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Abstract

Nowadays, detecting objects in 3D scenes like point
clouds has become an emerging challenge with various ap-
plications. However, it retains as an open problem due to
the deficiency of labeling 3D training data. To deploy an
accurate detection algorithm typically resorts to investigat-
ing both RGB and depth modalities, which have distinct s-
tatistics while correlated with each other. Previous research
mainly focus on detecting objects using only one modality,
which ignores exploiting the cross-modality cues. In this
work, we propose a cross-modality deep learning frame-
work based on deep Boltzmann Machines for 3D Scenes ob-
ject detection. In particular, we demonstrate that by learn-
ing cross-modality feature from RGBD data, it is possible to
capture their joint information to reinforce detector train-
ings in individual modalities. In particular, we slide a 3D
detection window in the 3D point cloud to match the exem-
plar shape, which the lack of training data in 3D domain is
conquered via (1) We collect 3D CAD models and 2D pos-
itive samples from Internet. (2) adopt pretrained R-CNNs
[2] to extract raw feature from both RGB and Depth do-
mains. Experiments on RMRC dataset demonstrate that the
bimodal based deep feature learning framework helps 3D
scene object detection.

1. Introduction

Coming with the popularities of depth sensors like
Kinect, nowadays have witnessed an explosive growth of
RGB-Depth (RGBD) data to be processed and analyzed,
with extensive applications in robotic navigation, pilotless
automobile, gaming and entertainments etc. In the core of
such applications lies the problem of RGBD scene pars-
ing, i.e., inferring labels of individual verxels to parse their
semantic structure. The parsing follows a similar proce-
dure as what has been done in 2D images. In a typically
setting, verxels are first over-segmented into superverxels

[1, 4, 5]. Subsequently, semantic labels of individual su-
perverxels are inferred using either discriminative [, 4] or
generative [0, 7] schemes, which are followed by a joint
optimization among labels of spatially nearby supervexel-
s using models such as Conditional Random Field (CRF)
[1, 4] or Markov Random Filed (MRF) [5, &].

In this paper, we focus on object detection in RGBD
point clouds, which retains as an open problem in the state-
of-the-art semantic parsing algorithms of 3D point clouds
[6, 7, 9, 10]. Among various designs, detection based la-
beling has attracted ever increasing research interest [0, 7].
In such a case, detector templates are trained from labeled
positive and negative examples for each class labeled of-
fline. However, the detector accuracy heavily depends on
the sufficiency of training labels [6, 7], which in turn is
very difficult to ensure comparing to the 2D case.

To the best of our knowledge, the existing labels avail-
able for RGBD images are mostly hundreds to thousand-
s, for instance, NYU [11], RMRC [10], and SUN3D [12],
which is of scales less comparing to endeavors on the im-
age domain like ImageNet [13], LabelMe [14], and Tiny
Images [15]. On one hand, as at its earliest stage, it retain-
s a far long way to accumulate sufficient labels from the
research community. On the other hand, it is much more
difficult to label the RGBD regions or cubics comparing
to the 2D case, which typically needs interactive rotation
and scaling of the RGBD data rendered in a graphical inter-
face. Furthermore, after transferring the labels into the 3D
domain, robust detection algorithms are highly required to
handle such a “domain shift”.

Therefore, one natural thought is to “transfer” the labels
obtained from the 2D domain into the RGBD case to bene-
fit the detector training. The extensive benchmarking work-
s done in 2D domain have accumulated unthinkably rich
amount of labels about the objects, containing rich their 2D
appearances like shape, texture, and color etc. In the com-
puter vision community, it has led to a decade-long effort
in building large-scale labeling datasets, which has shown
large benefits for 2D image segmentation, labeling, classi-
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Figure 1. The framework of this paper. To train the bimodal DBM, We utilize labeled 2D samples from existing massive semantic labeled
datasets such as ImageNet, and download CAD model from Google Trimble 3D Warehouse to generate 3D positive training samples.
During testing time, we sliding exhaustively a bounding box in 3D point cloud to get score for each example of Exemplar-SVMs. To obtain
the feature of the 3D bounding box, we first project the 3D bounding box in the 2D bounding boxes on the reference RGBD image. Next,
2D bounding boxes are feeded to pretrained R-CNNs to get raw features for both RGB channel and Depth channel. Then, the bimodal DBM
is used to get the joint representation based on the raw features. After that, we are able to get score for each example of Exemplar-SVMs.
The detection of score of an Exemplar-SVM indicates whether there is a corresponding shape in the bounding box. At last, non-maximum

suppression is performed on all detection boxes in 3D.

