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Abstract

Predicting the depth (or surface normal) of a scene
from single monocular color images is a challenging task.
This paper tackles this challenging and essentially under-
determined problem by regression on deep convolutional
neural network (DCNN) features, combined with a post-
processing refining step using conditional random fields
(CRF). Our framework works at two levels, super-pixel
level and pixel level. First, we design a DCNN model to
learn the mapping from multi-scale image patches to depth
or surface normal values at the super-pixel level. Second,
the estimated super-pixel depth or surface normal is re-
fined to the pixel level by exploiting various potentials on
the depth or surface normal map, which includes a data
term, a smoothness term among super-pixels and an auto-
regression term characterizing the local structure of the
estimation map. The inference problem can be efficiently
solved because it admits a closed-form solution. Experi-
ments on the Make3D and NYU Depth V2 datasets show
competitive results compared with recent state-of-the-art
methods.

1. Introduction

Both depth and surface normal estimation are common
intermediate components in understanding 3D scene struc-
ture. Many approaches have been proposed to tackle these
two problems. We propose a common deep learning frame-
work for predicting both depth and surface normals in this
work. Depth estimation is to predict pixel-wise depth for
a single or multiple images. It was shown that depth in-
formation can benefit tasks such as recognition [1, 2], hu-
man computer interaction [3], and 3D model reconstruc-
tion [4]. Traditional techniques have predominantly worked
with multiple images to make the problem of depth pre-
diction well posed, which include N -view reconstruction,
structure from motion (SfM) and simultaneous localization

and mapping (SLAM). However depth estimation from a
monocular, static viewpoint lags far behind its multi-view
counterpart. This is mainly due to the fact that the problem
is ill-posed and inherently ambiguous: a single image on its
own does not provide any depth cue explicitly (i.e., given
a color image of a scene, there are infinite number of 3D
scene structures explaining the 2D measurements exactly).

When specific scene dependant knowledge is available,
depth estimation or 3D reconstruction from single images
can be achieved by utilizing geometric assumptions such
as the “Blocks World” model [5], the “Origami World”
model [6], shape from shading [7] and repetition of struc-
tures [8]. These cues typically work for images with specific
structures and may not be applied as a general framework.

Data-driven depth estimation methods, predicting scene
geometry directly by learning from data, have gained pop-
ularity. Typically, such approaches recast the underlying
depth estimation problem in a scene labeling pipeline by ex-
ploiting relationship between image features and depth [9,
10]. These method can be roughly categorized as paramet-
ric approaches and non-parametric approaches. Parametric
approaches such as [9] and [11] make a planar model for
each super-pixel, where the model parameters are inferred
by exploiting different unary, pair-wise and high-order cues.
These work generally uses hand crafted features [10, 12].
In contrast, non-parametric approaches such as [13, 11, 14]
adopt a depth transfer framework, where the whole depth
map is transferred from retrieved candidate depth maps.
Usually, a final optimization is required to enforce con-
straints on the depth map. However, these methods gen-
erally search the training data set online, thus prohibiting
their use in real world applications.

To tackle the above shortcomings in depth estimation
from a single image, in this paper, we present a new frame-
work consisting of depth regression via deep features and
depth refining via hierarchical CRF. First, to exploit the
inherent relation between a color image and its associated
depth, we use a deep network and formulate the problem of
depth estimation as a regression problem. Multi-scale deep



features are extracted by a deep CNN network, and a regres-
sor is trained. To our knowledge, this may be the first work
showing the pre-trained multi-scale deep features [15] can
be effectively transferred to the depth estimation problem.
Second, to refine the estimation of the regressor and achieve
efficient estimation, we introduce a hierarchical continuous
conditional random field (CRF) model to take various po-
tentials into consideration,thus refining the depth (or surface
normal) estimation from the super-pixel level to the pixel
level. In contrast to existing work, our model does not need
to encode any kind of geometric priors explicitly (all the
geometric relations such as occlusion can be encoded im-
plicitly by exploiting a large amount of training data), thus
enabling its powerful generalization ability in real world ap-
plications.

It is worth noting that our framework is top-to-bottom in
that it works from the super-pixel level to pixel level, while
existing work such as [10, 11] adopts a bottom-to-top strat-
egy. This brings the following benefits (a) It reduces the
computation burden dramatically by extracting pre-trained
CNN features at the super-pixel level only; (b) It avoids
over-smoothing on the boundary and preserves small ob-
jects. Furthermore, the inference of our model has a closed-
form solution thus the implementation of our framework is
efficient. We show that using the same framework, we can
estimate surface normals with minimal modification to the
network parameters. This is not surprising because one can
always calculate the surface normals given the depth infor-
mation.

