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Abstract

Standard approaches to computing interpolated (in-

between) frames in a video sequence require accurate pixel

correspondences between images e.g. using optical flow. We

present an efficient alternative by leveraging recent devel-

opments in phase-based methods that represent motion in

the phase shift of individual pixels. This concept allows in-

between images to be generated by simple per-pixel phase

modification, without the need for any form of explicit cor-

respondence estimation. Up until now, such methods have

been limited in the range of motion that can be interpolated,

which fundamentally restricts their usefulness. In order to

reduce these limitations, we introduce a novel, bounded

phase shift correction method that combines phase informa-

tion across the levels of a multi-scale pyramid. Additionally,

we propose extensions for phase-based image synthesis that

yield smoother transitions between the interpolated images.

Our approach avoids expensive global optimization typical

of optical flow methods, and is both simple to implement

and easy to parallelize. This allows us to interpolate frames

at a fraction of the computational cost of traditional op-

tical flow-based solutions, while achieving similar quality

and in some cases even superior results. Our method fails

gracefully in difficult interpolation settings, e.g., significant

appearance changes, where flow-based methods often in-

troduce serious visual artifacts. Due to its efficiency, our

method is especially well suited for frame interpolation and

retiming of high resolution, high frame rate video.

1. Introduction

Computing interpolated, in-between images is a classic

problem in image and video processing, and is a necessary

step in numerous applications such as frame rate conver-

sion (e.g. between broadcast standards), temporal upsam-

pling for generating slow motion video, image morphing,

as well as virtual view synthesis. Traditional solutions to

image interpolation first compute correspondences (mostly

leveraging optical flow or stereo methods), followed by

correspondence-based image warping. Due to inherent am-

biguities in computing such correspondences, most meth-

ods are heavily dependent on computationally expensive

global optimization and require considerable parameter tun-

ing [24]. With today’s trend in the movie and broadcast-

ing industry to higher resolution, higher frame rate video

(e.g. current cameras support 4k resolution at 120 frames

per second and beyond), there is the need for interpolation

techniques that can deal efficiently with this considerably

larger data volume. Standard optical flow techniques based

on global optimization often become inefficient for interpo-

lating this type of large scale, densely sampled input.

Recently, phase-based methods have shown promising

results in applications such as motion and view extrapola-

tion [10, 27]. These methods rely on the assumption that

small motions can be encoded in the phase shift of an in-

dividual pixel’s color. Currently, however, the spatial dis-

placement which can be encoded in the phase information

with these methods is highly limited, which narrows their

practical usability.

Contributions. To overcome this fundamental issue, we

propose a method that propagates phase information across

oriented multi-scale pyramid levels using a novel bounded

shift correction strategy. Our algorithm estimates and ad-

justs the phase shift information using a coarse-to-fine ap-

proach, assuming that high frequency content moves in

a similar way to lower frequency content. We propose

an adaptive upper bound on the phase shift that effec-

tively avoids artifacts for large motions, and an extension

to phase-based image synthesis that leads to smoother tran-

sitions between interpolated images. In combination, these

extensions considerably increase the amount of displace-

ment that can be successfully represented and interpolated,

rendering phase-based methods practical to be used for gen-

eral motion interpolation tasks, e.g., for high resolution,

high frame rate video.

Based on these extensions, we describe an efficient

framework to synthesize in-between images, which is sim-

ple to implement and parallelize. Our implementation al-

lows us to interpolate a HD frame in a few seconds on the

CPU and in 1 second on a GPU, while scaling favorably

for larger image sizes. Thus our method only requires a
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fraction of the time compared to typical flow-based meth-

ods, while having comparable memory requirements and

obtaining visually similar results. In the presence of severe

brightness variations, our approach can even give better re-

sults than optical flow. Furthermore, our method only has

a small set of parameters, most of which were fixed for all

experiments. Evaluations on ground truth data against state-

of-the art techniques using optical flow show similar quality

and favorable performance in terms of efficiency.

2. Related Work

Image interpolating techniques can roughly be classified

as either Lagrangian or Eulerian. While Lagrangian meth-

ods model motion as spatial pixel displacement, Eulerian

methods consider the change of color per pixel over time.

