. 3



