
Multiclass Semantic Video Segmentation with Object-level Active Inference

Buyu Liu
ANU/NICTA

buyu.liu@anu.edu.au

Xuming He
NICTA/ANU

xuming.he@nicta.com.au

Abstract

We address the problem of integrating object reason-
ing with supervoxel labeling in multiclass semantic video
segmentation. To this end, we first propose an object-
augmented dense CRF in spatio-temporal domain, which
captures long-range dependency between supervoxels, and
imposes consistency between object and supervoxel labels.
We develop an efficient mean field inference algorithm to
jointly infer the supervoxel labels, object activations and
their occlusion relations for a moderate number of object
hypotheses. To scale up our method, we adopt an active in-
ference strategy to improve the efficiency, which adaptively
selects object subgraphs in the object-augmented dense
CRF. We formulate the problem as a Markov Decision Pro-
cess, which learns an approximate optimal policy based
on a reward of accuracy improvement and a set of well-
designed model and input features. We evaluate our method
on three publicly available multiclass video semantic seg-
mentation datasets and demonstrate superior efficiency and
accuracy.

1. Introduction

Semantic scene parsing, which aims to segment im-
ages into conherent and semantically meaningful regions,
has recently made much progress by incorporating high-
level visual information, such as scene context and ob-
jects [8, 5, 14], and jointly solving multiple related vision
tasks [32, 22, 26]. Such integration with object and scene-
level reasoning not only provides more global cues and
longer-range constraints for pixel-level labeling, but also
enables us to generate a deeper parsing of images with mul-
tiple properties, ranging from object instance [26] to scene
geometry [9].

However, such object-aware strategies require many
hypotheses of object instances and their relations to ac-
commodate uncertainty in object detection and localiza-
tion [22, 25]. This leads to increasingly larger structure
and/or higher complexity of the resulting models on pix-
els and objects, which has several drawbacks. First, with

Figure 1: Overview of our approach. Example of the object-
augmented dense CRF model. Our active inference adaptively se-
lecting subgraphs thus improve the inference efficiency.

more object classes and their relations added, it becomes
challenging to develop efficient inference algorithm in the
joint models. Greedy strategies, such as alternating infer-
ence between pixels and objects, have been used to address
such difficulty [26], which do not exploit the full potential
of joint modeling. In addition, object hypotheses have to be
pruned based on heuristic thresholds to provide a balance
between precision and recall, which is tedious for adding
new object classes. Furthermore, it is even more difficult to
extend this to dynamic scene parsing in videos, as the num-
ber of object hypotheses may increase greatly due to object
motion and longer image sequences.

An alternative approach to addressing this difficulty is
to adaptively select a subset of model components which
is most informative for inference and within a budget con-
straint, or active inference [21, 29]. This allows users to
achieve a balance between efficiency and performance in
a principled way. Most of previous work, however, focuses
on improving efficiency in feature computation except a few
on model structure [28].

In this work, we aim to address the problem of joint pixel
and object inference in semantic video segmentation. We
take a hypothesize-and-verify approach [10, 17], in which
we generate a pool of object hypotheses and formulate
video segmentation as a joint labeling of pixels and object
hypotheses. To handle a large number of object hypotheses,
we adopt an active inference strategy at object level to select
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an optimal subset of hypotheses for joint inference.
Specifically, given a video sequence, we first build an

object-augmented dense CRF model that consists of a su-
pervoxel layer and an object layer. The supervoxel layer,
modeled by a dense CRF [12], captures long-range spatio-
temporal dependency between supervoxels, while the object
layer imposes consistency between semantic labeling of su-
pervoxels and objects, as well as valid occlusion relation
between overlapping objects. We develop an efficient mean
field inference algorithm for the case with a moderate num-
ber of object hypotheses.