Lagrangian methods. The most popular methods for

finding pixel correspondences across images are based on

optical flow; see [4, 24] for extensive reviews. Semi-

nal works include the first global variational formation by

Horn and Schunck [14] and the local alternative by Lu-

cas and Kanade [16]. We compare to modern global meth-

ods that perform well when used for interpolation, includ-

ing the method of Brox et al. [6], and the currently best-

ranked method for interpolation on the Middlebury bench-

mark [29]. As most optical flow methods rely on global

optimization to resolve matching ambiguities they are dif-

ficult to implement and parallelize, and slow in conver-

gence. There has been some parallel flow implementations

on GPUs which allow to significantly reduce running times

[28, 30]. However, they still do not scale well w.r.t. im-

age size and are restricted by GPU memory, limiting their

applicability for high resolution data. Tao et al. [26] pro-

posed a flow method that replaces global optimization by

edge-aware filtering. They achieve a favorable scaling in

practice, but at the cost of sacrificing accuracy. Flow meth-

ods are in general sensitive to parameter settings and tend

to produce visual artifacts for strong brightness changes. As

an alternative to optical flow, Mahajan et al. [17] compute

paths in the source images and copy pixel gradients along

them to the in-between images, that are then obtained by

Poisson reconstruction. While alleviating some problems

of optical flow, this method still requires expensive global

optimization and careful parameter tuning. In contrast to

above approaches, our method is simple and local, allowing

for an easy and efficient parallelization. It scales well w.r.t.

image size, does not require careful parameter tuning, and

fails gracefully in challenging cases.

Some earlier work [11, 12] used phase information di-

rectly in optical flow computations by replacing image

brightness with phase in the data term of standard optical

flow formulations. The main benefit is that the phase is

more robust than the amplitude w.r.t smooth lighting vari-

ations. More recent methods include reliability measure-

ments and GPU implementations [13, 19]. These methods

use phase information only to match pixels in a standard op-

tical flow formulation, whereas our method interpolates the

phase information directly.

Eulerian methods. There has been a recent interest in us-

ing Eulerian methods for enhancing subtle motions in a sim-

ple and efficient way [9, 10, 27]. We aim at extend these

ideas in order to use them for frame interpolation, which

mainly requires to model larger amounts of motion.

Arguably the simplest Eulerian method for interpolating

images is weighted averaging. As no motion is interpo-

lated, ghosting of high frequency content is unavoidable. To

hide ghosting artifacts, multiband blending [7] or gradient

domain blending [20] can be used. Further improvements

can be obtained by matching the visual appearance of the

images before blending, e.g. by manipulating the scales of

a pyramid decomposition [25]. However, all these meth-

ods are designed to create composites of images where the

blending is done along seams or within a mask. Thus non-

trivial modifications would be needed to use them to inter-

polate the motion between two images. Image melding [8]

allows blending between images using patch based similar-

ity, but this approach is not guaranteed to yield smooth and

temporally consistent results.

Most related to our work is the method of Didyk et

al. [10] that proposes a phase-based approach to extrapo-

late a pair of stereo images to multi-view content for auto-

multiscopic 3D displays. As we show in our comparisons,

this method is restricted to very small displacements, and

cannot directly be applied for more general frame interpo-

lation for video. To deal with larger displacements as well

as fractional interpolation of views, we present several im-

provements including a novel, bounded shift correction al-

gorithm and modifications required for a smooth interpola-

tion between frames.

3. Method

3.1. Phasebased Motion Interpolation

Phase-based approaches build on the insight that the mo-

tion of certain signals can be represented as phase-shift. We

first explain the basic concepts before introducing our gen-

eralization and modifications for image interpolation.

1D Case. Consider a one dimensional sinusoidal function

shown in Figure 1 which is defined as y = A sin(ωx − φ),
where A is the amplitude, ω the angular frequency and φ
the phase. A translation of this function can be described

by modifying the phase, e.g. by subtracting π/4 in our ex-

ample. The phase shift φshift, which corresponds to the ac-

tual spatial displacement between two translated functions,

is defined as the phase difference φdiff between the two



Figure 1: The translation of two sinusoidal functions (left)

can be interpolated according to Equation (2) (right).

phases of the curves scaled by ω:

φshift =
φdiff

ω
. (1)

Let us now modify the phase difference according to a

weight α ∈ (0, 1) that describes an intermediate position

between the functions:

y = A sin(ωx−αφdiff ) = A sin(ω(x−αφshift)) . (2)

The resulting functions then correspond to intermediate si-

nusoids representing the translational motion, see Figure 1.

