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Abstract

Subspace clustering refers to the problem of segmenting
data drawn from a union of subspaces. State of the art ap-
proaches for solving this problem follow a two-stage ap-
proach. In the first step, an affinity matrix is learned from
the data using sparse or low-rank minimization techniques.
In the second step, the segmentation is found by applying
spectral clustering to this affinity. While this approach has
led to state of the art results in many applications, it is sub-
optimal because it does not exploit the fact that the affinity
and the segmentation depend on each other. In this paper,
we propose a unified optimization framework for learning
both the affinity and the segmentation. Our framework is
based on expressing each data point as a structured sparse
linear combination of all other data points, where the struc-
ture is induced by a norm that depends on the unknown
segmentation. We show that both the segmentation and the
structured sparse representation can be found via a com-
bination of an alternating direction method of multipliers
with spectral clustering. Experiments on a synthetic data
set, the Hopkins 155 motion segmentation database, and
the Extended Yale B data set demonstrate the effectiveness
of our approach.

1. Introduction

In many real-world applications, we need to deal with
high-dimensional datasets, such as images, videos, text, and
more. In practice, such high-dimensional datasets can of-
ten be well approximated by multiple low-dimensional sub-
spaces corresponding to multiple classes or categories. For
example, the feature point trajectories associated with a
rigidly moving object in a video lie in an affine subspace
(of dimension up to 4) [38], and face images of a subject
under varying illumination lie in a linear subspace (of di-
mension up to 9) [18]. Therefore, the task, known in the
literature as subspace clustering, is to segment the data into
the corresponding subspaces and has many applications in
computer vision, e.g., image representation and compres-
sion [19], motion segmentation [8, 36], and temporal video
segmentation [43].
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Previous Work. The subspace clustering problem has re-
ceived a lot of attention over the past few years and many
methods have been developed, including iterative methods
[5, 40, 48, 49, 1], algebraic methods [3, 43, 32, 21], statisti-
cal methods [22, 2, 17,31, 47], and spectral clustering based
methods [46, 15, 11,7,49,9, 10, 25,24, 12,42, 28,27, 29]
(see [41] for details). Among them, methods based on spec-
tral clustering have become extremely popular. Such meth-
ods divide the problem in two steps. In the first one, an
affinity matrix is learned from the data. In the second one,
spectral clustering is applied to this affinity. Arguably, the
first step is the most important, as the success of the spectral
clustering algorithm is largely dependent on constructing an
informative affinity matrix.

Recent methods for learning the affinity matrix are based
on the self-expressiveness model, which states that a point
in a union of subspaces can be expressed as a linear combi-
nation in terms of other data points, i.e., X = X Z, where X
is the data matrix and Z is the matrix of coefficients. With
corrupted data, this constraint is relaxed to X = XZ + E,
where E is a matrix of errors. The subspace clustering prob-
lem is then formulated as the following optimization prob-
lem:

wmin | Z]+A|E]e st X = XZ+E, diag(Z) =0, (1)

where || -||, and || -|| are two properly chosen norms, A > 0
is a tradeoff parameter, and the constraint diag(Z) = 0 is
optionally used to rule out the trivial solution of Z being an
identity matrix.

The primary difference between different methods lies
in the choice of norms for the regularization on Z and/or
the noise term F. For example, in Sparse Subspace Clus-
tering (SSC) [9, 10] the ¢; norm is used for || - || as a con-
vex surrogate over the ¢, norm to promote sparseness in 7,
and the Frobenius norm and/or the ¢; norm of E is used
to handle Gaussian noise and/or outlying entries. In Low-
Rank Representation (LRR) [25, 24] and Low-Rank Sub-
space Clustering (LRSC) [12, 42] the nuclear norm || - ||
is adopted as a convex surrogate of the rank function, the
¢31 norm of E is used to tackle outliers (LRR), and the
Frobenius norm and/or the ¢; of E is used to handle noise
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and/or outlying entries. In LSR [28], the Frobenius norm of
Z is used in order to yield a block diagonal representation
matrix Z when subspaces are independent. In Correlation
Adaptive Subspace Segmentation (CASS) [27], the Trace-
Lasso norm [16] is used for each column of Z to gain a
tradeoff effect between ¢; and ¢» norms. Locality or spatial
information has also been adopted for weighting or regu-
larization on Z [35][29][20]. Also, a number of variants
of these algorithms have been proposed, including Latent
LRR [26], Multiple Subspace Recovery (MSR) [30], Sub-
space Segmentation with Quadratic Programming (SSQP)
[45], Spatial Weighted SSC [35], Latent SSC [33], Kernel
SSC [34], etc. Once the matrix of coefficients Z has been
found by any of the methods above, the segmentation of the
data is then obtained by applying spectral clustering to an
affinity matrix induced from Z, e.g., |Z| + |ZT|.

While the above methods have been incredibly success-
ful in many applications, an important disadvantage is that
they divide the problem into two separate stages:

e Compute the coefficients matrix Z of the self-
expressiveness model, using, e.g., SSC, LRR, LRSC,
LSR, etc.

e Construct an affinity matrix, e.g., | Z| + |Z |, and ap-
ply a spectral clustering to find the segmentation of the
data.

Dividing the problem in two steps is, on the one hand, ap-
pealing because the first step can be solved using convex op-
timization techniques, while the second step can be solved
using existing spectral clustering techniques. On the other
hand, however, its major disadvantage is that the natural re-
lationship between the affinity matrix and the segmentation
of the data is not explicitly captured.