fication and object detection. As a compensation, Depth
data provides useful spatial information that is possible, but
difficult, to estimate from a single RGBD image [17]. Giv-
en the deficiency in RGBD data like the one captured from
Kinect, e.g., sensor noise, missing depth in different views,
as well as occlusions and background clutters [10], it is not
doable to directly borrow the labels and data structure from
RGB and Depth domains, directly and respectively. How-
ever, can we learn feature representations from both RGB
data and Depth modalities to benefit the parsing of RGBD
data? Such a cross-modality learning, if not impossible, can
open a gate to the feature representation design and detector
learning for RGBD. And it is so far untouched in the pre-
vious research, i.e., previous works [I, 4, 5, 8, 18] mainly
focus on learning feature representation and detector using
solely one modality.

One existing work comes from Bo et al. [7], which
merges the detection results of reference images and the 3D
point cloud to improve the parsing accuracy of using single
modality. However, the combination is simply a detector
score fusion with handcraft weighting, which is unable to
describe the complex correlation between both modalities.

In this paper, we conquer this challenge by resorting to a
feature-level learning crossing both RGB and Depth modal-
ities. To this end, a bimodal deep learning framework is pro-
posed to learn robust detectors in RGBD domain, as shown
in the framework in Figure 1. Our innovation is two-fold:
For the bimodal feature learning, we utilize deep Boltzmann
Machine(DBM) to learn features over RGB data and Depth
data. For the robust detection, we train Exemplar-SVMs us-
ing fused representations of the learned DBM, it ensures the
flexibility and generality by training instance-specific met-

rics and classifiers.

The rest of this paper is organized as follows. Section
2 surveys related work. Section 3 introduces the proposed
scheme. The detailed bimodal DBM is provided in Sec-
tion 4. Section 5 illustrates the training of Exemplar-SVMs.
Experimental results and comparison with existing methods
are provided in Section 6. Finally, we conclude this paper
in Section 7.

2. Related Work

In the literature, a significant amount of works has been
done for object detection in 3D scenes. A considerable
proportion of these works focus on feature design. For in-
stance, the works proposed in [1, 4, 16, 19] employed fea-
tures such as gDPM. The works proposed in [10] and [7] u-
tilized Sparse coding to learn feature representations. Wang
et al. [9] employed unsupervised feature from raw RGBD
input with two-layer stacking structure. Features of the two
layers are concatenated to train linear SVMs over superpix-
els for semantic labeling. The works in [16, 21] first parse
over 2D images, and then project classification results from
reference RGBD images into 3D point cloud. The works
in [1, 4, 5]first oversegment 3D point cloud into supervox-
els, and then jointly label such segments by CRFs. Shrivas-
tava and Gupta [19] proposed part-based representation for
modeling object categories.

To overcome the challenge of limited training data, sev-
eral recent works [7, 10, 16] proposed to conduct label
transfer from related domains, such as LabelMe and Ima-
geNet. For example, the works in [7] and [10] leveraged
CAD models from Google Trimble 3D Warehouse to ren-
der 3D data of targeted objects as positive samples. Wang
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et al. [16] employed the existing massive 2D semantic la-
beled datasets, such as ImageNet and LabelMe, in combi-
nation with Exemplar-SVMs [23] based classifier for label
transfer from 2D images to 3D point clouds. However, so
far none existing works exploits the joint learning between
2D and 3D in terms of the feature representation part.