This idea can be extended to general functions f(x)
translated by a displacement function δ(x) [27]. The shifted

function f(x+δ(t)) can be represented in the Fourier do-

main as a sum of complex sinusoids over all frequencies ω:

f(x+ δ(t)) =

ω=−∞
∑

ω=−∞

Rω(x, t) , (3)

where each sinusoid represents one band Rω(x, t) =
Aω eiω(x+δ(t)). The corresponding phase φω = ω(x+δ(t))
can be directly modified w.r.t. α, leading to modified bands

R̂ω(x, t) = Aω eiω(x+αδ(t)) . (4)

The in-between functions are then obtained by integrating

the modified bands in accordance to (3).

2D Generalization. For two dimensional functions one

can separate the sinusoids into bands not only according to

the frequency ω, but also according to spatial orientation

θ, using e.g. the complex-valued steerable pyramid [21, 22,

23]. The steerable pyramid filters resemble Gabor wavelets

and, when applied to the discrete Fourier transform of an

image, they decompose the input images into a number of

oriented frequency bands Rω,θ. The remaining frequency

content which has not been captured in the pyramid levels

is summarized in (real valued) high- and low-pass residuals.

An example for such a decomposition can be found in [27].

Phase computation. The complex-valued response Rω,θ

obtained by applying the steerable filters Ψω,θ [21] to an

image I can be written as:

Rω,θ(x, y) = (I ∗Ψω,θ)(x, y) (5)

= Aω,θ(x, y) e
iφω,θ(x,y) (6)

= Cω,θ(x, y) + i Sω,θ(x, y), (7)

Figure 2: Interpolation of a large phase shift, with the same

initial phase difference as in Figure 1. Adding (in this case)

2π to the phase difference enables correct interpolation of

larger motion. The challenge is how to reliably estimate

such large shifts.

where Cω,θ is the cosine part, representing the even-

symmetric filter response, and Sω,θ is the sine part,

representing the odd-symmetric filter response. From

this we can compute the amplitude Aω,θ(x, y) =
√

Cω,θ(x, y)2 + Sω,θ(x, y)2, and the phase components

φω,θ(x, y) = arctan(Sω,θ(x, y)/Cω,θ(x, y)).

Phase difference. Based on the assumption that small

motion is encoded in the phase shift, interpolating it re-

quires the computation of the phase difference φdiff (see

Equation (1)) between the phases of the two input frames as

φdiff = atan2(sin(φ1 − φ2), cos(φ1 − φ2)) , (8)

where atan2 is the four-quadrant inverse tangent. This ap-

proach results in angular values between [−π, π], which

correspond to the smaller angular difference between the

two input phases. It additionally determines the limit of

motion that can be represented, which is bounded by:

|φshift| =
|φdiff |

ω
≤

π

ω
, (9)

where ω = 2πν, and ν being the spatial frequency.

In the multi-scale pyramid, each level represents a par-

ticular band of spatial frequencies ν ∈ [νmin, νmax]. As-

suming νmax corresponds to the highest representable fre-

quency on that level, then a phase difference of π corre-

sponds exactly to a shift of one pixel. While this is a rea-

sonable shift for low frequency content represented on the

coarser pyramid levels, it is too limiting for high frequency

content to achieve realistic interpolation results in the pres-

ence of larger motions. Our extensions described below

overcome this limitation.

3.2. Bounded Shift Correction

Large displacements corresponding to a phase difference

of more than π lead to a phase ambiguity. Due to the peri-

odicity of the phase value, the phase difference is only de-

fined between [−π, π] and corresponds to the smallest angu-

lar difference. An example is shown in Figure 2, where the
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(a) Linear blending of the input images
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(b) Shift correction based on absolute values [10]
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(c) Our shift correction based on phase differences

Figure 3: Shift correction comparison. Simple linear blending (a) results in obvious ghosting. The approach of [10] (b)

interpolates, but leads to undesirable oscillations which manifest as ringing and blurring artifacts. Our approach (c) produces

a plausible interpolation and resolves these problems. ( c© Tom Guilmette [1]).

actual spatial displacement is larger than the original com-

puted phase by a multiple of±2π. Although the input func-

tions look identical to Figure 1, the intermediate sinusoids

differ depending on the assumed phase shift. Interpolation

only works as long as the shift computed on a particular

level mainly captures the frequency content corresponding

to the true motion.