Inspired by [29], we propose to select an informative
subset of objects and their relation nodes for scaling up in-
ference with many object hypotheses. To this end, we build
a set of subgraphs corresponding to the object hypotheses,
which are selected in our inference procedure. We formu-
late the subgraph selection as a Markov Decision Process
(MDP) and develop a learning approach to search the op-
timal policy for sequentially choosing the most informa-
tive subgraph. We define a reward function using the im-
provement on pixel-level per-class accuracy, and learn an
approximate policy based on Q-learning [15]. Our policy
takes long-range features generated by both current model
uncertainty and video input, and predicts the most valuable
subgraph to choose in next step. Furthermore, we also use
an imitation learning scheme [1] to efficiently train a local
classifier that approximates the optimal decision.

We evaluate our approach on three publicly available se-
mantic video segmentation datasets. We demonstrate that
our learned policy is capable of selecting informative object
hypotheses and relations, leading to much simpler model
structure and comparable or even higher segmentation ac-
curacy. Our contribution has two folds. 1) We develop
an object-augmented dense CRF semantic video segmen-
tation with efficient mean field inference. 2) We explore the
value of object hypotheses for semantic labeling and pro-
pose a MDP-based method to sequentially choose most in-
formative objects during inference. Our method is capable
of generating compact model structure, which is useful for
achieving a balance between efficiency and accuracy.

2. Related work
Semantic scene understanding has attracted much at-

tention in recent years and a large number of methods
have been proposed [6]. High-level visual information has
played an important role in improving the state-of-the-art
of semantic segmentation. Early approaches integrate ob-
ject information into semantic labeling task by imposing
consistency between pixel labels and object detection out-
puts [14]. More recently, object instances and pixel la-
bels are jointly inferred through structural models defined
on both entities [22, 26]. In particular, multiple aspects
of scene property, ranging from pixel labels to scene cat-

egories, have been combined to provide more effective con-
straints in understanding the scene as a whole [32].

Despite the progress in static setting, much less work has
been done in semantic video segmentation, partially due to
lack of training data and greater complexity of the problem.
The main focus of many existing methods is to model tem-
poral coherence of pixel labeling [4, 19, 25], which lacks
object-level reasoning. Other methods construct 3D mod-
els of statics scenes based on structure from motion [2, 13]
for pixel labeling, but are limited in parsing moving objects.
Object detection and tracking is first integrated with seman-
tic video segmentation by Wojek et al [31, 30]. However,
they deal with each object instance separately and no occlu-
sion is modeled.

Most video object segmentation approaches focus on
single class foreground objects. Wang et al [27] consider
foreground object segmentation, tracking and occlusion rea-
soning with a unified MRF model. Lezama et al [16] use
optical flow based long-term trajectories to discover mov-
ing objects. Nevertheless, they do not include multiple ob-
ject classes, and thus they cannot capture semantic context
of moving objects. Taylor et al [24] infer multiple seman-
tic classes and occlusion relationship in video segmentation.
Unlike our method, they do not represent individual object
instance and reason their relations.

Similar to our work, Liu et al [17] also consider joint in-
ference of supervoxel labels and object instances. The main
difference of our approach is introducing active inference
for handling a large number of object hypotheses. In addi-
tion, our model is based on the fully-connected CRF [12]
and is augmented with object potentials.

Active or budgeted inference has recently been intro-
duced to improve efficiency of inference in structured mod-
els [29, 28, 21]. Roig et al [21], makes use of perturb-and-
MAP inference model to compute and select informative
unary potentials. Weiss et al [29] develop a reinforcement
learning framework for feature selection in structured mod-
els. Our method adopts the same framework as [29], but
we focus on selecting object hypotheses instead of input-
related features. In [20], a local classifier is learned to select
views for multi-view semantic labeling. We build our selec-
tion policy based on a principled MDP framework. In ad-
dition, anytime structural learning has been proposed in[7]
for model learning. In this work, we mainly focus on im-
proving inference procedure.

3. Object-augmented spatio-temporal CRF
We first introduce our spatio-temporal CRF model for

multi-class semantic video segmentation. Our model con-
sists of mainly two parts: at supervoxel-level, we build a
pairwise CRF with dense connections [12], which captures
the long-range dependency between frames; we also apply
object detectors and a tracking method to propose object



hypotheses, which augment the supervoxel CRF with ob-
ject and object relation potentials [22, 17]. The joint CRF
model has a mixed structure with both dense pairwise and
sparse ternary potentials. We develop an efficient mean field
inference for estimating node marginal distributions, which
is also critical for the active inference in Sec 4.