To the best of our knowledge, the only attempt to inte-
grate these two stages into a unified framework is the work
of Feng et al. [13], who introduce a block-diagonal con-
straint into the self-expressiveness model. However, this
requires precise knowledge of the segmentation, and there-
fore enforcing exact block-diagonality is not possible with
their model.

In this paper, we attempt to integrate the two separate
stages into one unified optimization framework. One im-
portant observation is that a perfect subspace clustering can
often be obtained from an imperfect affinity matrix. In oth-
er words, the spectral clustering step can clean up the dis-
turbance in the affinity matrix — which can be viewed as a
process of information gain by denoising. Because of this,
if we feed back the information gain properly, it may help
the self-expressiveness model to yield a better affinity ma-
trix. As shown in Fig. 1, the clustering results can help the
self-expressiveness model find an improved affinity matrix
and thus boost the final clustering results.

Paper Contributions. In this paper, we propose a sub-
space structured norm on the self-expression coefficients
matrix and turn the problem of subspace clustering into a
unified optimization framework. Then, by integrating this
norm with the standard ¢; norm, we propose a subspace
structured ¢1 norm and reformulate SSC into a unified opti-
mization framework, termed as Structured Sparse Subspace
Clustering (SSSC or S2C), in which the separate two stages
of computing the sparse representation and applying the
spectral clustering are merged together automatically. More
specifically, in S2C we use the output of spectral clustering
to define a subspace structure matrix, which is feed back to
re-weight the representation matrix in the next iteration, and
thus unify the two separate stages into a single optimization
framework.
Our work has two main contributions.

1. To propose a subspace structured norm on the self-
expression coefficients matrix and formulate the sub-
space clustering problem into a unified optimization
framework.

2. To propose a subspace structured ¢; norm and refor-
mulate the sparse subspace clustering into a unified op-
timization framework, which is solved efficiently by a
combination of an alternating direction method of mul-
tipliers with spectral clustering.

2. A Unified Optimization Framework for Sub-
space Clustering

This paper is concerned with the following problem.

Problem 2.1 (Subspace clustering). Let X <€ IR™N
be a real-valued matrix whose columns are drawn from
a union of k subspaces of IR", U?Zl{Sj Y, of dimensions
d; < min{n, N}, for j = 1,..., k. The goal of subspace
clustering is to segment the columns of X into their corre-
sponding subspaces.

To begin with, we introduce some additional notation.
Let@Q = [ql, Sy qk] be an N X k binary matrix indicating
the membership of each data point to each subspace. That
is, g;; = 1 if the i-th column of X lies in subspace S; and
g;j = 0 otherwise. We assume that each data point lies
in only one subspace, hence if @) is a valid segmentation
matrix, we must have 1 = 1, where 1 is the vector of
all ones of appropriate dimension. Note that the number of
subspaces is equal to k, so we must have that rank(Q) = k.
Thus, we define the space of segmentation matrices as

Q={Qc{0,1}V** . Q1 =1and rank(Q) = k}. (2)

2.1. Structured Subspace Clustering: A Unified
Framework

Recall from (1) that data in a union of subspaces are self-
expressive, that is, each data point in a union of subspaces
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Figure 1. Visualization of matrices Z () and ©) in the first and the third iterations of S3C algorithm. Note that the first iteration of S3C
is effectively a SSC and hence the images of Z MW and ©M in panel (a) and (b) are the representation matrix and the structure matrix of
SSC, in which ©™) is computed using the current clustering result. The structure matrix ©) is used to reweight the computing of the
representation matrix Z“*1) in the next iteration. The images in panel (c) and (d) are the representation matrix Z () and structure matrix
O® of S3C when converged (¢t = 3). The percentage numbers in bracket are the corresponding clustering errors. For ease of visualization,
we computed the entry-wise absolute value and amplified each entry | Z;;| and ©;; by a factor of 500.

can be expressed as a linear combination of other data points
as X = X Z with diag(Z) = 0, where Z € RV*" is a
matrix of coefficients whose (4, j) entry |Z;;| captures the
similarity between points ¢ and j. The matrix of coefficients
is called subspace structured provided that Z;; # 0 only if
points 7 and j lie in the same subspace.

In existing approaches [10, 25, 28], one exploits the self-
expressiveness property by adding some penalty term on Z,
e.g., {1 [9, 101, || - |l« [25, 241, || - ||# [28], or even a da-
ta dependent norm [27]. However, these approaches do not
exploit the fact that the representation matrix Z and the seg-
mentation matrix () both try to capture the segmentation of
the data. Indeed, recall that the approach in (1) computes
the segmentation ) by applying spectral clustering to the
similarity matrix |Z| + | ZT|.

For the time being, imagine that the exact segmentation
matrix (Q was known. In order to capture the fact that the
zero patterns of Z and @) are related, observe that when
Z;; # 0 points ¢ and j are in the same subspace, hence
we must have q(Y) = q(¥), where q(*) and q/) are the i-th
and j-th row of matrix @, respectively. Therefore, we can
quantify the disagreement between Z and () by using the
following subspace structured measure of Z:

>

1,5:q() #£q(D)

100 Z|lo = Lf)z,;10) 3)

where ©;; = 1(/q9 — q\9)||?, the operator ® indicates the
Hadamard product (i.e., element-wise product) and I is an
indicator function. Since ©;; € {0, 1}, the cost in (3) effec-
tively counts the number of nonzero entries in Z when data
point ¢ and j are in different subspaces. Unfortunately the
subspace structured measure of Z is combinatorial in nature

and hence leads to an NP-hard problem.

