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Abstract

We introduce Embedded PS, a new robust and accu-
rate phase shifting algorithm for 3D scanning. The method
projects only high frequency sinusoidal patterns in order
to reduce errors due to global illumination effects, such as
subsurface scattering and interreflections. The frequency
set for the projected patterns is specially designed so that
our algorithm can extract a set of embedded low frequency
sinusoidals with simple math. All the signals, patterns
high and embedded low frequencies, are used with tem-
poral phase unwrapping to compute absolute phase values
in closed-form, without quantization or approximation via
LUT, resulting in fast computation. The absolute phases
provide correspondences from projector to camera pixels
which enable to recover 3D points using optical triangula-
tion. The algorithm estimates multiple absolute phase val-
ues per pixel which are combined to reduce measurement
noise while preserving fine details. We prove that embed-
ded periodic signals can be recovered from any periodic
signal, not just sinusoidal signals, which may result in fur-
ther improvements for other 3D imaging methods. Several
experiments are presented showing that our algorithm pro-
duces more robust and accurate 3D scanning results than
state-of-the-art methods for challenging surface materials,
with an equal or smaller number of projected patterns and
at lower computational cost.

1. Introduction

The need for better 3D scanners that simplify the cre-
ation of high quality 3D models from everyday physical
objects, is driven nowadays in a good measure by recent
improvements in 3D printing technologies, and the increas-
ing availability of low cost 3D printers. Structured light 3D
scanners, comprising a digital camera and a digital projec-
tor, are well suited for this task because they can produce
dense 3D point cloud models with as many points as camera
pixels, the 3D scanning device has no moving parts, and the

Figure 1. Embedded PS. Models generated from 9 images with
no post processing such as filtering or mesh reconstruction. Fine
structures below 1mm depth in a 180mm object are correctly mea-
sured. Total decoding time with a single thread Matlab implemen-
tation takes about 1.2s, image resolution is 1600x1200.

scanning process usually requires a relatively small number
of projected patterns and corresponding captured images (a
minimum of five in our method). As a comparison, laser
based scanners, comprising a digital camera and a laser line
projector, also need a mechanism to adjust the location and
orientation of the projected line with respect to the object af-
ter each image is captured. And since a single line is recov-
ered from each image, they need to capture hundreds of im-
ages to build a dense 3D model. In this paper we present the
Embedded Phase Shifting (Embedded PS) method for struc-
tured light 3D scanning. Embedded PS generates very accu-
rate high resolution dense 3D point cloud models projecting
only high spatial frequency sinusoidal patterns. Different
from alternative prior-art methods, Embedded PS embeds
a low frequency signal in the phase of the high frequency
patterns. The method is robust to global illumination ef-
fects because its pattern frequencies are constrained to a
small range. Its computational complexity is low because
decoding the embedded low frequencies reduces to a simple
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subtraction operation, and the relative phase unwrapping is
trivial once the embedded frequencies have been recovered.
Finally, it provides redundant absolute phase measurements
which are used for denoising by a voting scheme or by av-
eraging, without feature-destroying spacial smoothing.

In traditional two-camera stereo systems, pixel corre-
spondences are established by time consuming and error
prone pixel matching processes. Structured light 3D scan-
ning systems, comprising a digital projector and a single
digital camera, use the data projector to illuminate the scene
with specially designed patterns, allowing for example to
identify which data projector pixel column is illuminating
the scene point being imaged by each camera pixel with no
search, independently of the scene content. Mathematically,
both the projector and the camera are modeled as pinhole
cameras. The position of 3D points is estimated using the
principle of triangulation, where each projector column cor-
responds to a plane in 3D, each camera pixel corresponds to
a ray in 3D, and the intersection of the plane and the ray
results in the 3D point coordinates. The straightforward ex-
tension to multiple cameras is not discussed here.