3.1. Model setup and notations

Given a video sequence T , we first compute its super-
voxel representation based on [3]. We denote the semantic
class of the i-th supervoxel as li with i ∈ {1, ..., N} index-
ing all the supervoxels. The semantic labeling of the full
sequence is denoted by L = (l1, ..., lN ).

We then generate a set of object trajectory hypotheses
from object detection and tracking efficiently as in [17]. We
denote the hypothesis pool as O and m ∈ {1, ...,M} in-
dexing all the hypotheses. For the m-th hypothesis, we in-
troduce a binary variable dm to indicate whether it is a true
positive detection or background, and om to represent the
spatio-temporal regions it occupies. The object states of the
full sequence is denoted by D = (d1, ..., dM ).

We model the object relations by considering the relative
depth ordering between them. To this end, we divide the hy-
potheses into two groups, one of which represents the sin-
gleton objects with no overlap with others (on image plane),
and the other consists of overlapping object instances. We
denote the singleton set as S and the set of all pairs of over-
lapping hypotheses as P .

We assume the relative depth ordering of an object
pair keeps unchanged in a short period, and for each pair
(m,n) ∈ P , introduce a variable hmn ∈ {−1, 0, 1} to de-
scribe their occlusion relations. The value−1 and 1 denotes
m-th hypothesis is occluded by or occludes n-th hypothesis
respectively and 0 denotes there exists no occlusion rela-
tions between current pair, or equivalently, at least one of
the hypotheses is background. To handle longer sequences,
we divide them into short video chunks and introduce a set
of {hmn} for each chunk. We use H = {hmn}(m,n)∈P to
denote the states of ordering for the entire sequence.

We formulate the semantic video segmentation as a joint
labeling problem of supervoxels, object hypotheses and ob-
ject relations, and construct an object-augmented spatio-
temporal CRF model on those entities. The overview of our
model is in Figure 2. We define the overall energy function
of our CRF, E(L,D,H|T ), as follows:

E(L,D,H|T ) = Ev(L|T ) +
∑
m∈S

Es(L, dm|T )

+
∑

p∈P,p=(m,n)

Er(L, dm, dn, hmn|T ) (1)

where Ev(L|T ) denotes the potentials at supervoxel level,
Es(L, dm|T ) are potentials for the singleton object hypoth-
esism, andEr(L, dm, dn, hmn|T ) are the potentials for the

Figure 2: Example of subgraphs for singleton and object pair
potentials. Different colors denote different subgraphs.

object pair relations in P . We will describe the details of
those potentials in the following, and omit T for clarity.

3.2. Supervoxel pairwise CRF Ev

At supervoxel level, we build a dense pairwise CRF [12]
to capture long-range dependency of supervoxel labels in
spatio-temporal domain. Specifically, the potential func-
tions of Ev(L) consists of two terms,

Ev(L) =

N∑
i=1

φv(li) +
∑
i6=j

ψv(li, lj) (2)

where φv(li), ψv(li, lj) are the unary and pairwise term,
respectively.

Supervoxel unary. The unary term specifies the cost of
assigning li to supervoxel i and is defined as φv(li) =
− logPl(li), where Pl(li) is the output of a probabilistic
classifier. Here we train a random forest classifier based on
color, texture, HoG and geometric features [17].

Pairwise Potential We introduce the dense pairwise term
ψv(li, lj) to enforce spatio-temporal smoothness of label-
ing. We define a contrast-sensitive two-kernel potential as
in [12]. The appearance kernel uses the CIE-Lab color
space, and both the appearance and smoothness kernel take
spatial location and time in T as position features.

3.3. Singleton object potentials Es

For each singleton object hypothesis m ∈ S, we define
a unary potential φo to encode the likelihood of being true
positive, and a pairwise potential ψs to impose the consis-
tency between object activation and supervoxel labeling,

Es(L, dm) = φo(dm) +
∑
i∈om

ψs(dm, li) (3)

where {i ∈ om} include all the supervoxels occupied by the
hypothesis m.