Instead, we propose a relaxed counterpart, called the
subspace structured norm of Z with respect to (w.r.t.) @,

denoted as || Z|| g, which is defined as follows:
. 1 ;
1Zle = Y12l 10 — a9 ?) = [0 © Zl1.
0.

Note that when the subspace detection property [37] holds,
i.e., Z;; = 0 whenever points ¢ and j lie in different sub-
space, then the subspace structured norm ||Z]|¢ vanishes;
otherwise, it is positive.

In practice, of course, the true segmentation matrix @)
is unknown. Nevertheless, || Z||q still provides a useful
measure of the agreement between the segmentation ma-
trix @@ and the representation matrix Z. Therefore, a s-
traightforward approach to subspace clustering is to use the
subspace structured norm || Z|| directly to replace the first
term ||Z]|, in problem (1) and optimize over Z, E, and
(@ simultaneously. By doing so, we have a unified opti-
mization framework, which ensures consistency between
the representation coefficients and the subspace segmenta-
tion by solving the following optimization problem:

min (1 Zllg + AlLEl
st. X =XZ+F, diag(Z)=0, Q€ Q.

®)

The optimization problem in (5) can be solved by alter-
natively solving (Z, E') and Q. Given @), the problem is a
convex program for (Z, E') which can be solve efficiently
using the alternating direction method of multipliers (AD-
MM) [4][23]. Given (Z, E), the solution for ) can be com-
puted approximately by spectral clustering. To see this, note
that the || Z|| ¢ can be rewritten as:

1. ;
1Zle =125 lla"™ —a|?)
]
1 i ;
32 Auilla” — a3
.3

= trace(Q " LQ),

(6)
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where A;; = 3(|1Z;| + |Z;:|) measures the similarity of
points ¢ and j, L = D — A is a graph Laplacian, and D is a
diagonal matrix whose diagonal entries are Dj; = Y, A;;.
Consequently, given Z, we can find @) by solving the prob-
lem:

inn trace(QTLQ) st. Qe Q, @)
which is the problem solved approximately by spectral clus-
tering by relaxing the constraint Q € Qto QT Q = I.

Although the formulation in (5) is appealing since it for-
mulates the two separate stages in self-expression model
based spectral clustering methods into a unified optimiza-
tion framework, it suffers from two critical shortcomings:
a) it depends strongly on initialization, and b) it depend-
s tightly upon solving the subspace segmentation matrix
which is combinatorial problem. Note that:

e When ( is initialized arbitrarily as a segmentation ma-
trix in Q, the iterations of the optimization problem
will be “trapped” within the initialized support of ©
which is defined by the initial Q.

e If () is initialized from an infeasible solution, which
corresponds to treating each single data point as one
subspace, then the first iteration for solving Z is equiv-
alent to a standard SSC.! Unfortunately, after solving
one iteration of the problem, we then return to the pre-
vious issue, where we become trapped within the first
estimated clustering.

To remedy the drawbacks of the unified optimization
framework mentioned above, we need to incorporate addi-
tional structure into the subspace structured norm || Z|| g.

2.2. Structured Sparse Subspace Clustering (S3C)

Recall that in existing work, the ¢; norm || Z]|; used in
SSC, the nuclear norm || Z||. used in LRR, the Frobenius
norm || Z||r used in LSR, or the TraceLasso norm used in
CASS are all powerful means to detect subspaces. While
any of them could potentially be incorporated into the sub-
space structured norm, here we adopt the ¢; norm and define
a subspace structured 1 norm of Z as follows:

1Zllnq = 1211 + all© © 2|,
= (17 +a0) © Z|x
o . .
= 31211+ S a — D)),

i,J

®)

where o > 0 is a tradeoff parameter. Clearly, the first term
is the standard ¢; norm used in SSC. Therefore the subspace
structured /1 norm can be viewed as an /1 norm augmented

'Tn this case, since ©® = 117 — diag(1), we have ||Z||q = ||Z||1 —
diag(Z2).

by an extra penalty on Z;; when points 4 and j are in differ-
ent subspaces according to the segmentation matrix (). The
reasons we prefer to use the /1 norm are two fold:

e Since both the ¢; norm and the subspace structured
norm (w.r.t. () are based on the /1 norm, this leads
to a combined norm that also has the structure of the
¢1 norm. We will see later that this will facilitate up-
dating the coefficients of Z.

e The second reason to use the /1 norm is the great the-
oretical guarantees for correctness enjoyed by SSC,
which is applicable to detect subspace even when sub-
spaces are overlapping [37].

Equipped with the subspace structured ¢1 norm of Z, we
can reformulate the unified optimization framework in (5)
for subspace clustering as follows:

min ||Z + M| E
min 1 Z]h.0 + NI Bl o

st. X =XZ+E, diag(Z2) =0, Q€ Q.

where the norm || - ||, on the error term F depends upon the
prior knowledge about the pattern of noise or corruptions.”
We call problem (9) Structured Sparse Subspace Clustering
(SSSC or S3C).