The details of how the correspondences between projec-
tor columns and image pixels are determined depend on the
coding strategy used in the projected patterns. For exam-
ple, the Binary Coding method represents each projector
column index number as a sequence of bits, which are en-
coded as a sequence of black and white patterns. For each
projected pattern an image is captured. The code is recon-
structed by determining whether each camera pixel is black
or white in each image. The resulting sequence of bits is
the binary expansion of the corresponding column number.
Although this formulation is very simple, the decision of
whether a pixel is black or white is often non-trivial, be-
cause pixel intensities are a sum of three components: ambi-
ent illumination (considered fixed), direct illumination from
the projector, and indirect illumination or global illumina-
tion effects. The latter is usually unknown and difficult to
measure. In a seminal work, Nayar et al. [8] demonstrated
how to separate direct and global illumination using high
frequency structured light patterns, a principle that was used
in [15] to robustly classify pixels either as black or white in
binary patterns as the one described above. Since the pro-
jection of binary patterns permits to resolve only projector
integer column numbers, the resolution of the estimated 3D
point cloud model is limited by the projector resolution.

Many other coding strategies have been described in the
literature, and a comprehensive list is provided by Salvi et
al. [12]. In the context of this work, we are concerned only
with methods based on phase shifting, where projector col-
umn coordinates are encoded as the phase of a continuous
sinusoidal pattern. The continuous nature of these coding
strategies results in 3D point cloud models generated at the
resolution of the camera, which tends to be higher than the

resolution of the digital projectors these days.
Our phase shifting method is optimal according to the

seven principles enumerated by Pribanić et al. [10]. The
most important of these principles are: that each pixel cor-
respondence is solved independently of the others, enabling
high resolution reconstructions and robustness to sharp ob-
ject discontinuities; and that simple image processing is per-
formed allowing efficient implementations. Within the ex-
isting structured light coding strategies (e.g. spatial neigh-
borhood, direct codification, Fourier transform profilome-
try) in general phase shifting is known to produce superior
results for static scenes [10].

The main contributions of the Embedded Phase Shifting
method are:

• It is a robust phase shifting method which works with
as low as 5 projected patterns. It exploits low fre-
quency signals embedded in high frequency patterns
to find correspondences between projector and camera
pixels. 3D scanning results are quantitatively and visu-
ally better than state-of-the-art methods using the same
or smaller number of projected patterns.

• We present a mathematical framework which explains
how to encode the low frequency periodic signals in
the high frequency projected patterns, and how to de-
code them from the corresponding captured images.
These theoretical results are shown to be applicable not
only to sinusoidals, but to a wide variety of families of
periodic signals. We believe that these results could be
used to exploit embedded frequencies in other phase
shifting methods (e.g. Trapezoidal PS [4]).

• It produces multiple high-precision 3D measurements
from a small number of projected patterns, enabling
robust 3D imaging with no post processing such as
smooth filtering, which removes fine details, resulting
in the ability to reconstruct much finer object struc-
tures.

• It requires only simple image processing operations,
resulting in a fast decoding algorithm. The algorithm
complexity increases linearly with the number of cam-
era pixels and it is independent of the number of pro-
jector pixels.

2. Related Work
Following the classification from [12] ours is a Multiple

Phase Shifting method within the continuous coding tech-
niques, same as [1, 3, 5, 9], meaning that sinusoidal signals
of multiple frequencies are used for shape measurement and
that the coding domain is continuous. Single Phase Shift-
ing methods [13] assume that the surface being scanned
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Figure 2. Metal plane profile measured with Micro PS (red), Mul-
tiple PS (green), and Embedded PS (black). We have used Micro
PS with the 5 optimized frequencies from Gupta et al. [3] and yet
it produces frequent unwrapping errors, opposite to the other two
methods which use temporal phase unwrapping.