Object unary The object unary term φo(dm) models the
cost of activating m-th hypothesis with the following form,

φo(dm) = αmdldm − αo log
pc(dm)

1− pc(dm)
dm (4)



where pc(dm) is the probability of activating m-th hypoth-
esis, which is generated by a classifier. We extract detector
output, position, object mask size, appearance and edge dis-
tance as features and train a multiclass logistic regressor to
predict pc(dm). αo is the weight for the classifier score and
αmdl is to enforce the sparsity of detection.

Object and supervoxel consistency The pairwise poten-
tialψs(dm, li) penalizes the inconsistency between the class
of activated hypothesis m and supervoxel labeling li,

ψs(dm, li) = αs
Vi
Vom

dmJli 6= cmK (5)

where cm denotes them-th hypothesis’s object class. Vi de-
notes the volume of supervoxel i and Vom is the volume of
object hypothesis m. We use JfK as the indicator function,
which equals to 1 if f is true and 0 otherwise.

3.4. Object-pair relation potentials Er

We model the relative depth ordering relationship be-
tween every overlapping object pair using the object-pair
relation potentials. To this end, we design a potential that
encodes the likelihood of valid object pair relation and the
consistency between object pair label configuration and su-
pervoxel labeling. Specifically,

Er(L, dm, dn, hmn) = φh(hmn) + ψp(hmn, dm, dn)

+
∑

k∈{m,n}

(
φo(dk) +

∑
i∈ok

ψc(hmn, li, dk)

)
(6)

where φh is the unary potential of relative ordering, ψp

encodes the depth ordering consistency between objects
within a pair, and ψc enforces consistency between super-
voxel labeling and object pair configuration.

Ordering unary The ordering unary term φh(hmn) mod-
els the likelihood of hmn taking one of the three states,
{−1, 0, 1}. We define φh(hmn) = −αh logPh(hmn),
where Ph is the probabilistic score from a classifier. We
generate Ph by taking the object unaries, positions, sizes,
appearance (color histogram), number of terminated optical
flows as features for each object pair and training a random
forest classifier to predict the ordering probability.

Ordering consistency We define ψp to enforce that ob-
ject state dm, dn and relation variable hmn should be con-
sistent. hmn is nonzero iff both object are true positives,
and two hypotheses cannot be heavily overlapped:

ψp(hmn, dm, dn) = αinf

(
J¬(dmdn = 1 ∧ hmn 6= 0)K

+J¬(dmdn = 0 ∧ hmn = 0)K + J om∩on
om∪on > τKdmdn

)
(7)

where αinf is a large penalty and τ is a threshold for non-
maximum suppression of overlapped objects.

Supervoxel occlusion consistency The occlusion term
penalizes the inconsistency between supervoxel labeling
and object pair configuration w.r.t the occlusion relations.
We enforce the supervoxels in the overlapping regions to be
consistent with the foremost object that is activated,

ψc(hmn, li, dm) = αc
Vi

Vom

(
Jli 6= cm ∧ hmn = 1K

+Jli 6= cm ∧ hmn = 0 ∧ dm = 1K

+Jli 6= cm ∧ i ∈ {om \ on} ∧ hmn = −1K
)

(8)

where αc is the weighting coefficient, cm, Vi and Vom are
defined in Eq (5). {om \ on} is the set of supervoxels occu-
pied by the object m but not by n.

3.5. Model Inference and learning

Model inference The object-augmented spatial-temporal
CRF in Eq (1) has a dense pairwise potential on super-
voxels and a sparse ternary potential on object and relation
nodes. The inference is challenging due to this mixed struc-
ture. We develop a mean field approximate inference al-
gorithm to jointly infer supervoxel, object and object rela-
tion labels. Specifically, we approximate the joint model
distribution by a fully factorized model q(L,D,H) =∏

i qv(li)
∏

m qo(dm)
∏

p qp(hp) where p = (m,n) in-
dexes pairs. The mean field updating equations can be de-
rived by minimizing the KL divergence between model dis-
tribution and q. For clarity, we only introduce the updating
equation for qv(li) in the following and leave the rest to the
supplementary material:

q̂v(li) ∝
∑
i6=j

〈ψv(li, lj)〉qv(lj) +
∑
m∈S

∑
i∈om

〈ψs(dm, li)〉qo(dm)