In recent years, deep learning techniques have been suc-
cessfully applied to learn cross-modality features [24, 25].
Ngiam et al. [24] have proposed a deep learning based
multi-modality learning scheme that has shown to outper-
form the features learned from single modality. Srivasta-
va and Salkhutdinov[25] proposed a DBM model for learn-
ing a generative model of data that consists of multiple and
diverse input modalities. The model works by learning a
probability over the space of visible units, in which states
of latent variables are leveraged as joint representation of
multi-modality input.

The works that are most similar to our work are [7]
and [10]. There are, however, some fundamental differ-
ences. First, in this work, we collect both 2D and Comput-
er Graphics(CG) CAD models training data from Internet.
Second, we focus on among two diverse modalities: RGB
and Depth. Third, to cope with the challenge of deficiency
of training data, pretrained R-CNNs are used to extract raw
feature from both RGB and Depth channels.

3. The Proposed Framework

Given a RGBD image of a scene, the detection task is to
find instances of real-world objects such as chair and table,
which are represented as 3D cuboids. Figure 1 presents an
overview of the proposed framework. Our framework takes
a RGBD image from Kinect with the gravity direction as
input. Most objects are assumed to be aligned on gravity
direction so there is only rotation around gravity axis. To
support 3D sliding window, the 3D space is divided into
cubic cells of size 0.1 meter. For online detection, given a
RGBD image, we first generate a point cloud of the scene,
based on cameral parameters [10]. Next, we exhaustively
slide a 3D bounding box in the point cloud to get scores for
all Exemplar-SVMs. Then, the 3D bounding box is project-
ed into 2D bounding boxs on RGB channel and Depth chan-
nel, with the reference RGBD image. After that, raw fea-
tures and the fused representation are sequentially extracted
by R-CNNs and the proposed bimodal DBM respectively.
Then, the joint representation is used to get scores for al-
1 Exemplar-SVMs. Finally, non-maximum suppression is
performed on all detection boxes in 3D. The process of de-
tecting objects of interest is summarized in Algorithm 1.

3.1. Generating Positive Training Samples

As shown in Figure 2, for each object category, we re-
trieve positive training data using the corresponding key-
word. Concretely, to generate 3D cuboids as positive train-

(a) CAD models (b) 2D positive training data

Figure 2. Positive training samples for chair leveraged from Inter-
net:(a) CAD models from Google Trimble 3D Warehouse. (b) RG-
B positive training samples cropped form images leveraged from
Google and ImageNet.

ing examples, we follow [10] to make use of 3D CAD mod-
els collected from Trimble 3D Warehouse. Each CG CAD
model is rendered from different viewing angles and loca-
tions in the 3D space to obtain synthetic depth maps, as
if they are viewed by a typical RGBD sensor.! To handle
shape and viewpoint variance, each CG model is densely
rendered by varying the following parameters: orientation,
scale, 3D location, and camera tilt angle. For each render-
ing, we train an Exemplar-SVM model. For each category,
all SVMs from rendering of CG models are assembled to
build a 3D detector.

An important observation is that amount of object in-
stances for each category in RMRC dataset is small. How-
ever, the sufficiency of positive samples is a prerequisite to
train a reliable DBM. To address this issue, we augment the
positive RGB samples by retrieving from Internet. More
specially, to generate 2D positive training samples for a giv-
en category such as chair, we first retrieve images of the
target categories from ImageNet and Google, using the cor-
responding keyword, after that positive samples are cropped
from images.

3.2. Generating Negative Samples

For a category, we train Exemplar-SVMs model [23].
And all SVMs from renderings of CG chair models are
assembled to build a 3D chair detector. RGB and Depth
raw features are extracted to feed into our bimodal DB-
M. Then the fused representations are utilized to train the
SVM. Arise the fact that the training performance heavi-
ly depends on how to collect rich negative examples, hard
negative mining is performed in the phrase of training. The
initial negative samples are randomly picked from annotat-
ed RGBD images in RMRC dataset [26] that do not overlap
with ground truth positives. After training the detector, hard

M rendering, we use the same camera intrinsic parameters, and reso-
lution to virtual camera
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Algorithm 1 Object detection for RGBD images
Input:
A RGBD image with the gravity direction,
Cameral parameters of the RGBD image, p
The Learned bimodal DBM
An ensemble of trained exemplar-SVMs,E
Object instances, O = @
Output:
@)
1: Construct a point cloud ¢ for image I basing on P
2: for each Exemplar-SVM classifier e € E do
Slide a 3D bounding box in ¢
4:  for each 3D bounding box do
5: Get projections on RGBD reference image
6 Extract f,, and f; from RGB and Depth modali-
ties respectively, using R-CNNss.