is smooth and without depth discontinuities (e.g. a hu-
man face) and use spatial phase unwrapping (fringe count-
ing). Multiple Phase Shifting uses temporal phase unwrap-
ping [11, 14] allowing to resolve each scene point indepen-
dently of its neighbors being robust to surface discontinu-
ities. Gupta et al. [2] observed that, unless the scene is per-
fectly Lambertian, structured light methods are sensitive to
global illumination effects and showed that such effects are
minimized when the spatial frequencies belong to a narrow
range, in which case, explicit separation of direct and global
illumination is unnecessary [8, 15]. They demonstrated this
result by designing a frequency constrained Gray code. The
same principled was applied by Micro PS [3] to create a
phase shifting method with multiple sinusoidals all within a
very narrow frequency range. Micro PS is robust to global
illumination effects and defocus of the illumination source
but, because of the complete lack of low frequency signals,
unwrapping of relative phase values is performed using a
nearest neighbor search on a LUT for each pixel, which
is both slow and error prone. Some errors are reduced to
some extent by using a median filter on the phase map.
Our method is inspired on Micro PS but with the help of
the embedded frequencies we perform temporal phase un-
wrapping [11, 14] which is fast and robust to unwrapping
errors without any extra filtering. On a different approach,
Modulated PS [1] adds a high frequency carrier so they can
explicitly separate the illumination components. Karpinsky
et al. [5] extract one low frequency signal from two high
frequency sinusoidals which they use to reduce the total
number of images projected, however their method does not
generalize to more than two signals. Liu et al. [6] use am-
plitude modulation to add a low frequency signal to high
frequency patterns reducing the effective dynamic range of
each signal. As result their patterns have both high and low
spatial frequencies, whereas ours embed a low frequency in
the phase resulting only in high spatial frequencies.
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Figure 3. A planar surface (a) and a convex bowl (b) scanned with
Multiple PS, Micro PS, and Embedded PS. Plot shows RMSE
against ground truth as number of projected patterns increase. The
plane is Lambertian while the bowl is a specular surface which
causes strong interreflections. (b) and (d) display object images
and ground truth phase maps.

3. Phase Shifting Methods
3.1. Single frequency phase shifting

Single frequency phase shifting (Single PS) [13] encodes
projector column (or row) numbers as the phase of a sinu-
soidal which is shifted in phase a few times. More for-
mally, let In be the n phase shifting pattern from a total
of N , n ∈ [0, N − 1], then the intensity of a projector
pixel (xp, yp) is given by

In(xp, yp) = o+ a cos(ωxp + θn) (1)

where o and a are an offset and amplitude respectively,
ω = 2πf depends on the frequency f , and θn = 2πn/N is
the n-shift. The intensity at a camera pixel observing such
patterns is given by

Rn(x, y) = oω + aω cos(ωxp + θn) (2)

where variables oω , aω , and xp are now unknown. By
projecting N > 2 shifts a system of equations is built and
the phase value is solved as

x̂p =
1

ω
tan−1

sin(ωxp)

cos(ωxp)
(3)

with xp = x̂p +kT due to the periodic nature of the sine
function. The value x̂p is called relative phase and the goal
is to recover the absolute phase xp by finding the unknown
integer k. The sine period is defined as T = 1/f . Unless T
is equal or larger than the total number of columns xmax,
finding the correct k is a non-trivial problem known as
phase unwrapping.



3.2. Multiple frequency phase shifting

Phase unwrapping is impossible to solve in Single PS for
general scenes where surface discontinuities are allowed,
except in the trivial case where k = 0, because the pro-
jected patterns do not have enough information. To ac-
count for this problem, multiple frequency phase shifting
(Multiple PS) repeats Single PS M times with frequencies
f1, f2, . . . , fM withM>1, fm>fm+1, and fM ≥1/xmax.
Given these conditions, absolute phases are computed using
temporal phase unwrapping [11]. The minimum number of
projected images for Multiple PS is 3M and most of the
works in phase shifting, including ours, are a variant of this
method.

3.3. Temporal phase unwrapping

Let φ1, . . . , φM be relative phases corresponding to fre-
quencies f1, . . . , fM , meeting the conditions stated in Sec-
tion 3.2. Let um be their corresponding unwrapped phases,
um = φm +kmTm, and let x be the true unknown abso-
lute phase. Note that if all values were exact then x= φm
for all m. In practice, values φm are corrupted by noise,
quantization, and measurement errors, and the relation is
not exact. Temporal phase unwrapping is used to com-
pute an absolute phase estimate x̂ by incrementally unwrap-
ping phases φm from the lowest to the highest frequency
as follows: 1) kM = 0; 2) km = bfm(um+1 − φm)e for
m = M − 1, . . . , 0, where b.e is a rounding function of its
argument; and 3) x̂ = φ1. Temporal phase unwrapping is
optimal [11] when periods of the sequence of frequencies
increase exponentially (e.g. 16, 256, 4096, . . .) rather than
linearly.