Discussions. Notice that the S3C framework in (9) general-
izes SSC because, instead of first solving for a sparse repre-
sentation to find Z and then applying spectral clustering to
the affinity | Z| +|Z " | to obtain the segmentation, in (9) we
simultaneously search for the sparse representation Z and
the segmentation ). Our S3C differs from the reweighted
/1 minimization [6] in that what we use to reweight is not Z
itself but rather a subspace structure matrix ©. Compared to
[13], which adds an extra block-diagonal constraint into the
expressiveness model, whereas our framework encourages
consistency between the representation matrix and the esti-
mated segmentation matrix. It should also be noted that our
subspace structured norm can be used in conjunction with
other self-expressiveness based methods [25][28][27], and
can also be combined with other weighted methods [35] or
methods with extra regularization [20].

3. An Alternating Minimization Algorithm for
Structured Sparse Subspace Clustering

In this section, we propose a solution to the optimization
problem in (9) based on solving the following two subprob-
lems alternatively:

2For example, the Frobenius norm will be used if the data are contami-
nated with dense noise; the £1 norm will be used if the data are contaminat-
ed with sparse corruptions; the £2 1 norm will be used if the data are con-
taminated with gross corruptions over a few columns; or the combination
of these norms will be used for mixed patterns of noise and corruptions.
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Algorithm 1 (ADMM for solving problem (11))
Input: Data matrix X, ©g, A, and «.
Initialize: © = 0, £ = 0,C = Z = Z,, YV =0,
Y® =0,e=106p=1.1
while not converged do
Update Z;, C;, and Fy;
Update Yt(l) and Yt(2);
Update fui41 <= ppit;
Check the convergence condition || X — XC — E|| o <
€; if not converged, then set ¢t <— ¢ + 1.
end while
Output: 7, and Fy 4

1. Find Z and E given @ by solving a weighted sparse
representation problem.

2. Find @ given Z and F by spectral clustering.

3.1. Subspace Structured Sparse Representation

Given the segmentation matrix @ (or the structure matrix
0), we solve for Z and E by solving the following struc-
tured sparse representation problem

ggﬂﬂhQ+MWW

(10)
st. X =XZ+ F, diag(Z) =0,
which is equivalent to the following problem
pin ([ Zlle + ME] (an

st. X =XC+FE,C=7Z7—diag(2).

We solve this problem using the Alternating Direction
Method of Multipliers (ADMM) [23],[4]. The augmented
Lagrangian is given by:

L(Z,C,E, YD y?)

=/ Zll.q + A Elle + (Y, X - XC ~ E)

+(Y® O — Z + diag(2))

I .
+5 (X = XC = B|f + [|C — Z + diag(2)] %),

(12)

where Y (1) and Y'(?) are matrices of Lagrange multipliers,
and p > 0 is a parameter. To find a saddle point for £, we
update each of Z, C, E, YD and Y@ alternatively while
keeping the other variables are fixed.

Update for Z. We update Z by solving the following prob-
lem:

1 1 .
Zin=nrgmin -2 + 5|12 ~ diag(2) ~ Ui, (13)
t

where [|Z]|1. = || Z|l1+a06Z] and U, = Ci+ L V).
The closed-form solution for Z is given as

Zig1 = Zt+1 - diag(ZH), (14)
where the (4, j) entry of Z is given by
Zt”ﬂ = Sﬁ(1+a@,,,,‘)(Utij)- (15)

where S;(+) is the shrinkage thresholding operator. Note
that the subspace structured ¢; norm causes a minor change
to the algorithm used to compute Z from the standard SS-
C — because of the homogeneity in the two terms. Name-
ly, rather than soft-thresholding all the entries of matrix U,
with a constant value, we threshold the entries of matrix U;
with different values that depend on ©;;.

Update for C'. We update C' by solving the following prob-
lem:

Cyi1 = argmin(Y;'V, X — XC — E,)
C

+(Y? C = 7, + diag(Zy)) (16)
+EL X =XC— B} + |C— Zi+diag(20) 7).

whose solution is given by

1
Copr=(X T X+D) X (X —E,——v)
Mt 17
- )
+Zt—diag<Zt)—M—YJ ]
t

Update for F. While other variables are fixed, we update
FE as follows:

A 1
By = argmin — | Bl + S| E - Vi[7 - (18)
E it 2

where V; = X — XCyyq + iY;(l). If we use the ¢; norm
for F, then

Eiyy =81 (Vh). (19)

2
Update for Y(!) and Y(?), The update for the Lagrange
multipliers is a simple gradient ascent step

Yt(-iﬂ =YY + (X — XCyp1 — Eera),

(2) (2) : (20)
Yo =Y 4 pe(Copr — Ziyr + diag(Zi41))-
For clarity, we summarize the ADMM algorithm for

solving problem (11) in Algorithm 1. For the details of the
derivation, we refer the readers to [23, 4].
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Algorithm 2 (S3C)
Input: Data matrix X and the number of subspaces k
Initialize: © = 0, )\, o
while not converged do
Given (), solve problem (10) via Alg. 1 to obtain
(Z.E);
Given (Z, E), solve problem (21) via spectral cluster-
ing to obtain Q);
end while
Output: Segmentation matrix )

3.2. Spectral Clustering

Given Z and E, problem (9) reduces to the following
problem:

in)nHZHl)Q st. Q€ Q. 1)

Recall that || Z||1,¢ = || Z]]1 + «||© ©® Z]|1 and observe that
the first term in || Z||1 ¢ is not a function of (), hence it can
be dropped. Consequently problem (21) reduces to prob-
lem (7), which can be approximately solved with spectral
clustering [44]. More specifically, by relaxing the constraint
that Q € Q to requiring that () be an orthogonal matrix, i.e.,
QT Q =1, we obtain:

min  atrace(Q'LQ) st Q'Q=1. (22)

QERN Xk

The solution to this relaxed problem can be found efficiently
by eigenvalue decomposition. In particular, the columns of
(Q are given by the eigenvectors of L associated with the
smallest k eigenvalues. The rows of () are then used as
input to the k-means algorithm, which produces a clustering
of the rows of () that can be used to produce a binary matrix
Q € {0,1}"V >k such that Q1 = 1.