(95]

7: Feed f,, and f; into the bimodal DBM and obtain
a joint representation f
8: Classify f with e and then get a score s for the 3D
bounding box
9:  end for
10: end for
11: Perform non-maximum suppression on all detection
boxes

negative mining is performed by searching hard negatives
over the entire training set.

4. Bimodal Feature Learning

We adopt bimodal Boltzmann deep machines for bi-
modal feature learning. As shown in Figure 3, a bimodal
deep Boltzmann machine is constructed with two DBMs by
adding an additional layer of binary hidden units on top of
them. In this section we first review the Restricted Boltz-
mann machines(RBMs), and then describe the proposed bi-
modal Boltzmann deep machines in detail.

4.1. Restricted Boltzmann Machines

Boltzmann machines(BMs) are a particular form of log-
linear Markov Random Field, with stochastic visible unit-
s v € {0,1}? and stochastic hidden units h € {0,1}%.
RBMs further restrict v and h of BMs to be two disjoint
sets, such that each visible unit connected to each hidden
unit. The energy function over the visible and hidden units
{0,1}P*¥ of an RBM is defined as:

E(v,h;) = —h' Wy —b'v—ah, (1)

where § = {a,b, W} are the model parameters. The joint
distribution of the energy-based probabilistic model is de-
fined through an energy function as follows:

P(v,h;0) = exp(—E(v,h;0)), (2)

1
Z(0)

Joint representation

h;f*[OQ_-I--OO] @e® ---,.]hﬁf‘
" 00 00 @6 68
Depth I I RGB

. @0 00 @6 69

Figure 3. Bimodal DBM. A bimodal DBM modeling the joint rep-
resentation over RGB data and Depth data intputs.

in which the normalizing factor Z(0) is called the partition
function.

Consider modeling Gaussian-Bernoulli RBMs[20, 22],
that is, let v € RP be real-valued Gaussian variables, and
h € {0,1}* be binary stochastic hidden units. The energy
of Gaussian-Bernoulli RBM over {v, h} is defined as:

D
E(v,h;0) Z

=1 =1 j=2 j=1

4.2. RGB-Depth DBM

A DBM [27] is a network of symmetrically coupled s-
tochastic binary units. It contains a set of visible unit-
s v € {0,1}P, and a sequence of layers of hidden units
h® e {0,1},h® € {0,1}72, ., hY) € {0,1}F>. Con-
nections only exist between hidden units in adjacent layers,
as well as between visible and hidden units in the first hid-
den layer.

Consider modeling a RGB-specific Gaussian-Bernoulli
DBM with three hidden layers, let v € RP denote a
real-valued image input. Let h!™) e {0,1}F1", h®™) ¢
{0,1}7%", and h®™ ¢ {0,1}73" be the three layers of
hidden units in the RGB-specific DBM. Then energy of
Gaussian-Bernoulli DBM over {v""*,h™} is defined as:

E(N™,h™; ™) = Z Z

i=1 j= 10
*FZFZWQm)h lm)h (2m) FZFZWl(?)m h(?m ;} m)
j=11=1 =1 p=1
(m) ( )) o 1 1 & (2 (2
+Z (m)2 Zb( m)h( m) Zb m)h m)
j=1 =1

Fy"

3m 3Im
= Db,
p=1

“)
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where o; is deviation of the corresponding Gaussian mod-
el, and 0™ is the parameter vector of DBM. Therefore, the
joint distribution of the energy-based probabilistic model is
defined through an energy function as:

% > exp (= E(™0"0M), (5)

h™

where Z(6™) is the partition function. Similarly, the corre-
sponding probability assigned to v¢ by Depth-specific DBM
has the same form with Equation 5. We model our Image-
Depth DBM by two Gaussian-Bernoulli DBMs, as shown in
Figure 3. The proposed bimodal DBM is constructed with
two DBMs by adding an additional layer of binary hidden
units on top of them. let v* € R? and vP € R¥ denote
a real-valued RGB input and a real-valued Depth input re-
spectively. Consider modeling an Image-Depth DBM with
three hidden layers, let {v"™, v?} be real-valued Gaussian
variables, and {h*™) h(?™ h(*¢) h(29) h(®)} be binary s-
tochastic hidden units. Let h*™ e {0, 1} and h®™) ¢
{0,1}72" be the two layers of hidden units in the RGB-
specific two layer DBM. Similarly, let h*¥ e {0, 1}F%
and h®? € {0,1}*% be the two layers of hidden units in
the cloud-specific two layer DBM. The energy of the pro-
posed bimodal Gaussian-Bernoulli DBM over {v, h} can be
defined as:

Fr (7n

(1m) (1m)
B =33
=1 j= 10
F"n F'In ‘VTI
_ Z Z W (2m) h(lm)h(Zm) Z Z W (3m) 2m (3)
j=11=1 =1 p=1
D (m) b(m) " "
Z Z b(lm)h(lm) Z b(2m) h(2m)
53 g
1=1 j= 10
Fe F¢ Fl Ry
S S S S
j=11=1 =1 p=1
ZK:( o = b)? i (1d) 1 (1d) Z (2d)  (2d)
+ : b b2
i=1 20 (@)
F3
S
p=1

(6)

Therefore, the joint probability distribution over the bi-

modal input {v"™, v?} can be written as:

Py vi0) = Y PP ACYD R®)
h(2mr),h(2d),h(3)

( 3 P(vm,h(lm),h(Zm)))( 3 P(vd,h<1d>,h<2d>))

h(1m> h(1d)
m)2

Zep( 21:22+

i (Im) 4 (1m) (2m) 4 (1m) 4 (2m)
Z 7Wz‘j hy ™+ Z Wi hy iy

Y4

3

+yw 3m)h12m)hp +Y W h§2d>h§,3>).

lp lp

1d) +ZW(2d h(ld 2d)

(N

The task of learning the bimodal DBM is the maximum
likelihood learning for Equation 7 respect to the model pa-
rameters.

4.3. Approximate Inference And Learning

Though exact maximum likelihood learning in the bi-
modal DBM is intractable, but there exists a good stochas-
tic approximate learning [27] carried out by using mean-
field inference and a MCMC based stochastic approxima-
tion. Specifically, during the inference step, the true pos-
terior P(h|v; ) is approximated with a fully factorized ap-

proximating distribution over the five sets of hidden units
{h(lm)’ h(2m) , h(ld), h(2d) , h(3) }:

F m F m

h|V (Hq h(lm)|v Hq h(2m)‘V)

®)

(L0 TTathw) (T '),
j=1 =1 k=1

where = {p™), p@m) 0D 1,20 LG} are the
mean-field parameters with q(hgl) = 1lv) = ugl) for
1=1,2,3.

For each training example, learning proceeds as follows.
First, a greedy layer-wise pretraining strategy by learning a
stack of modified RBMs is employed to initialize the model
parameters. Then by finding the value of the variational
parameters g that maximizes the variational lower bound
for the current fixed model parameters 6. After that, given
the value of p, we update the model parameters using a
MCMC based stochastic approximation [27, 25].
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Figure 4. Average precision for various algorithms, object cate-
gories on normal ground truth boxes.

5. Training Exemplar SVMs

The process of training a Exemplar-SVM is demonstrat-
ed in Figure 7. For each of the synthetic depth maps, we
extract a joint representation and take it as the single posi-
tive sample to train an Exemplar-SVM. Initially, many neg-
atives are randomly picked point cloud from labeled RMR-
C dataset not overlapped with ground truth positives. Hard
negative mining is performed by searching hard negatives
over the entire training set. It is worth to note that, for each
of the synthetic depth maps we could only extract raw fea-
tures from the Depth channel. Yet, the fused representation
of the positive is able to be inferred by the designed bimodal
DBM when RGB raw features is missing.