3.4. Micro Phase Shifting

Multiple PS, similar to Binary and Gray codes, gener-
ates patterns with a wide spectrum of frequencies, from low
to high, which makes them not robust to global illumina-
tion effects. To improve over this situation, Micro PS [3]
constrains the patterns to a very narrow spectrum. Addi-
tionally, Multiple PS computes different oω and aω values
(Equation 2) for each frequency, which is correct because
they vary with ω, however, when frequencies are very close
to each other the measured oω’s and aω’s across frequencies
are very similar too. Based on this observation, Micro PS
made the simplification of considering a single offset o and
amplitude a for all the projected frequencies reducing the
number of unknown variables. Therefore, reducing the min-
imum number of patterns in relation to the number of fre-
quencies. Micro PS projects 3 shifts of one frequency, as
Single PS, and one extra pattern for each additional fre-
quency. The total number of projected patterns is M + 2
for M frequencies. Solving all the unknown in a single lin-

ear system they recover the following phase vector

u = [cosφ1, sinφ1, cosφ2, cosφ3, · · · , cosφM ]T (4)

where only the relative phase φ1 can be solved using Equa-
tion 3. Temporal phase unwrapping cannot be applied be-
cause the all-high frequencies do not follow the stated con-
dition and because the values of φ2 to φM cannot be ex-
tracted from u. To overcome this limitation, a look-up-
table (LUT) is built with the value of vector u for inte-
gers from 0 to xmax (all projector columns), and unwrap-
ping is done with a nearest neighbor search for each de-
coded pixel. LUT-unwrapping is slow and not very robust
because measurement vector u is corrupted with noise and
because phase values φm are continuous, whereas the LUT
has only a subset of them. As result, median filtering of the
unwrapped phase map is almost mandatory for Micro PS
which smooths out some fine structures and adds extra pro-
cessing time, without necessarily removing all the errors.
Figure 2 displays how frequent this unwrapping errors oc-
cur in Micro PS compared to Multiple PS and Embedded
PS both of which use temporal phase unwrapping. In sum-
mary, Micro PS is robust to global illumination effects by
design but produces frequent unwrapping errors.

4. Embedded Phase Shifting

Embedded PS is a new multiple frequency phase shift-
ing method. Its key properties are that it is robust to global
illumination effects, similar to Micro PS, and that uses tem-
poral phase unwrapping, similar to Multiple PS, on the con-
trary, neither Micro PS nor Multiple PS have both prop-
erties. Our algorithm takes advantage of the fact that any
combination of two or more relative phases could be used
to compute a phase of a new signal of different frequency.
In particular we use this property to generate a sequence
of low frequency signals, from a sequence of high frequen-
cies, which we use together with temporal phase unwrap-
ping to recover the absolute phase for all frequencies. We
now explain our method: Section 4.1 refers to pattern cre-
ation, Section 4.2 to the recovery of relative phases from
images, and Section 4.3 to absolute phases and depths mea-
surements.

4.1. Coding strategy

Let be {T1, . . . , TM} a set of real numbers greater than 1,
we define embedded frequency Fm as

Fm =
1

T1
· · · 1

Tm
. (5)

They meet the relation Fm > Fm+1. We define a set of
pattern frequencies {f1, . . . , fM} as
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Figure 4. Multiple depth measurements. (a) Scanned object image. 3D point clouds generated with Embedded PS using (b) a single depth
measurement and (c) 10 depth measurements. Averaging multiple depths removed randomized noise while preserving small discontinuities
as the step at the paper label. (d) and (e) are magnified plots of the surface profile within the selected boxes.


f1
f2
f3
...
fM

 =


1 0 0 0
1 1 0 . . . 0
1 0 1 0

...
. . . 0

1 0 0 . . . 1




F1

F2

F3

...
FM

 . (6)

They all meet the relation f1 ≤ fm ≤ fM , being fM−f1
the pattern frequency range.