+
∑
p∈P

∑
k∈{m,n}

i∈ok

〈ψc(hp, li, dk)〉qo(dk)qp(hp)
+ φv(li) (9)

We note that the first summation has the same form as
in [12], and can be computed efficiently. The next two terms
are summed over sparse connections, which can also be eas-
ily computed. The overall mean field algorithm shares sim-
ilar efficiency as the original dense CRF as long as the num-
ber of object hypotheses and relations is moderate.

Given the approximate marginals, qv(li), qo(dm), and
qp(hp), we take the modes of marginals to obtain the su-
pervoxel and object label predictions [12]. In particular, for
supervoxel i, we compute l∗i = argmaxli qv(li). Empiri-
cally, this also provides us consistent labeling results over
object activation and object relations.

Parameter learning In this work, we assume the model
parameters are pre-learned and focus on the inference prob-
lem. For completeness, we briefly discuss the model learn-
ing. We use the piece-wise learning [23] to incrementally



learn parameters while any other suitable learning method
can also be applied. We first learn the weights and ker-
nel parameters in the supervoxel pairwise CRF. Then we
estimate the parameters of the singleton object potentials.
Here we incrementally learn parameters for Car, Pedestrian
and Bicyclist class and treat all hypotheses as singletons.
Finally, we tune the parameters of the object relation po-
tentials while keeping the supervoxel and object potentials
fixed. All parameters are learned on validation set by grid
search and we choose the set of parameters that maximizes
the per-class accuracy. The constant αinf is set to be 1020.

4. Learning to infer object potentials
To scale up the inference algorithm in Sec 3.5, we adopt

an active inference approach to adaptively select a subset
of informative object hypotheses. As our test budget is un-
known, we follow [29] and formulate the selection task as a
sequential Markov Decision Process. Our goal is to learn an
optimal policy to sequentially add object hypotheses, and
at each step, the most informative object hypothesis with
respect to the current model is selected. We will first in-
troduce the formulation of our selection process and then
discuss the policy learning.

4.1. Active inference with object subgraphs

Given the object-augmented dense CRF in Sec 3, we aim
to select a subset of object-related potentials to improve ef-
ficiency in the inference. To this end, we decompose the
model graph into a set of smaller subgraphs, which corre-
spond to the object hypotheses or object relations.

Specifically, we make use of the model structure defined
in Eq (1) and build the set of subgraphs based on the po-
tential functions Ev , Es and Er. As the inference on basic
dense CRFEv(L) is efficient, we always start from the sub-
graph of Ev and select a subset of subgraphs corresponding
to the set of {Es(L, dm)}m∈S ∪ {Er(L, dm, dn, hp)}p∈P .
We note that our subgraphs are overlapped in the model
graph and our de-selection refers to deactivating the corre-
sponding object nodes instead of removing both the nodes
and edges.

More formally, we introduce a subgraph selection state
vector z = [zs, zr], where zs for the singleton object set S
and zr for the object pair set P . Each subgraph k ∈ S ∪ P
is associated with an binary indicator zk and zk = 1 means
k is selected. The full model for active inference can be
written as

E(L,D,H, z|T ) = Ev +
∑
m∈S

zsmE
m
s +

∑
p∈P

zrpE
p
r (10)

where Em
s is the m-th singleton object potential and Ep

r is
the p-th object pair potential. Given a sparse z, we can effi-
ciently compute the node marginals of the model in Eq (10).

4.2. Subgraph selection as MDP

We formulate the subgraph selection as a Markov Deci-
sion Process. The state of the MDP s is (T , z) for an input
video T and subgraph selection state z. The initial state is
s0 = (T ,0), which means we only select the basic dense
CRF in Ev . The action space A(s) = {i|zi = 0} ∪ {0}
means we can either choose a subgraph that is not se-
lected before or terminate the process. If we are in state
st and will take action r , the next state is represented as
st+1 = (T , zt+er) where er is an indicator vector with the
r-th column is 1 and all others are 0.