Didyk et al. [10] propose to handle this problem by set-

ting the phase difference at pyramid level l to two times

its absolute value at the next coarser level l+1 whenever

the phase difference becomes greater than π/2. Formally,

if |φl+1
diff | > π/2, the corrected phase difference is given

by φ̃ l
diff = 2φl+1

diff . This essentially defines a level where

the phase difference of a pixel is assumed to correctly esti-

mate the motion, and then this value is simply copied to the

remaining finer resolution levels, ignoring their own respec-

tive phase values. This leads to a loss of detailed motion for

high frequency content, resulting in artifacts such as ring-

ing and blurring of detail (see Figure 3b). Additionally, this

approach is limited to pyramids constructed using a scal-

ing factor of two, which is known to be suboptimal for the

robustness of image-based multi-scale methods [6].

Confidence based shifting. To overcome the limitations

of the above approach, we developed a new confidence es-

timate for the shift correction which takes all available shift

information into account and interpolates the motion of high

frequency content more robustly. Our approach is based on

the assumption that the phase difference between two reso-

lution levels does not differ arbitrarily, i.e. phase differences

between levels can be used as a confidence measure that

quantifies whether the computed phase shift is reliable.

More specifically, we try to first resolve the 2π ambigu-

ity (Figure 2) based on the information of the next coarser

level. Only if the computed shift on the current level l dif-

fers more than a threshold from the coarser level l + 1 we

perform shift correction on level l. To this end, we first

add multiples of ±2π to φdiff s.t. the absolute differences

between the phase values of consecutive levels are never

greater than a given tolerance. We use π as a tolerance dis-

tance which modifies the phase values in such a way that

the phase difference of a pixel between two levels is never

larger than π. Because the original phase differences are

truncated to the range [−π, π], this step allows the exten-

sion of the range in a meaningful way.

The actual shift correction depends on the difference be-

tween two levels, which serves as our confidence estimate

ϕ = atan2
(

sin(φl
diff−λφ

l+1
diff ), cos(φ

l
diff−λφ

l+1
diff )

)

,

(10)

where the phase value of the coarser level is scaled ac-

cording to an arbitrary pyramid scale factor λ > 1 to get

a scale-independent estimate. If |ϕ| > π/2, we apply

shift correction and obtain the corrected phase difference

as φ̃ l
diff = λφl+1

diff . As shown in Figure 3c and in the sup-

plementary video [2], this approach produces considerably

higher quality interpolation results compared to the simpler

correction based on absolute values [10].

Bounded phase shift. While our shift correction allows

larger motions to be modeled, there is still a limit to the

motion that can be represented without introducing blur-

ring artifacts. We therefore propose an additional enhance-

ment, which limits the admissible phase shifts to well rep-

resentable motions.

To this end we limit the phase difference by a constant

φlimit. If the phase value is above this limit, i.e. |φl
diff | >

φlimit, the phase value from the next coarser level is used

as the corrected phase difference: φ̃ l
diff = λφl+1

diff .

We define φlimit depending on the current level l, the

total number of levels L, and the scale factor λ as

φlimit = τ π λL−l , (11)



(a) Input image [18] (b) Unbounded (c) Bounded (� = :1)

Figure 4: Bounding in the shift correction allows to retain

sharpness when interpolating large motion.

where the parameter τ ∈ (0, 1) determines the percentage

of limitation. On the coarsest level we set the corrected

phase difference to zero if its magnitude exceeds φlimit.

The effect of this limiting is shown in Figure 4 where

blurring that extends beyond the moving car is avoided as

can be seen in the retained sharpness of the white stripe.

As an additional advantage over prior work [10], our for-

mulation is generalized to arbitrary pyramid scale factors λ.

Similar to findings for optical flow based techniques [6],

we found this to be important for high quality results as

with more pyramid levels it becomes possible to represent

sharper transitions, meaning that the phase differences for

higher frequencies are estimated more reliably and accu-

rately. Decreasing the scale factor naturally comes at the

cost of higher memory consumption and increased compu-

tation time. We found a good balance of result quality and

computation time, which we discuss in Section 4.

3.3. Phase Interpolation

For the rest of this section we omit the superscript l de-

noting the pyramid level to improve readability.