Parameters Tm define both the set of embedded (Equa-
tion 5) and pattern frequencies (Equation 6) and the user is
free to choose their values with the requirement of FM ≥
1/xmax, which ensures that the set of embedded frequen-
cies meet the conditions from Section 3.2 so that temporal
phase unwrapping can be used. By changing values Tm we
can adjust the pattern frequency range as desired.

Let be {N1, . . . , NM} a set of integers greater than 1.
Now, use Equation 1 to create a set of phase shifting patterns
with Nm shifts for each pattern frequency fm. The total
number of patterns created N is given by

N =

M∑
m=1

Nm (7)

Integers Nm define the number of phase shifts θm,n pro-
jected for each frequency fm. They must be chosen such as
N ≥ 2M+1 to ensure that a linear system used for decod-
ing (Equation 10) is not underdetermined. It is common to
set N1 = 3 and Nm equal 2 or 3 for m > 1.

It is assumed that M > 1 resulting in 5 as the mini-
mum number of patterns for this method. Note that a to-
tal of Nf = 2M − 1 pattern and embedded frequencies
are encoded with a minimum of N = 2M + 1 patterns,

or equivalently, Nf + 2 patterns are projected for Nf fre-
quencies, same pattern-frequency count relation than that of
Micro PS.

Coding Example: if xmax = 1024 we could set T1 =
16 and T2 = T3 = 8. The embedded frequencies (Equa-
tion 5) are F1 = 1/16, F2 = 1/128, and F3 = 1/1024.
The pattern frequencies (Equation 6) are f1 = 1/16, f2 =
1/14.22, and f3 = 1/15.75, being all high frequencies. We
could set N1 = 3 and N2 = N3 = 2; defining f1 shifts as
θ1,1 = 0, θ1,2 = 2π/3, and θ1,3 = 4π/3; and f2 and f3
shifts as θ2,1 = θ3,1 = 0 and θ2,2 = θ3,2 = 2π/3. The total
number of patterns (Equation 7) is N = 7. Note that Fm’s
follow an exponential relation which is optimal for temporal
phase unwrapping.

4.2. Pattern decoding

Each camera pixel location is decoded independently.
Let r be a radiance vector containing the values in the im-
age sequence at the position being decoded, let be o an off-
set and am an amplitude value, and let be u a phase vector
defined as

u = [o, c1, s1, . . . , cM , sM ]T , (8)

cm = am cos(ωmφm), sm = am sin(ωmφm). (9)

We recover the phase vector by solving for solving for u
in Equation 10 and we use each pair (cm, sm) in Equation 3
to obtain the a relative phase φm.

u = argmin
u
||r−Au||, (10)

A =

1 A1

...
. . .

1 AM

 , (11)



Am =

 cos(θm,1) − sin(θm,1)
...

...
cos(θm,Nm

) − sin(θm,Nm
)

 , (12)

A is the shift-matrix and is fixed for all pixels.
Finally, we compute a relative phase Φm for each em-

bedded frequency Fm by simple subtraction{
Φ1 ≡ φ1
Φm = φm − φ1 for m > 1.

(13)

Relative phases φ1 to φF must be unwrapped to recover
depth information at the corresponding camera pixel. Rel-
ative phases Φ1 to ΦF provide the information required to
perform the unwrapping.

4.3. Unwrapping with embedded frequencies

We apply temporal phase unwrapping to unwrap phases
Φ2 to ΦF (we skip Φ1 = φ1). Since by design the em-
bedded frequencies meet the conditions from Section 3.2.
Unwrapped Φm’s are not directly used for depth estimation
because they are sensitive to noise. Instead, unwrapped Φ2,
corresponding to the highest embedded frequency, is accu-
rate enough to unwrap all phases φm with little or no error.
All unwrapped φm’s were extracted from high frequency
patterns and provide reliable depth measurements. As an
alternative, all pattern and embedded frequencies could be
sorted from highest to lowest and unwrapped together in a
single step, but we prefer to unwrap each φm independently
using only Φ2 to generate independent depth estimations.