3.3. Algorithm Summary

For clarity, we summarize the whole scheme to solving
problem (9) in Algorithm 2. The algorithm alternates be-
tween solving for the matrices of sparse coefficients and the
error (Z, E) given the segmentation ) using Algorithm |
and solving for ) given (Z, E) using spectral clustering.
While the problem solved by Algorithm 1 is a convex prob-
lem, there is no guarantee that the Algorithm 2 will con-
verge to a global or local optimum because the solution for
Q given (Z, E) is obtained in an approximate manner by
relaxing the objective function. Nonetheless, our experi-
ments show that the algorithm does converge in practice for
appropriate settings of the parameters.

Stopping Criterion. We terminate Algorithm 2 by check-
ing the following condition

[©7+1 — O7[lec <1, (23)
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Figure 2. Experimental Results on Synthetic Data Set. (a): The
clustering errors as a function of .. (b): The histogram of numbers
of iterations where @ = 0.1 and T34 = 10.

where T'=1,2,...

Parameter Setting. In S3C the parameters \ and o need
to be set properly as in SSC [10]. Nevertheless, we ob-
served that rather than using a fixed « to balance the two
terms in the subspace structured ¢; norm || Z||1 ¢, the con-
vergence could be improved by, e.g., using a <— va or us-
ing ! =7 Z||1 +avT 1| Z| g in Algorithm 2, where v > 1
and T = 1,2,... is the iteration index.

is the iteration index.

4. Experiments

In this section, we evaluate the proposed S3C approach
on a synthetic data set, a motion segmentation data set, and
a face clustering data set to validate its effectiveness.

Experimental Setup. Since that our S3C is a generaliza-
tion of the standard SSC [10], we keep all settings in S3C
the same as in SSC and thus the first iteration of S3C is e-
quivalent to a standard SSC. The S3C specific parameters
are set using v1=T||Z||; + avT | Z| o where a = 0.1,
v = 1.2, and T},4, = 10 by default. The A and the AD-
MM parameters are kept the same for both S2C and SS-
C. For each set of experiments, the average and median of
subspace clustering error are recorded. The error (ERR) of
subspace clustering is calculated by

N

1
ERR(a,a)=1— — 1 —a 24
(a,a) max ;:1: (r(a)=a}  (24)
where a,a € {1,--- ,k}" are the original and estimated

assignments of the columns in X to the k subspaces, and
the maximum is with respect to all permutations
ool R = {1, B (25)
For the motion segmentation problem, we consider the
Hopkins 155 database [39], which consists of 155 video se-
quences with 2 or 3 motions in each video corresponding
to 2 or 3 low-dimensional subspaces. For the face cluster-
ing problem, we consider the Extended Yale B data set [ 14],
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Corruptions (%) \ 0

[ 10% | 20% [ 30% [ 40% | 50% [ 60% | 70% [ 80% | 90% |

SSC 143 | 1.93 | 2.17 | 4.27
Our S3C 0.30 | 0.33 | 0.90 | 2.97

16.87 | 32.50 | 54.47 | 62.43 | 68.87 | 73.77
10.70 | 23.67 | 50.50 | 60.70 | 67.97 | 73.33

Table 1. Clustering Errors on Synthetic Data Set. The best results are in bold font.

which consists of face images of 38 subjects, where the face
images of each subject correspond to a low-dimensional
subspace.

4.1. Experiments on Synthetic Data

Data Preparing. @ We construct k£ linear subspaces
{S;}s_, C IR™ whose bases {U;}5_, are the left singu-
lar matrixes computed from a random matrix R; € IR™*".
We sample N; data points from each subspace j = 1,...,k
as X; = U;Y, where the entries of Y; € R¥>*N; are i.i.d.
samples from a standard Gaussian. Note that by doing so,
the k linear subspaces are not necessarily orthogonal to each
other. We then corrupt a certain percentage p = 10 — 90%
of entries uniformly at random, e.g., for a column = chosen
to corrupt, its observed vector is added by Gaussian noise
with zero mean and variance 0.3||x||. We repeat each ex-
periment for 20 trials. In our experiments, we set n = 100,
d=5,N; =10, and k = 15.

Experimental results are presented in Table 1. Notice
that our S3C algorithm consistently outperforms SSC. To
gain more insights into the sensitivity of S3C to the pa-
rameter «, in Fig. 2 (a) we show the results of varying
a over [0,1] while holding the corruption level fixed at
55%. As could be observed that, our method works well for
a € [0.03,0.30]. In Fig. 2 (b), we show the histogram of the
numbers of iterations for S3C to converge with e = 0.1 and
Thaz = 10. As could be observed that, our S3C converges
in 2 ~ 6 iterations on average. For the average time cost,
SSC takes 1.46 seconds whereas our S3C takes 8.05 sec-
onds which is roughly 5.5 times of SSC’s on the synthetic
data sets.