Matching phase differences. We now explain how to

compute a smooth interpolation between phases φ1 and φ2.

Due to the shift correction, φ1 + φ̃diff is no longer guar-

anteed to match φ2, or any equivalent multiple φ2 ± γ2π,

where γ ∈ N0. In order for the resulting images to be

smoothly interpolated, we must preserve the original com-

puted phases φ1 and φ2, up to the 2π ambiguity, while still

respecting the shift corrected phase difference φ̃diff . We do

this by searching for a phase difference φ̂diff that is ±γ2π
the original phase difference φdiff from Equation (8) while

being as close as possible to φ̃diff , i.e.,

φ̂diff = φdiff + γ∗ 2π , (12)

where γ∗ is determined as

γ∗ = argmin
γ

{

(

φ̃diff − (φdiff + γ 2π)
)2

}

. (13)

Due to the adjustment we can now compute the phase φα

of the interpolated images based on the phase of one input

frame and a fraction of the final phase differences φ̂diff as

φα = φ1 + α φ̂diff . (14)

Subtracting α φ̂diff from φ2 would give the same result.

Blending amplitudes. To reconstruct the interpolated im-

ages we not only need to interpolate the phase, but also the

low-pass residual and the amplitude. For the amplitude we

found that using the approach of Didyk et al. [10], which

extrapolates using the amplitude value of the closer input

frame, leads to undesirable popping artifacts for interpola-

tion. To obtain a smoother transition, we propose to linearly

blend the amplitude as well as the low frequency residual.

On coarse resolutions these quantities mainly correspond to

the global luminance difference between the input frames,

hence linear blending does not create any visible artifacts.

In combination, both extensions proposed in this section

allow for smooth interpolation between the two images, as

demonstrated in the supplementary video [2]. Additionally

we add back the high-pass residual of the closer input frame

to retain as much high frequency content as possible.

3.4. Algorithm Summary

Algorithm 1 provides a summary of all the key steps

of our method. The handling of the residuals as described

above is omitted for reasons of brevity.

Algorithm 1 The inputs are two images I1 and I2 and inter-

polation parameter α. The output is the interpolated image

Iα. P1 and P2 are the steerable pyramid decompositions.

(P1, P2)← decompose(I1, I2) ⊲ See [21]

(φ1, φ2)← phase(P1, P2)

(A1, A2)← amplitude(I1, I2)

φdiff ← phaseDifference(φ1, φ2) ⊲ See Eq. 8

for all l = L− 1 : 1 do

φ̃l
diff ← shiftCorrection(φ̃l+1

diff ) ⊲ See Sec. 3.2

end for

φ̂diff ← adjustPhase(φdiff , φ̃diff ) ⊲ See Eq. 12

φα ← interpolate(φ1, φ̂diff , α) ⊲ See Eq. 14

Aα ← blend(A1, A2, α) ⊲ See Sec. 3.3

Pα ← recombine(φα, Aα) ⊲ See [21]

Iα ← reconstruct(Pα)

4. Results

We evaluate our approach using images from the Mid-

dlebury dataset [4], from the challenging dataset for stereo

and optical flow [18], as well as ground truth data ob-

tained with high-speed cameras [1, 3]. We compare our



(a) Input images (only one shown) [1, 3]

(b) Optical flow (global) [6]

(c) Our phase-based method

Figure 5: Interpolated frames using optical flow (b) and our

approach (c). Our approach produces similar quality re-

sults while being faster and simpler. ( c© Tom Guilmette [1],

c© Vision Research [3])

results to interpolation methods using state-of-the art op-

tical flow, including MDP-Flow [29] which currently ranks

first on the Middlebury interpolation benchmark, as well the

method of Brox et al. [6] and a GPU flow implementation

(flowlib) [28]. We also include comparisons to the Sim-

pleFlow method [26] that avoids global optimization and to

the local optical flow method of Lucas-Kanade [16] using

a multi-scale pyramid and iterative refinement [5] imple-

mented in Matlab (and therefore removed from the timings).

For synthesizing the in-between images given the computed

flow fields, we apply the interpolation algorithm used in the

Middlebury interpolation benchmark [4]. We also compare

to Eulerian methods, including simple linear blending, and

the work of Didyk et al. [10].

Qualitative comparisons. Figure 5 visually compares

our method to a representative flow-based method and

shows that we obtain visually similar results, which be-

comes even more obvious in the supplementary video [2].