4.4. Multiple depths estimations

Multiple PS and Micro PS use multiple frequencies to
help the unwrapping procedure, but final depth measure-
ments are computed from a single frequency (the highest
one in Multiple PS and the first one in Micro PS), whereas,
our method recovers multiple absolute phase values φm, all
with comparable resolution given that frequencies fm are
all similar. We exploit this additional information to esti-
mate a more accurate final depth measurement by averaging
all φm’s which reduces white noise. In some cases other ap-
proaches might be preferred, for instance, outliers could be
detected using a voting scheme between all phases.

4.5. Theoretical Foundations

We present simple theorems explaining how embedded
frequencies are generated from pattern frequencies.

Theorem 1. Let a = a1 + k1T1 and a = a2 + k2T2 where
0 ≤ a1 < T1, 0 ≤ a2 < T2; and k1, k2 are integers. Then
a = a3 + k3T3 with

T3 =
T1T2
T2 + T1

, a3 = T3mod

(
a1
T1

+
a2
T2
, 1

)
, (14)

where k3 is an integer.

Theorem 1 applies to phase shifting as this: let a be an
unknown absolute phase; let be a1 and a2 relative phase val-
ues of periodic signals, with period T1 and T2 respectively,
recovered from the pattern images. Then, we can calculate
another relative phase a3 of a periodic signal with period T3
without this signal being explicitly present in the original
patterns. We calculate additional phases with the following
generalization.

Theorem 2. Let a = a1 + k1T1 and a = a2 + k2T2 where
0 ≤ a1 < T1, 0 ≤ a2 < T2; and k1, k2 are integers. If
αT2 + βT1 > 0 and α, β are integers, then a = a3 + k3T3
with

T3 =
T1T2

αT2 + βT1
, a3 = T3mod

(
αa1
T1

+
βa2
T2

, 1

)
, (15)

where k3 is an integer.

Theorem 2 permits to use two relative phase values to
recover the phase of additional periodic signals by varying
parameters α and β. Theorem 2 is further generalized by
applying the same concepts to multiple periodic signals.

Theorem 3. Let a = am + kmTm with m ∈ {1, . . . ,M},
where ∀m : 0 ≤ am < Tm. Let be k1, k2, . . . , kM integers.
Then a = a3 + k3T3 with

T3 =

(
M∑

m=1

αm

Tm

)−1
, a3 = T3mod

(
M∑

m=1

αmam
Tm

, 1

)
,

(16)

if
αmam
Tm

are all positive integers, where k3 is also integer.

Theorem 3 states that phases of additional periodic sig-
nals are found with any combination of the recovered rel-
ative phases. We call the new periodic signals embedded
signals and their frequencies embedded frequencies. We
note that Theorems 1, 2 and 3 are not restricted to sinu-
soidals, they are valid for any periodic signal class. There-
fore, they might be used to create an embedded version of
other structured-light coding schemes.

5. Experiments
Our equipment is a DLP LightCrafter 4500 projector and

a Point Grey GRAS-20S4C camera. The projector native
resolution is 912x1140 and the camera is configured to cap-
ture 1600x1200 8bits RGB images saved as PNG files. We
used the projector-camera calibration software [7] for ge-
ometric calibration. We implemented Embedded PS and
Multiple PS in Matlab and we have used the original au-
thors Matlab implementation of Micro PS, either with the
optimized 5-frequency set [14.57,16.09,16.24,16.47,16.60]
from Gupta et al. [3] or the frequencies Gupta et al. have
used in the sample data available at their website.



We performed various experiments to verify the perfor-
mance of Embedded PS, as seen in Figures 1 and 6. We
applied our algorithm on challenging objects which intro-
duce strong global illumination effects. A convex bowl with
specular surface is difficult to scan with phase shifting al-
gorithms due to the presence of severe interreflections. Em-
bedded PS scanned it using 15 images and produced a vi-
sually correct model, whereas, models from Micro PS and
Multiple PS display severe artifacts. Subsurface scattering
is also a major challenge for structured light 3D scanning.
Our algorithm produced an artifact-free model of an orange
presenting subsurface scattering with only 6 images.