Then we define the expected reward of action r, or acti-
vating a subgraph r in state st as follows:

R(st, r, st+1) =

{
η(st+1)− η(st) if not terminated
0 otherwise

(11)
where η(st) is the expected per-class label accuracy of pre-
diction given the state st. Our target is to learn a (determin-
istic) policy π(s)→ r ∈ A(s) that maximizes the expected
reward.

Approximate policy learning with model features We
parametrize the policy by defining a priority function
γ(f(s, r)), where f(s, r) is a set of object-based features
and model uncertainty features. The policy π(s) is defined
as π(s) = argmaxr γ(f(s, r)). We learn the function γ(·)
based on Q-learning [15, 29]. In Q-learning, we evaluate
both linear regressor and random forest regressor as γ(·).
We refer the reader to Sec 5.1 for the details of the feature
design of f(s, r).

Imitation learning with local classifier Another faster
approximate scheme is the imitation learning [1], which
learns a classifier based on local cues to predict the optimal
action trajectory demonstrated by an expert. To this end, we
first generate the optimal trajectories on training set based
on dynamic programming. We then take the same set of
features as in Q-learning and train a classifier to score the
quality of a selection. More concretely, we build a train-
ing dataset in which the states in the optimal trajectories are
treated as positive samples and the other states are nega-
tive. Then a random forest classifier is trained to predict the
probability score of an action.

5. Experiments
We evaluate our object augmented dense CRF and the

proposed active inference on three publicly available multi-
class semantic video segmentation datasets. We focus on
the CamVid [2] dataset here as it provides multiple fore-
ground classes. To demonstrate the generalisability of our
model, we also evaluate on the MPIScene [30] and Dynam-
icScene [31] datasets. The details of these datasets are sum-
marized in the supplementary material.



5.1. Implementation details

Object hypotheses We follow the exemplar-driven ap-
proach [25, 17], in which we manually annotate 20 exem-
plars for each of foreground object classes in CamVid. We
apply the detectors every 10 frames and propagate detected
objects to the whole sequence based on long-range trajecto-
ries [16]. We refer the reader to [17] for further details.

Policy learning features We design two sets of features:
the detection related features and contextual features. The
detection related features consist of object unary potentials,
object position, object size, and detection score. The con-
textual features have two parts: supervoxel-level and object-
level features. The supervoxel-level features include aver-
age supervoxel entropy for all classes, entropy on averaged
supervoxel distribution, average entropy of foreground ob-
ject class based on current supervoxel marginals and aver-
age supervoxel marginals. We compute these features in
each stage of the incremental hypothesis selection based on
the statistics of the model output at that stage. We also add
the difference of those features between the current and pre-
vious stage to the supervoxel-level features. For object-level
features, we compute the averaged entropy on object terms,
the entropy on averaged objects based on their marginals,
the average and maximum object marginals, as well as their
stage-wise difference.

5.2. Baseline Methods

We compare to three baselines: simple entropy-based ap-
proach, Expected Labeling Change (ELC) and the Greedy
graph induction (GreedyC) method. The entropy baseline
computes the probabilistic marginals and selects the sub-
graph that has the highest average entropy in the marginals.

The ELC method activates the subgraph that generates
the largest change in final prediction, or the pixel-level la-
beling in our case. Among all the baselines, the ELC is the
most time-consuming one as it enumerates all the potential
actions and performs inference for each of them.

The Greedy graph induction learns a classifier to imitate
a policy which is generated by sequentially selecting most
rewarding subgraph locally. This is a myopia version of
imitation learning. We extract features as described in 5.1
for each sample and train a random forest classifier.

5.3. Experiment results

We conduct three sets of experiments on our selective in-
ference CRF model: 1) Detailed comparison with baselines
and the state-of-the-art methods on CamVid. 2) Scalability
evaluation in terms of the number of object classes, object
hypotheses and frames in video. 3) Generalization to other
video segmentation datasets.