6. Experimental validations
6.1. Experiment setup

Data set: We evaluate our 3D detector on RMRC
dataset [260]. The RMRC dataset is a data set for indoor
challenges, taken from the NYU Depth V2 dataset. The
3D detection task contains 1074 RGB and Depth frames.
The classes to detect include: bed, table, sofa, chair, televi-
sion, desk, toilet, monitor, dresser, night stand, pillow, box,
door, garbage bin, and bathtub. Each image has been an-
notated with 3D bounding boxes. We select five objects:
chair, bed, toilet, sofa, and table, which are well labeled in
the dataset. For comparison, the training-test splits in our
experiments are set to be the same with [10]. The RMRC
dataset is partitioned into 500 depth images for training and
574 depth images for testing, in a way that the images from
same video are grouped together and appear only in training
or testing set. The instance number are balanced in training
and testing set for each category.

Raw features: To support sliding a 3D bounding box

Il Bimodal DBM
I Sliding Shapes
Il Depth-DBM
[ RGB-DBM
[ RGBD-DBM

Average Precision

chair toilet bed sofa table

Object Categories

Figure 5. Average precision for various algorithms, object cate-
gories on all ground truth boxes including difficult cases

in a point cloud, we first divide the point cloud into cells
of 0.1 meter. During testing and hard-negative mining, we
slide a 3D detection window in 3D space generated by a
RGBD image. To extract the raw features of a 3D detection
window from both RGB domain and Depth domain, two
pretrained R-CNNs [2] corresponding to RGB channel and
HHA channel respectively are leveraged to extract features
from projections on the RGBD reference image. Both of the
two R-CNNs have about 60 million parameters and were
first pretrained on approximately 1.2 million RGB images
from the ILSVRC 2012 dataset [3] and then finetuned on a
much smaller detection dataset [2]. We compute features at
the fully connected layer 6 from both of the R-CNNs. Two
4,096 dimensional features are obtained from two diverse
modalities.

Model architecture: Both the RGB pathway and Depth
pathway consists of Gaussian RBM with 4,096 visible units
and 1,024 hidden units, followed by a layer of 1,024 binary
hidden units. The Joint layer consists of 2,048 binary hid-
den units. All of the Gaussian visible units are set to have
unit variance. Each dimension of feature is standardized to
have zero-mean and unit-variance, before feeded to Bimdal
DBM.

Comparison Baselines: We quantitatively evaluate the
performance of our scheme with the following baselines:
(1) Sliding Shapes [10]. (2) Depth-DBM: We trained a DB-
M using only raw Depth features. And during testing time,
the model was given only the Depth inputs. (3) RGB-DBM:
We trained a DBM using only raw RGB features. And dur-
ing testing time, the model was given only the RGB inputs.
(4) RGBD-DBM: concatenated representations of Depth-
DBM and image RGB-DBM that are trained separately.

Evaluation metric: we adopt the 3D bounding box
overlapping ratio [10] and Mean Average Precision (MAP)
to evaluate the performances of the schemes. A predict box
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Model MAP
3D+ 3D
Bimodal DBM | 0.508 | 0.742
Sliding Shapes | 0.389 | 0.624
Depth-DBM 0.442 | 0.667
RGB-DBM 0.384 | 0.607
RGBD-DBM 0.491 | 0.718

Table 1. Mean average precision for various algorithms on the RM-
RC dataset.

is considered to be correct if the overlapping ratio is more
than 0.25. we also add a difficult flag to indicate whether
the ground truth is difficult to detect. The difficult cases in-
clude heavy occlusion, missing depth and out of sight. We
evaluate on normal ground truth boxes (denoted as 3D), as
well as on all ground truth boxes including difficult cases
(denoted as 3D+) respectively. The MAP is the mean aver-
age precision for 5 object categories.