Besides being computationally more expensive, optical

flow-based approaches also fail when brightness constancy

is violated. In these cases, our approach reduces to simple

blending, which is preferable to the artifacts caused by op-

tical flow. See Figure 6 and the supplementary video [2] for

examples with strong lighting changes.

The robustness of our phase-based method in dealing

with brightness changes can also be used to interpolate

scenes with both motion and color change, as color changes

are often encoded in the lower frequencies, which our

(a) Input images [18, 3]

(b) Optical flow (global) [6] (c) Our phase-based method

Figure 6: Some failure cases for optical flow due to strong

lighting changes that are gracefully handled by our method.

( c© Vision Research [3])

(a) Input images (b) Flow [6] (c) Ours

Figure 7: Interpolating between an images featuring both

scene motion and color change.

phase-based method handles well. An example is shown

in Figure 7 around the border of the sun.

Ground truth comparisons. We conducted a number of

ground truth comparisons using the leave-some-out method,

i.e. we synthesize intermediate frames and compare these

to the original ones. We use one synthetic example (Roto)

that demonstrates typical artifacts. All other sequences are

extracted from real world footage taken from the Middle-

bury database [4], or from high speed videos recorded at

120+fps [3]. We focus on challenging scenes with many

moving parts as well as changing lighting conditions.

The plot in Figure 8 (left) visualizes the decay in qual-

ity when leaving out an increasing number of intermediate

images (causing larger displacements). We computed er-

ror measurements for different Lagrangian, i.e. flow-based

methods, as well as Eulerian methods. As error measure-

ments we use the sum of squared distances (SSD). The sup-

plementary material also reports results for the perceptually

motivated structural similarity (SSIM) measure. The plot

in Figure 8 (right) visualizes the SSD averaged over several

frames for various sequences when skipping a single frame.

Both plots show that our phase-based method performs

better than other Eulerian approaches, and is on par with

optical flow methods. This observation is also confirmed by

the SSIM error measures shown in the supplementary ma-
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Figure 8: Error measurements (SSD) for different methods. On the RubberWhale sequence [4] showing quality degradation

with increased motion between frames (left). Averaged over several frames of different sequences, skipping one frame (right).

Example images from these datasets are shown in the supplementary material.

Method Processing Synthesizing Total Time

MDP-Flow2 [29] 952.1 0.7 952.8

SimpleFlow [26] � 70.2+3.1 0.7 74.0

Brox et al. [6] 25.2 0.7 25.9

Our method (CPU) 3.3 3.3 6.6

flowlib (GPU) [28] 3.1 0.7 3.8

Our method (GPU) 0.9 0.3 1.2

Table 1: Runtimes (in seconds) for different methods mea-

sured when interpolating a 1280x720 (HD) frame. ∗For

SimpleFlow we report the sum of the preprocessing time

(done in Matlab) and the final flow computation.

terial. In general, optical flow-based methods give slightly

better error measurements, largely because they introduce

less blur, see Figure 10 for examples and the end of this

section for a detailed discussion of the limitations. In many

cases however, the numerical differences do not correspond

to differences in visual quality, which is our main goal, and

which is best visible in the supplementary video [2].

Concerning parameters, for Pyramid LK we optimized

the smoothness parameter defined by the window size and

for the method of Brox et al. [6] we used the parameters

proposed by the author of the implementation [15]. Our

method has more intuitive parameters that can mostly be

fixed. We discuss parameters in more detail below.

Running times. In Table 1 we report running times for

interpolating between a pair of 1280x720 (HD) images.

We use such a rather small resolution to be able to run

all competing methods, as the highly accurate MDP-Flow2

method [29] runs into memory limitations on larger images.

All measurements were performed on a standard desktop

PC (Intel Core i7 3.4GHz, 32GB memory). The GPU mea-

surements were run on a GeForce GTX 770 with 2GB mem-

Image Resolution
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R
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SimpleFlow
Brox et al.
. owlib (GPU)
Our Method (CPU)
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Figure 9: Log-log plot of running time versus (vertical) im-

age resolution when interpolating one image. Our method

scales favorably compared to flow-based methods.

ory. We report running times for processing the images

and synthesizing one output image. For the phase-based

method, processing includes the pyramid decomposition as

well as our bounded shift correction. Synthesizing an inter-

mediate image includes the smooth interpolation computa-

tions as well as the collapsing of the pyramid. For optical

flow these two steps correspond to computing the optical

flow field and the warping procedure, respectively.