Active Inference on CamVid We first show the quan-
titative results of our method and compare with state-of-

the-art methods in Table 1. We compute the accuracy and
Intersection-Over-Union (IOU) score of semantic segmen-
tation on CamVid1.

We can see that our method achieves better performance
than the dense CRF, which is a strong baseline. In addi-
tion, the overall pixel-average and class-average accuracy of
our method are comparable to the state-of-the-art methods.
Specifically, we outperform GeoF[11] significantly in over-
all IOU and Liu [17] in most (8 out of 11) of classes. We
also compute the F1 score and our method achieves 59.8%,
which is better than 59.1% in [17] and 58.2% in [24]. More
importantly, we achieve the competitive performance using
only one-third of object hypotheses. We visualize our sub-
graph selection procedure in Figure 4.

In addition, we demonstrate the efficiency of our pro-
posed methods by showing how the accuracy improves with
increasing number of subgraphs selected. We compare Lo-
cal Imitation Learning (LocalC) and Q-learning with three
baseline methods. We evaluate both linear and non-linear
regressor for Q-learning. Figure 3 shows the prediction
curve for average class accuracy, average foreground object
accuracy and average pixel accuracy. We can see our pro-
posed methods can always have earlier stop with superior
performance. Overall, our method achieves a better trade-
off in accuracy and efficiency than baseline methods. We
will use the LocalC and Q-learning (linear) in the rest of
our experiments.

Scalability Evaluation on CamVid We evaluate the scal-
ing up property of our method in three natural scenarios.
In the first setting, we gradually increase the number of
object classes in the hypothesis pool. We start from the
basic dense CRF and incrementally add hypotheses from
Car, Pedestrian and Bicyclists detection. The results
are shown in the left panel of Figure 5. We note that both
Q-learning and LocalC improve their accuracies and when
all three classes are added, the final performance is the same
as the full model. In addition, despite the number of hy-
potheses increases significantly, the size of selected subsets
grows slowly when more classes are added.

The second setting evaluates our method on video se-
quences with different average lengths. We test our model
on the video lengths of 61, 121 and 241 frames. Results in
the right panel of Figure 5 show that longer sequences ben-
efit from better temporal smoothness effect and the number
of selected hypotheses also increases slowly.

In the third setting, we generate more hypotheses of a
single object class to improve the recall of object detection
and evaluate our model with more hypotheses. We gener-
ate three different hypothesis sets by changing the thresh-
old of detector. In our experiment, we choose −0.85,−0.9

1We do not include the methods that use strong object detectors and
work solely on static images (e.g.,[14]).
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DenseCRF 89.3 74.4 96.0 81.5 87.6 68.8 10.7 61.9 40.5 6.3 54.7 82.5 61.1
Ours 88.9 73.8 96.0 81.2 87.4 81.3 10.5 60.3 43.8 9.3 54.7 82.8 62.4
Liu [17] 92.4 73.8 95.5 79.2 73.6 81.7 9.7 29 60.9 42.1 50.3 82.5 62.5
Tighe [25] 95.9 87.0 96.9 67.1 70.0 62.7 1.7 17.9 14.7 19.4 30.1 83.3 51.2
IOU score
DenseCRF 85.1 67.2 90.3 66.7 63.4 56.1 8.4 17.6 26.9 5.8 21.3 - 46.1
Ours 85.8 66.8 90.1 66.6 63.5 62.9 8.3 17.8 28.0 8.5 21.4 - 47.2
Liu [17] 85.5 67.3 89.8 65.7 61.4 55.6 7.3 11.8 22.4 14.9 22.2 - 45.8
GeoF[11] - - - - - - - - - - - - 38.3

Table 1: Averaged semantic accuracy in CamVid. Our method can achieve the state of the art segmentation performance. Foreground
object classes with hypotheses are in bold. We outperform the state-of-the-art in IOU significantly.