6.2. Experimental Results For Baselines

In Figure 4 and Figure 5, we show that the proposed
method yields better performance than the compared meth-
ods. As shown in Table I, on normal ground truth boxes
the proposed bimodal DBM achieves MAP of 0.508, com-
pared to 0.389, 0.472, 0.384 and 0.491, achieved by Slid-
ing Shapes, Depth-DBM, RGB-DBM, Sliding Shapes, and
RGBD-DBM, respectively. And on all ground truth box-
es including difficult cases, the proposed bimodal DBM
achieves MAP of 0.742, compared to 0.624, 0.667, 0.607
and 0.718, achieved by Sliding Shapes, Depth-DBM, RGB-
DBM, Sliding Shapes, and RGBD-DBM, respectively. The
above comparisons show that RGB data and Depth data
are in complementary to each other for object detection in
RGBD scenes. The fused representation of features from
the two diverse modalities is able to boost the performance
of object detection in RGBD scenes. In particular, the bi-
modal DBM is good at discovering useful fused representa-
tion for data from the two diverse modalities.

6.3. Insights Of the Bimodal DBM

In Figure 6, we compare the performance using repre-
sentation from different layers of bimodal DBMs. We do
this by measuring average precision obtained by Exemplar-
SVMs trained on the representation at different layers of the
bimodal DBM. Each layer of the bimodal DBM provides a
different representation of the input. The input layers, as
shown in the bottom ends, are the raw features. Figure 6
demonstrates that, as we go deeper into the model from the
input layer to middle layer, the internal representation get
better. In particular, the joint representation of two modal
serves as the best useful feature representation. Therefore,
this experiment result further shows that our bimodal DBM
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Il RGB-hidden2
[ Joint-hidden
[ Depth-hidden2
[l Depth-hiddent
[ Depth-input

0.8

0.6

0.4

Average Precision

0.2

0.0
chair toilet bed sofa table

Object Categories

Figure 6. Average precision using representation from differen-
t layers of bimodal DBMs.

Rendered Depth
-g [ ‘| Joint representation -~
Al Q P
- -
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with reference RGBD images

RGBD images Point clouds

Figure 7. An Ensemble of Exemplar-SVMs. We train a separate
linear SVM for each of the synthetic depth maps. To get fused
representations, RGB and Depth raw features are extracted to feed
into our bimodal DBM. Then the fused representations are utilized
to train the SVM.

is able to learn useful unified representation for the task of
object detection with RGBD images.

6.4. On Transferring 2D Labels From Internet

In this experiment, we evaluate the ability of the bimodal
model to improve detection by cropping 2D positive train-
ing data from Internet. Both models have the same depth
and the same number of hidden units in each layer. By
this setting, we can assess the contribution of the 2D pos-
itive training data transferred from Internet. Figure 8 and
Figure 9 demonstrate that bimodal DBM with 2D positive
training data performs better than the compared baselines.
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Figure 8. Average precision on normal ground truth boxes.

This experiment shows that the 2D positive training data
cropped from cross domain can improve object detection
accuracy for RGBD images to some extend.

6.5. Computation Cost Analysis

We spend most of the time on the training of the bimodal
DBM and Exemplar SVMs. Though the number of parame-
ters of the bimodal DBM reach millions, the parameters are
able to be well trained by using GPUs [25]. With NVIDIA
GTX680, we can train a bimodal DBM within two days for
the category of chair. For training Exemplar SVMs, it takes
about 10 hours to train a single detector with all its exem-
plar SVMs with single thread in Matlab For testing, it takes
about 5 second per detector to test on a RGBD image in
Matlab. During the process of testing, to speed up the pro-
cess, jumping window [10] is utilized to skip empty space
in 3D point without loss of detection precision and recall.

7. Conclusion

3D object detection in RGBD scenes is a very challeng-
ing task due to the deficiency of training data. To conquer
this challenge, in this paper we propose a deep feature learn-
ing framework based on deep Boltzmann Machines in com-
bination with Exemplar-SVMs based robust detector. The
experiments on the RMRC dataset demonstrate the supe-
riority of our framework. In our future work, we will in-
tegrate our scheme for multi-task structure learning to ex-
ploit the context information among 3D scenes to further
improve the accuracy and robustness of the proposed 3D
object detectors.
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