4.2. Data Visualization

To show the effect of the subspace structured ¢; norm in
S3C intuitively, we take a subset of images of three subjects
from the Extended Yale B data set, perform S3C, and then
visualize the representation matrix Z(*) and the subspace
structure matrix ©(Y), which are taken in the ¢-th iteration
in S3C. Note that the first iteration of S3C is effectively a
SSC since we use the same parameters. The visualization
results are displayed in Fig. 1.

We observe from Fig. 1 (a) that the structured sparse rep-
resentation matrix Z(!) — which is effectively the sparse rep-
resentation matrix of SSC — is not a clearly block-diagonal
and leads to a degenerated clustering result as shown by the
subspace structure matrix ©(!) in Fig. 1 (b). In the third
iteration (¢ = 3), S3C yields a much better representation
matrix Z®), as shown in Fig. 1 (c), and hence produces

i ; - = = > = e 3 :

Figure 3. Example frames from videos in the Hopkins 155 [39].

a significantly improved clustering result as shown by the
subspace structure matrix ©) in Fig. 1 (d). While S3C
in this case did not yield a perfect block-diagonal represen-
tation matrix, the improvements still reduce the clustering
error significantly — 27.60% vs. 6.77%.

4.3. Experiments on Hopkins 155 Database

Motion segmentation refers to the problem of segment-
ing a video sequence with multiple rigidly moving objects
into multiple spatiotemporal regions that correspond to the
different motions in the scene (see Fig. 3). This problem
is often solved by first extracting and tracking the spatial
positions of a set of N feature points xy; € IR? through
each frame f = 1,..., F of the video, and then clustering
these feature points according to each one of the motions.
Under the affine projection model, a feature point trajectory
is formed by stacking the feature points Xy; in the video as
Yi = [X{;,X9;, -+ ,Xp;| T € IR?F. Since the trajectories as-
sociated with a single rigid motion lie in an affine subspace
of IR?F of dimension at most 4 [38], the trajectories of k
rigid motions lie in a union of k low-dimensional subspaces
of IR?F". Therefore, the multi-view affine motion segmenta-
tion problem reduces to the subspace clustering problem.

We compare our S3C algorithm with SSC [10], LSA
[46], LRR [25], LSR [28], BDSSC [13] and BDLRR [13]
on the Hopkins 155 motion segmentation data set [39] for
the multi-view affine motion segmentation without other
postprocessing. Experimental results are presented in Ta-
ble 2. Note that from the results in Table 2, the S3C is
again the best performing method; however, due to the fact
that the Hopkins 155 database has a relatively low noise lev-
el, the improvement in performance over SSC is relatively
minor.

4.4. Experiments on Extended Yale B Data Set

The Extended Yale Database B [14] contains 2,414
frontal face images of 38 subjects, with approximately 64
frontal face images per subject taken under different illumi-
nation conditions. Given the face images of multiple sub-
jects acquired under a fixed pose and varying illumination,
we consider the problem of clustering the images according
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| Methods | LSA [ LRR [ BDLRR | LSR1 | LSR2 [ BDSSC [ SSC [ Our S°C
2motions Ave. | 362 [ 376 [ 370 [ 220 | 222 [ 229 [ 195 1.94
ERR(%) Med. | 0.51 | 0.00 | 000 | 0.00 | 0.00 | 0.00 | 000 | 0.00
3motions Ave. | 7.67 [ 992 | 649 [ 7.3 | 718 | 495 | 494 492
ERR(%) Med. | 127 | 142 | 120 | 240 | 240 | 091 | 089 | 0.89
Total — Ave. | 453 [ 515 | 433 | 331 [ 334 [ 289 [263| 261
ERR(%) Med. | 0.63 | 0.00 | 000 | 022 | 023 | 0.00 | 0.00 | 0.00

Table 2. Motion Segmentation Errors on Hopkins 155 Database. The best results are in bold font.

No. subjects 2 3 5 8 10
ERR (%) Average Median | Average Median | Average Median | Average Median | Average Median
LRR 6.74 7.03 9.30 9.90 13.94 14.38 25.61 24.80 29.53 30.00
LSR1 6.72 7.03 9.25 9.90 13.87 14.22 25.98 25.10 28.33 30.00
LSR2 6.74 7.03 9.29 9.90 13.91 14.38 25.52 24.80 30.73 33.59
CASS 10.95 6.25 13.94 7.81 21.25 18.91 29.58 29.20 32.08 35.31
LRSC [42] 3.15 2.34 4.71 4.17 13.06 8.44 26.83 28.71 35.89 34.84
BDSSC [13] 3.90 - 17.70 - 27.50 - 33.20 - 39.53 -
BDLRR [13] 391 - 10.02 - 12.97 - 27.70 - 30.84 -
LatLRR 2.54 0.78 4.21 2.60 6.90 5.63 14.34 10.06 22.92 23.59
SSC 1.87 0.00 3.35 0.78 4.32 2.81 5.99 4.49 7.29 5.47
s3cft 1.43 0.00 3.09 0.52 4.08 2.19 4.84 4.10 6.09 5.16
s3ct 1.40 0.00 3.08 0.52 3.83 1.88 445 3.52 542 4.53
S3C 1.27 0.00 2.71 0.52 341 1.25 4.15 2.93 5.16 4.22

Table 3. Clustering Errors on Extended Yale B Data Set. The best results are in bold font. In S3CT we fix o as 0.1 whereas in S3C* we

use o < vao.

to their subjects. It has been shown that, under the Lam-
bertian assumption, the images of a subject with a fixed
pose and varying illumination lie close to a linear subspace
of dimension 9 [18]. Thus, the collection of face images
of multiple subjects lie close to a union of 9-dimensional
subspaces. It should be noted that the Extended Yale B
dataset is more challenging for subspace segmentation than
the Hopkins 155 database due to heavy corruptions in the
data.