Figure 3: Traded-off performance on the CamVid dataset. The curve shows the increase in accuracy over the selective inference model as
a function of subgraph number. The cross shows the termination point for inference. Best viewed in color.

and −0.95 as thresholds for Half , Same and Double set-
tings respectively. We have tested the results in three ob-
ject classes and all of them shows the significant improve-
ment in terms of segmentation accuracy. Here we only
show Bicyclists since it performs the worse in three object
classes. We can see from Figure 6 that lowering the thresh-
old brings in more noise in detection results and makes
the inference inefficient. Again, our method only infers a
small subset of all the hypotheses and gains much improve-
ment in single class segmentation performance. And the
overall performance also increases a little in all three set-
tings. More noticeably, the Q-learning with Double setting
in Bicyclists can even achieve similar performance com-
pared with the full model, which means we do not sacrifice
other classes in this setting. More details about the overall
performance in Bicyclists and other classes can be viewed
in supplementary materials.

In addition, we compute the inference time v.s. number
of hypotheses, and compare with [17] and the baseline mean
field in Table 2. We can see that our algorithm is much faster
than the other two methods, and its inference time increases
only sub-linearly with respect to the number of hypotheses.

Overall, all three sets of experiments show that our
method can scale up well in terms of number of object
classes, video length and number of object hypotheses from
single class.

Figure 6: Scalibility with more hypotheses from a single class
(Bicyclists). Left: Class accuracy; Right: Model complexity.

# of Subgraphs Time(s)
[17] (GraphCut) DCRF (MeanField) Our Method

21.6 4.3 2.6 1.5
41.1 5.8 3.3 1.6
81.8 8.3 5.3 1.8
165 14.4 10.9 2.4

Table 2: Inference efficiency v.s. number of hypotheses of differ-
ent methods on CamVid. See text for details.

Extension to Other Datasets We also apply our learned
policy to two more video datasets, MPIScene and Dynam-
icScene. Because of fewer foreground semantic classes, we
can only generate the results from theCar or V ehicle class.
In these two datasets, we adjust our chunk length to the
length of the full sequence and apply the parameters trained
on CamVid directly.

Overall, we can achieve comparable or better perfor-



K frame GT Proposals 1st selection 2nd selection 3nd selection final prediction

Figure 4: Examples of our selective inference on CamVid. We can always select the most informative subgraphs with high priority. The
third row shows the early stop in subgraph selection that only choose one subgraph.

Figure 5: Left panel: Scalability with number of object classes (C: ’Car’; P:’Pedestrian’; B:’Bicyclist’); Right panel: Scalability with
different length of videos. Both the average accuracy and number of selected subgraphs are shown. See text for details.
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Ours 88.4 91.5 13.3 63.2 94.6 70.2
Liu [17] 90.2 91.7 11.2 72.5 95.2 72.2
Ondrej [19] 73 34 33 28 56 53.7

Table 3: Semantic segmentation performance (average per-class
accuracy) in MPIScene dataset. See text for details.

mance with active inference, and so our method has higher
efficiency and the learned policy can be easily generalized
to new datasets. Because we have only one sequence in
MPIScene dataset, we do not include the statistics of se-
lected hypotheses in Table 3. We also show the overall per-
formance in DynamicScene dataset compared with state-of-
the-art methods. We can see that although our method does
not outperform [17] but we require much fewer subgraphs
to generate comparable results (See Table 4).

6. Conclusion
We have proposed an object-aware dense CRF model for

multiclass semantic video segmentation, which jointly in-

Accuracy Class Pixel # hypothesis
Ours 69.1 91 4
Liu [17] 69.8 91.6 11
Wojek [31] 68.4 91 -

Table 4: Semantic segmentation performance (average per-class
and per-pixel accuracy) and the number of selected subgraphs in
DynamicScene dataset.

fers supervoxel labels, object activation and their occlusion
relationship. We derive an efficient mean field inference
algorithm for such joint model with moderate number of
object hypotheses. To deal with a large number of object
hypotheses in video, we propose to take an active inference
approach, which chooses informative hypotheses to activate
in the dense CRF. We investigate two approaches within the
MDP framework, one of which is based on Q-learning and
the other is a classifier trained by imitation learning. We
have demonstrated that both approaches achieve the state-
of-the-art performance on three video datasets with fewer
object hypotheses used in the final model inference and are
able to scale up for video parsing with more object classes
and/or longer sequences.
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