2. Related work
In this section, we briefly review recent advances in

depth and surface normal estimation from a single image.
Seminal work by Saxena et al. [9, 16] tackles the problem
with a multi-scale Markov Random Field (MRF) model,
with the parameters of the model learned through super-
vised learning. The work models the plane parameters as
a linear function of the hand-crafted texture based, super-
pixel shape and location based features. The model is
only applicable to scenes where horizontal aligns with the
ground plane. By contrast, our framework is much more
general, which does not enforce strong assumptions about
the scene layout.

Liu et al. [17] estimated the depth map from predicted
semantic labels, simplifying the problem and achieved im-
proved performance with a simpler MRF model. Recently
Ladicky et al. [18] showed that perspective geometry can
be used to improve results and demonstrated how scene la-
belling and depth estimation can benefit each other under
a unified framework, where a pixel-wise classifier was pro-
posed to jointly predict a semantic class and a depth label
from a single image. Besides these parametric methods, re-
cent work such as [13, 11, 14] tackle the depth estimation

problem in a non-parametric way, where the whole depth
map is inferred from candidate depth maps. However, these
methods need to access a large color-depth data set to re-
trieve candidate depth maps at run time.

Most recently, Eigen et al. [19] presented a frame-
work by training a large deep Convolution Neural Network
(CNN) and regressing low-resolution depth maps directly
from the raw color images. To train such a large network,
an extremely large (i.e., hundreds of thousands of images)
data set of labelled color-depth image pairs is required. By
contrast, our work only needs hundreds of training images,
which makes our method applicable in scenarios where only
limited training samples are available. In addition, the re-
gressed depth map by their work is blurred. On the con-
trary, we achieve rather realistic depth map with our effec-
tive CRF model.

To date, data-driven learning based normal estimation
methods have not been well studied. It is believed that
this may be due to the lack of available training data [12].
Ladicky et al. [12] presented a promising method to esti-
mate surface normals from a single image using machine
learning. The core idea is to discriminatively train a re-
gressor using boosting techniques. Note that they rely on
multiple hand-crafted features such as texton, SIFT, local
quantized ternary patters. With CNNs, one can learn all the
features from raw pixels.

Our work is also related to recent works on transfer
learning and deep learning. In [15], Krizhevsky et al.
trained a large deep CNN on the ImageNet data set and
achieved a performance leap. Recently, more and more
work shows that pre-trained CNN features can be trans-
ferred to new classification or recognition problems and
boost remarkable performance [20, 21]. Our work here is
the first one showing that pre-trained deep CNN feature
can be transferred to depth and surface normal estimation.
Since our common framework for depth and surface normal
estimation is the same, in the sequel, we mainly focus on
depth estimation.

3. Our approach
Our approach to pixel-level single image depth estima-

tion consists of two stages: depth regression on super-pixel
and depth refining from super-pixels to pixels. First, we
formulate super-pixel level depth estimation as a regression
problem. Given an image, we obtain super-pixels. For each
super-pixel, we extract multi-scale image patches around
the super-pixel center. A deep CNN is then learned to en-
code the relationship between input patches and the corre-
sponding depth. Second, we refine the depth estimate from
the super-pixel level to pixel level by inference on a hier-
archical conditional random filed (CRF). Different poten-
tials are taken into consideration as both super-pixel and
pixel levels. Importantly, our MAP inference problem has a
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Figure 1: Visualization of our multi-scale framework. Each patch goes through five convolutional layers and the first fully-connected layer
(here transferred from AlexNet). The features are concatenated before they are fed to two additional fully-connected layers. We then refine
the predictions from the CNN by inference of a hierarchical CRF (not shown here; see text for details).

closed-form solution. An overall CNN architecture is pre-
sented in Fig. 1. Note that the fixed-weights part of the
CNN can be transferred from pre-trained models such as
Krizhevsky et al.’s AlexNet [15] or the deeper VGGNet
[22].

3.1. Depth regression with CNNs

Most existing work predicts depth by regressing with
hand-crafted features. We note that, for pixel-based ap-
proaches a local feature vector extracted from a local neigh-
borhood area can be insufficient to predict the depth la-
bel. Thus, a certain form of context, combining information
from neighboring pixels capturing a spatial configuration,
has to be used. To encode the depth, we use a deep network
and formulate depth estimation as a regression problem, as
shown in Fig. 1. Here the first five convolutional layers and
the first fully-connected layer (FC1) are transferred from
the AlexNet, and the weights are fixed, shared by all input
patches. The outputs of FC1 are then concatenated to feed
into two additional fully-connected layers (FC-a and FC-b).
The weights of FC-a and FC-b are learned using training
data.