We compare the clustering errors of our proposed
S3C algorithm with SSC [10], LRR [25], LatLRR [26],
LRSC [42], and other recently proposed algorithms, in-
cluding LSR [28], CASS [27], and BDSSC [13] and B-
DLRR [13]. In our experiments, we follow the protocol
introduced in [10]: a) each image is down-sampled to be
48 x 42 pixels and then vectorized to a 2,016-dimensional
data point; b) the 38 subjects are then divided into 4 group-
s — subjects 1-10, 11-20, 21-30, and 31-38. We perform
experiments using all choices of n € {2,3,5,8,10} sub-
jects in each of the first three groups and use all choices of
n € {2,3,5,8} from the last group. For S3C, SSC, LatL-
RR, and LRSC, we use the 2,016-dimensional vectors as
inputs. For LatLRR and LRSC, we cite the results reported
in [10] and [42], respectively. For LRR, LSR, and CASS,
we use the procedure reported in [28]: use standard PCA to
reduce the 2,016-dimensional data to 6k-dimensional data
for k € {2,3,5,8,10}. For BDSSC, and BDLRR, we di-
rectly cite the best results in their papers, which are based

on 9k-dimensional data. The full experimental results are
presented in Table 3. Again, we observe that S3C yields the
lowest clustering errors across all experimental conditions.

5. Conclusion

We described a unified optimization framework for the
problem of subspace clustering. Moreover by introducing
a subspace structured ¢; norm, we formulated the sparse
subspace clustering algorithm into a unified optimization
framework, termed as Structured Sparse Subspace Cluster-
ing (S3C), in which the separate two stages of computing
the sparse representation and applying the spectral cluster-
ing were elegantly merged together. We solved this prob-
lem efficiently via a combination of an alternating direction
method of multipliers with spectral clustering. Experiments
on a synthetic data set, the Hopkins 155 motion segmenta-
tion database, and the Extended Yale B data set demonstrat-
ed the effectiveness of our method.

Acknowledgment

C.-G. Li was partially supported by National Natural Sci-
ence Foundation of China under Grant Nos. 61175011 and
61273217, and Scientific Research Foundation for the Re-
turned Overseas Chinese Scholars, Ministry of Education
of China. R. Vidal was supported by the National Science
Foundation under Grant No. 1447822.

284



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

[15]

(16]

(17]

P. Agarwal and N. Mustafa. k-means projective clustering. In
ACM Symposium on Principles of database systems, 2004. 1
C. Archambeau, N. Delannay, and M. Verleysen. Mixtures
of robust probabilistic principal component analyzers. Neu-
rocomputing, 71(7-9):1274-1282, 2008. 1

T. Boult and L. Brown. Factorization-based segmentation
of motions. In IEEE Workshop on Motion Understanding,
pages 179-186, 1991. 1

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-
tributed optimization and statistical learning via the alternat-
ing direction method of multipliers. Foundations and Trends
in Machine Learning, 3(1):1-122, 2010. 3, 5

P. S. Bradley and O. L. Mangasarian. k-plane clustering.
Journal of Global Optimization, 16(1):23-32, 2000. 1

E. Candes, M. Wakin, and S. Boyd. Enhancing sparsity by
reweighted /1 minimization. Journal of Fourier Analysis and
Applications, 14(5):877-905, 2008. 4

G. Chen and G. Lerman. Spectral curvature clustering (SC-
C). International Journal of Computer Vision, 81(3):317-
330, 2009. 1

J. Costeira and T. Kanade. A multibody factorization method
for independently moving objects. International Journal of
Computer Vision, 29(3):159-179, 1998. 1

E. Elhamifar and R. Vidal. Sparse subspace clustering. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2009. 1, 3

E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-
gorithm, theory, and applications. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(11):2765-2781,
2013. 1,3,6,7,8

Z. Fan, J. Zhou, and Y. Wu. Multibody grouping by infer-
ence of multiple subspaces from high-dimensional data using
oriented-frames. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(1):91-105, 2006. 1

P. Favaro, R. Vidal, and A. Ravichandran. A closed form
solution to robust subspace estimation and clustering. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2011. 1

J. Feng, Z. Lin, H. Xu, and S. Yan. Robust subspace seg-
mentation with block-diagonal prior. In CVPR, 2014. 2, 4,
7,8

A. Georghiades, P. Belhumeur, and D. Kriegman. From few
to many: Illumination cone models for face recognition un-
der variable lighting and pose. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(6):643-660, 2001. 6,
7

A. Goh and R. Vidal. Segmenting motions of different types
by unsupervised manifold clustering. In IEEE Conference
on Computer Vision and Pattern Recognition, 2007. 1

E. Grave, G. Obozinski, and F. Bach. Trace lasso: a trace
norm regularization for correlated designs. In NIPS, 2011. 2
A. Gruber and Y. Weiss. Multibody factorization with uncer-
tainty and missing data using the em algorithm. In IEEE
Conference on Computer Vision and Pattern Recognition,
volume I, pages 707-714, 2004. 1