For the flow-based methods we use available code;

for Brox et al. [6] we use the C++ implementation of

[15], whereas for MDP-Flow2 [29], SimpleFlow [26] and

flowflib [28] we use the C / CUDA code provided by the

authors. The image warping using the flow fields to inter-

polate the intermediate images is implemented in C++. Our

method is implemented and parallelized in C++ on the CPU

and using CUDA on the GPU.

Comparing the times in Table 1 clearly shows that our

method is significantly and consistently faster than any of

the flow-based methods, both for CPU as well as GPU im-

plementations. Additionally, the log-log plot in Figure 9



(a) Input Images [4] (b) Optical flow [29] (c) Our phase-based method

Figure 10: Introduced blur of different methods. (a) shows the input images, compared to interpolated images generated by

optical flow (b), and our method (c), which are slightly more blurry.

shows that our method scales favorably w.r.t. the number of

pixels compared to flow-based methods, which is an impor-

tant criterion for processing high resolution data.

Implementation details. Our phase-based approach has

very few, and intuitive parameters. The main parameters

control the number of orientations and levels corresponding

to the different scales of the pyramid. More levels and ori-

entations allow for a better separation of the motion at the

expense of increased memory and computation time. Un-

less otherwise specified we used the following parameters:

The pyramid was constructed using #θ = 8 number of ori-

entations, a scale factor λ = 1.2, and the number of levels L
is determined s.t. the coarsest level has a minimal width of

10 pixels. For the limitation factor we use τ = 0.2. The size

of the coarsest level together with this choice of τ leads to

a theoretical limit of motion which can be modeled reliably

as 2% of the image width. We applied the pyramid decom-

position and the phase modifications to each color channel

in Lab color space independently.

Discussion and limitations. While our method provides

an efficient alternative to optical flow, it has some limita-

tions. Although we retain more sharpness compared to [10]

(see e.g. Figure 3), our approach still incurs some blurring

even in areas with small motion. This is due to the fact

that the high-pass residual contains the highest frequencies

whose motion is not represented in any pyramid levels and

consequently the motion of this frequency can currently

not be interpolated. In general we thus cannot reach the

same level of detail as Lagrangian approaches that explic-

itly match and warp pixels, see Figure 10. Note however

that the introduced blur is often very subtle. Reintroducing

or preserving high frequencies in phase-based methods is

still an interesting and promising area for future work.

Similar observations apply to large motions of high fre-

quency content that cannot be represented by our phase es-

timation. Here our algorithm degenerates to linear blend-

ing, which however often leads to less objectionable arti-

facts than the entirely wrong motion estimates produced by

optical flow in similar situations. An example is shown in

Figure 11 where interpolating an image between neighbor-

ing frames, i.e., with small motion, the detail of the water re-

(a) Original Frame (b) Small motion (c) Large motion

Figure 11: When interpolating between frames with small

displacements (b), our approach can reconstruct high fre-

quency details. For a separation of twenty frames (c), the

larger motion causes blurring. ( c© Vision Research [3])

mains, whereas when interpolating between images twenty

frames apart, the motion of the water is too large and it be-

comes blurred. On the other hand, the current trend towards

higher frame rate video will surely continue in the foresee-

able future, and thus the apparent motion between frames

will become smaller, and efficiency more important.

5. Conclusions

We have presented a novel method for frame interpo-

lation using a phase-based technique. We compared our

results with state-of-the-art optical flow-based approaches

and found similar visual quality over a number of real world

datasets. For strong illumination changes we even observed

a better performance. Important advantages of our method

are fewer, more intuitive parameters that can mostly be

fixed, as well as a graceful degradation for challenging sce-

narios. Most importantly, our method is computationally

very efficient and simple to implement and parallelize. All

these make our method a practical tool for frame interpo-

lation on high resolution, high frame rate video, which is

generally challenging for optical flow based techniques.

We hope that this new perspective on a long standing

problem has many interesting areas for future work. Mak-

ing phase computation more robust using spatial similar-

ity would be an interesting direction. Additionally, one

may combine phase-based with traditional Lagrangian ap-

proaches to generate higher quality results and handle illu-

mination changes more gracefully.
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