To predict the depth of a pixel/super-pixel, we first ex-
tract patches of different sizes around that point, then resize
all the patches to 227 × 227 pixels to form the multi-scale
inputs. Details of the network and training details are de-
scribed in Section 3.3.

The multi-scale structure is inspired by the relationship
between depth and scale. In addition, context information
often includes rich cues as to the depth of a point. In our
experiments, we provide extensive comparisons and analy-
sis to demonstrate that a large-size patch with rich context
information and multi-scale observations are critical to the
task of depth regression.

Effect of multi-scale features and long-range context
In our depth regression deep network we use multi-scale
patches to extract depth cues. Since local features alone
may not be sufficient to estimate depth at a point, we need
to consider the global context of the image [10]. With in-
creasing the patch size, more information is included and
image context encodes depth more accurately. Therefore
to regress depth or surface normals from image patches, it
makes sense to use large patches to extract non-local infor-
mation.

In real-world data sets, generally there is a scale change
between scenes due to varying focal lengths. To deal with
these scaling effects, one strategy is to extract the charac-
teristic scale for each point according to scale space the-
ory [23]. Here we exploit another strategy by applying a
discrete multi-scale approach due to efficiency considera-
tion. We extract patches of different sizes to capture the
scaling effect across the data set.

To analyze the effects of both multi-scale and context, we
conducted experiments to evaluate performance of depth es-
timation on NYU V2 data set with increasing size of single
patch. Experimental results are reported in Table 1. Per-
formance of depth estimation gradually improves with the
increasing patch size. With increased number of scales, per-
formance of depth estimation improves with respect to the
increase in the number of image patches. Both experiments
demonstrate that multi-scale image patches and large image
context are of critical importance in achieving good perfor-
mance in depth estimation.

3.2. Refining the results via hierarchical CRF

So far we have shown how depth may be predicted for
super-pixels using regression. Now our goal is to refine
the predicted depth or surface normals from the super-pixel



input patch size
δ < 1.25
δ < 1.252

δ < 1.253
rel log10 rms

55× 55 pixels
47.00%
76.85%
91.19%

0.328 0.129 1.052

121× 121 pixels
53.48%
82.89%
94.41%

0.280 0.112 0.972

271× 271 pixels
57.68%
86.27%
95.84%

0.254 0.103 0.889

407× 407 pixels
59.15%
86.71%
96.13%

0.247 0.099 0.8717

Final result (4 scales of patches)
62.07%
88.61%
96.78%

0.232 0.094 0.821

Table 1: Depth estimation results on the NYU V2 data set under
different sizes of single-scale image patch setting and multi-scale
setting. The error metrics definition could be found in Section 4

level to pixel level. To address this problem, we formulate a
hierarchical CRF built upon both the super-pixel and pixel
levels. The structure of our hierarchical CRF is illustrated
in Fig. 2.

More specially, let D = {d1, ...., dn} be the set of depth
for each pixel, S = {s1, ...., sm} be the set of super-pixels.
n is the total number of pixels in one image, and m is the
number of super-pixels. In our model, we assume the depth
value of the super-pixel to be the same as its centroid pixel.
Thus, we remove the super-pixels variable explicitly in our
formulation.

Here our energy function is:

E(d) =
∑
i∈S

φi(di) +
∑

(i,j)∈ES

φij(di, dj) +
∑
C∈P

φC(dC),

(1)

Figure 2: Illustration of our hierarchical CRF. Two layers are con-
nected via region hierarchy. The blue nodes represent the super-
pixels, where the depth is regressed by the proposed CNN. The
blue edges between the nodes represent the neighborhoods at the
super-pixel level; and the black edges represent the relation at the
pixel level and the red edges represent the relation between these
two levels which is forced to be equal.

where ES denotes the set of pairs of super-pixels that share
a common boundary and P is the set of patches designed on
the pixel level, aiming at capturing the local relationships in
depth map.

Generally speaking, this is similar to a high-order CRF
defined on both super-pixel and pixel levels. Now, we ex-
plain the potentials used in the energy function Eq. (1),
where the first two potentials are defined on the super-pixel
level, while the third one is defined on the pixel level.

Potential 1: Data term

φi(di) =
(
di − di

)2
, (2)

where di denotes the depth regression result from our multi-
scale deep network, This term is defined at the super-pixel
level, measuring the quadratic distance between the esti-
mated depth d and regressed depth d.