Figure 3 quantitatively compares the algorithms. We se-
lected two simple objects: a plane and a convex bowl. These
objects were scanned by the three methods with incremen-
tally increasing number of patterns. Root Mean Squared
Error (RMSE) was measured for each scan. Ground truth
(GT) was obtained in an independent procedure where the
objects were scanned many times while gradually increas-
ing the number of patterns up to 123, point at which we saw
no further improvement on the results which we considered
as the most reliable measurement that could be made by
the method. Micro PS was not used for GT computation
because it is unclear how to select a large number of fre-
quencies all being coprime and varying a fraction of a pixel
within a very narrow band optimally. Figure 3 (a) shows
a plot corresponding to the RMSE on the plane for each
algorithm. Since almost no global illumination effects are
present in this scene, Embedded PS and Multiple PS ex-
hibit low error. Micro PS performs a little worse due to
unwrapping errors. In contrast, a similar plot in Figure 3 (c)
corresponding to the bowl, where a lot of interreflections
were present due to its geometry and specular finish, shows
how Multiple PS results are degraded, while Embedded PS
and Micro PS maintain their performance. Our algorithm
outperforms the other two in both cases.

Embedded PS, unlike Micro PS and Multiple PS, outputs
multiple depth measurements for each pixel. These multiple
depths allow to reduce randomized noise without applying
spatial filtering which smooths out fine details. Figure 4 (b)
shows a point cloud generated using a single depth estimate
and Figure 4 (c) one generated from 10 depth estimates for
each point. Both were created from the same 21 captured
images. We observed that the point cloud from multiple
depths is less noisy while the small step at the paper label is
clearly preserved.

Figure 5 compares the computation time for Micro PS
and Embedded PS versus the number of images processed.
In both cases, time is directly proportional to the number of
images, however, Embedded PS spent 1.1s to decode and
unwrap 7 images and it slowly increases to 4.5s for 21 im-
ages. On the contrary, Micro PS spent 44.7 seconds only on
the 7 image set.
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6. Discussion
We proposed a robust, accurate, and high precision phase

shifting 3D scanning method. Low frequency signals em-
bedded in high frequency patterns allow us (1) to only use
high spatial frequencies and avoid severe global illumina-
tion interference, (2) to unwrap relative phases with simple
closed-form equations without approximation nor quantiza-
tion, (3) to measure multiple 3D depths per pixel which per-
mits to denoise 3D measurements without spatial smooth-
ing, and (4) to compute 3D measurements fast. We proved
that embedded signals are not limited to sinusoidals, they
could be extracted from other classes of periodic signals
opening new possibilities for structured-light research.

Appendix
Proof of Theorem 1. We divide both equations with T1 and
T2 respectively

a

T1
=
a1
T1

+ k1,
a

T2
=
a2
T2

+ k2.

We find a by first adding both equations and next multiply-

ing them by T3 =
T1T2
T2 + T1

a = T3

(
a1
T1

+
a2
T2

)
+ T3 (k1 + k2),

a = T3mod

(
a1
T1

+
a2
T2
, 1

)
+ k′T3 + (k1 + k2)T3

Given that k1, k2 and k′ are all integers, k3 = k1− k2 + k′

is an integer too. Therefore,

a = T3mod

(
a1
T1

+
a2
T2
, 1

)
+ k3T3,

Theorems 2 and 3 are proved similarly.



(a) (b) (c) (d)

Figure 6. (a) Object images. (b) Proposed Embedded PS. (c) Micro PS. (d) Multiple PS. A bowl is a convex and Non-Lambertian surfaced
object which introduces interreflection between surfaces. Embedded PS robustly scans the bowl with very small noise while results from
the state-of-the-art carry severe noise. Fine structures on the leaf were clearly scanned by our algorithm using 7 images. Oranges are
difficult to scan due to subsurface scattering, our algorithm produced an excellent result using just 6 images. The proposed Embedded PS
scanned all objects robustly and precisely with a relatively small number of images even in presence of strong global illumination effects.
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