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

285

J.Ho, M. H. Yang, J. Lim, K. Lee, and D. Kriegman. Cluster-
ing appearances of objects under varying illumination condi-
tions. In IEEE Conference on Computer Vision and Pattern
Recognition, 2003. 1, 8

W. Hong, J. Wright, K. Huang, and Y. Ma. Multi-scale
hybrid linear models for lossy image representation. /EEE
Trans. on Image Processing, 15(12):3655-3671, 2006. 1

H. Hu, Z. Lin, J. Feng, and J. Zhou. Smooth representation
clustering. In CVPR, 2014. 2,4

K. Huang, Y. Ma, and R. Vidal. Minimum effective dimen-
sion for mixtures of subspaces: A robust GPCA algorithm
and its applications. In IEEE Conference on Computer Vision
and Pattern Recognition, volume II, pages 631-638, 2004. 1
A. Leonardis, H. Bischof, and J. Maver. Multiple
eigenspaces. Pattern Recognition, 35(11):2613-2627, 2002.
1

Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented La-
grange multiplier method for exact recovery of corrupted
low-rank matrices. arXiv:1009.5055v2,2011. 3,5

G. Liu, Z. Lin, S. Yan, J. Sun, and Y. Ma. Robust recovery of
subspace structures by low-rank representation. /EEE Trans.
Pattern Analysis and Machine Intelligence, 35(1):171-184,
Jan 2013. 1,3

G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation
by low-rank representation. In International Conference on
Machine Learning, 2010. 1,3,4,7, 8

G. Liu and S. Yan. Latent low-rank representation for sub-
space segmentation and feature extraction. International
Conference on Computer Vision, 2011. 2, 8

C. Lu, Z. Lin, and S. Yan. Correlation adaptive subspace
segmentation by trace lasso. In /CCV, 2013. 1,2, 3,4, 8

C. Lu, H. Min, Z.-Q. Zhao, L. Zhu, D.-S. Huang, and S. Yan.
Robust and efficient subspace segmentation via least squares
regression. In Proceedings of European Conference on Com-
puter Vision, 2012. 1,2,3,4,7, 8

C. Lu, S. Yan, and Z. Lin. Correntropy induced 12 graph for
robust subspace clustering. In /CCV, 2013. 1, 2

D. Luo, F. Nie, C. H. Q. Ding, and H. Huang. Multi-subspace
representation and discovery. In ECML/PKDD, pages 405—
420, 2011. 2

Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation
of multivariate mixed data via lossy coding and compression.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(9):1546-1562, 2007. 1

Y. Ma, A. Y. Yang, H. Derksen, and R. Fossum. Estimation
of subspace arrangements with applications in modeling and
segmenting mixed data. SIAM Review, 50(3):413-458, 2008.
1

V. M. Patel, H. V. Nguyen, and R. Vidal. Latent space sparse
subspace clustering. In IEEE International Conference on
Computer Vision, 2013. 2

V. M. Patel and R. Vidal. Kernel sparse subspace clustering.
In International Conference on Image Processing, 2014. 2
D. Pham, S. Budhaditya, D. Phung, and S. Venkatesh. Im-
proved subspace clustering via exploitation of spatial con-
straints. In CVPR, 2012. 2, 4



(36]

(37]

(38]

[39]

[40]
(41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation
in the presence of outlying, incomplete, or corrupted trajec-
tories. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(10):1832-1845, 2010. 1

M. Soltanolkotabi and E. J. Candes. A geometric analysis
of subspace clustering with outliers. Annals of Statistics,
40(4):2195-2238, 2012. 3, 4

C. Tomasi and T. Kanade. Shape and motion from image
streams under orthography. International Journal of Com-
puter Vision, 9(2):137-154, 1992. 1,7

R. Tron and R. Vidal. A benchmark for the comparison of
3-D motion segmentation algorithms. In /IEEE Conference
on Computer Vision and Pattern Recognition, 2007. 6, 7

P. Tseng. Nearest g-flat to m points. Journal of Optimization
Theory and Applications, 105(1):249-252, 2000. 1

R. Vidal. Subspace clustering. IEEE Signal Processing Mag-
azine, 28(3):52-68, March 2011. 1

R. Vidal and P. Favaro. Low rank subspace clustering
(LRSC). Pattern Recognition Letters, 43:47-61, 2014. 1,
8

R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Com-
ponent Analysis (GPCA). I[EEE Transactions on Pattern
Analysis and Machine Intelligence, 27(12):1-15, 2005. 1

U. von Luxburg. A tutorial on spectral clustering. Statistics
and Computing, 17, 2007. 6

S. Wang, X. Yuan, T. Yao, S. Yan, and J. Shen. Efficient
subspace segmentation via quadratic programming. In AAAI,
2011. 2

J. Yan and M. Pollefeys. A general framework for motion
segmentation: Independent, articulated, rigid, non-rigid, de-
generate and non-degenerate. In European Conference on
Computer Vision, pages 94-106, 2006. 1, 7

A.Y. Yang, S. Rao, and Y. Ma. Robust statistical estimation
and segmentation of multiple subspaces. In Workshop on 25
years of RANSAC, 2006. 1

T. Zhang, A. Szlam, and G. Lerman. Median k-flats for hy-
brid linear modeling with many outliers. In Workshop on
Subspace Methods, 2009. 1

T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Hybrid lin-
ear modeling via local best-fit flats. International Journal of
Computer Vision, 100(3):217-240, 2012. 1

286