Potential 2: Smoothness at the super-pixel level

φij(di, dj) = w1

(
di − dj
λij

)2

, (3)

this pairwise term enforces coherence between neighbour-
ing super-pixels. Here we define the smoothness at super-
pixel level. The quadratic distance is weighted by λij , i.e.
the color difference between connected super-pixels in the
CIELUV color space [24].

Potential 3: Auto-regression model Here we use the
auto-regression model to characterize the local correlation
structure in the depth map, which has been used in im-
age colorization [25], depth in-painting [4], and depth im-
age super resolution [26, 27]. Depth maps for generic 3D
scenes contain mainly smooth regions separated by curves.
The auto-regression model can well characterize such local
structure. The key insight of the auto-regression model is
that a depth map can be represented by the depth map itself
locally. Denote by du the depth value at location u. The
predicted depth map by the model could be expressed as:

du =
∑

r∈C/u

αurdr, (4)

where C/u is the neighbourhood of pixel u and αur denotes
the model auto-regression coefficient for pixel r in the set
of C/u. The discrepancy between the model and the depth
map (i.e., the auto-regression potential) can be expressed as:

φC(dC) = w2

du − ∑
r∈C/u

αurdr

2

. (5)

We need to design a locally auto-regression predictor
α with the available color image. Here we set αur ∝
exp(−(gu − gr)

2/2σ2
u), and

∑
αur = 1, where g repre-

sents the intensities value of corresponding pixels, and σu
is the variance of the intensities in the local patch around u.



Theoretically, the parametersw1, w2 could be learned by
maximizing our conditional log-likelihood. In our formula-
tion, we estimate w1, w2 by cross validation on the training
data.

A closed-form solution Once the parameters in our hi-
erarchical CRF are determined, the MAP solution can be
obtained in closed form, due to the least-squares loss (Gaus-
sian CRF). For convenience of expression, we express the
energy function Eq. (1) in a matrix form:

E(d) = ‖Hd− d‖22 + w1‖QHd‖22 + w2‖Ad‖22, (6)

where ds is the output of the regression network, H is
the indication matrix that selects corresponding super-pixels
from the entire set, Q expresses the neighbouring relation-
ship in the super-pixel level while A is a neighbouring
matrix corresponding to the auto-regression model in local
patch.

As the energy function is quadratic with respect to d, a
closed-form solution can be derived algebraically:

dMAP = (H>H+ w1H
>Q>QH+ w2A

>A)−1H>d.

(7)

3.3. Implementation details

Before proceeding to the experimental results, we give
implementation details for our method.

In both data sets, we utilize SLIC [28] to obtain the
super-pixels. For depth regression, we fix the multi-scale
patch sizes at 55 × 55, 121 × 121, 271 × 271, 407 × 407
pixels. These patches are extracted from the original im-
age and resized to 227× 227 pixels, which is the input size
of our depth regression network. For the NYU V2 dataset,
the number of training samples is 800,000 while the num-
ber is 400,000 for the Make3D data set, i.e., around 1000
points are sampled from each image in both data sets. Dur-
ing training and testing, we transfer the ground truth depth
value into log space. The trade-off parameters in the depth
refining are set as: w1 = 1, w2 = 0.01 for the Make3D data
set, while w1 = 10, w2 = 0.01 for the NYU V2 data set.

The proposed depth regression network is trained using
stochastic gradient decent with a batch size of 100 samples,
momentum of 0.9, and weight decay of 0.0004. Weights for
the convolution layers C1, C2, ..., FC1 are initialized by the
pre-trained AlexNet model [15]. The weights of FC-a, FC-b
are randomly initialized with standard deviation 0.01. Be-
sides, we add the ReLU layer and dropout layer after these
two layers. The size of layer F-cat is 16384. The size of
both FC-a and FC-b layers are 4096. For more detail about
the “shared weights”, please refer to [29]. The learning
rate is initialized as 0.01, and divided by 10 after 5 cycles
through the training set. In our experiment, we trained the
network for roughly 20 to 30 epochs on both data sets.

As for the surface estimation, we have utilized almost
the same setting with minimal modification. Here we used
the VGGNet (VGG16) model [22] to transfer the first a few
convolutional layers and the first FC layer. All the other
parameters (learning rate, weight decay, etc.) are the same
as the case of AlexNet. We have used three-scale patch sizes
of 100×100, 224×224, 400×400 pixels. The size of layer
F-cat is 12288. The FC-a and FC-b layers have 1024 and
512 neurons respectively. In order to refine the predicted
surface normals map, we transfer the surface normal vectors
into the spherical coordinate, i.e., (x, y, z) → (θ, φ). This
transformation avoids the normal constraint. In addition,
we refine the θ map and φ map respectively, with w1 = 0.1,
w2 = 0.01 for both θ and φ.

The Euclidean loss function is used,

E =
1

2N

N∑
i=1

‖x̂i − xi‖22, (8)

where xi could be a ground-truth depth or surface normal
vector. x̂i is the correspondent regression value.

4. Experimental results
In this section, we report our experimental results on

single image depth estimation for both outdoor and indoor
scenes. We use the Make3D range image data set and the
NYU V2 Kinect data set, as they are the largest open data
set we can access at present. We compare our method with
all the state-of-the-art methods published recently.

In addition, we present an analysis of the underlying
problem and our method. Specifically, we first give a base-
line implementation with depth regression only; i.e., with-
out depth refining, thus explaining the roles of both compo-
nents in achieving final depth map. Secondly, we analyze
the influence of the size of super-pixel in depth estimation.

Error metrics For quantitative evaluation, we report er-
rors obtained with the following error metrics, which have
been extensively used [9, 17, 19, 18, 11].
• Threshold: % of di s.t. max

(
d̂i

di
, di

d̂i

)
= δ < thr;

• Mean relative error (rel): 1
|T |
∑

d∈T |d̂− d|/d;
• Mean log10 error (log10):

1
|T |
∑

d∈T |log10 d̂− log10 d|;
• Root mean squared error (rms):√

1
|T |
∑

d∈T ‖d̂− d‖
2
.

Here d is the ground truth depth, d̂ is the estimated depth,
and T denotes the set of all points in the images.

4.1. NYU2 data set

The NYU V2 data set contains 1449 images, of which
795 images are used as a training set and 654 images are
used as a testing set. All images were resized to 427× 561



pixels in order to preserve the aspect ratio of the original im-
ages. In Table 2, we compare our method with state-of-the-
art methods: depth transfer [13], discrete-continuous depth
estimation [11], pulling things out of perspective [18]. Our
method outperforms these methods by a large margin un-
der most of the error metrics. We achieve comparable if not
better performance compared with the most recent multi-
scale deep network method [19], which used hundreds of
thousands of labelled images to train the network.

In Fig. 3, we provide a qualitative comparison of our
method with the work in [13], [11], [18], and [19]. From
the figure, we observe that usually our method preserves
the structure of the scene better than counterpart methods,
which is much desired in many applications such as 3D
modelling.

To analyse the contribution of each component in our
method (depth regression and depth refining), we provide
experimental results for depth regression only as a base-
line, where pixels in each super-pixel are assigned identical
depth from our depth regression network. By comparing
the results with and without depth refining, the importance
of our depth refining strategy becomes clear.

4.2. Make3D data set

The Make3D data set consists of 534 images with cor-
responding depth maps. There are 400 training images and

Method
δ < 1.25
δ < 1.252

δ < 1.253
rel log10 rms

Depth transfer [13]∗
-
-
-

0.374 0.134 1.12

Liu et al. [11]∗
-
-
-

0.335 0.127 1.06

Our method∗
63.95%
90.03%
97.41%

0.223 0.091 0.759

Ladicky et al. [18]
54.22%
82.90%
94.09%

- - -

Eigen et al. [19]
61.1%
88.7%
97.1%

0.215 0.094 0.871

Regression only
59.94%
87.20%
96.30%

0.243 0.098 0.851

Our method
62.07%
88.61%
96.78%

0.232 0.094 0.821

Table 2: Depth estimation errors on the NYU v2 data set, ∗
means that errors are computed over the non-zero depth in the
raw ground truth depth map. “regression only” is our model with
no CRF refining.
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Figure 3: Qualitative comparison of the estimated depth map on
the NYU V2 data set with our method and some state-of-the-art
methods. Color indicates depth (red is far, blue is close).

134 test images. All images were resized to 460× 345 pix-
els. It is worth noting that this data set was published many
years ago, the resolution and distance range of the depth
image is rather limited (only 55 × 355). Furthermore, it
contains noise in the locations of glass window etc. These
limitations have some influence on the training stage and the
resulting error metrics. Therefore we report errors based
on two different criteria as presented in [11]: (C1) Errors
are computed in the regions with ground-truth depth less
than 70; (C2) Errors are computed in the entire image. We
compare our method with the state-of-the-art methods such
as depth transfer [13], discrete-continuous depth estima-
tion [11]. As illustrated in Table 3, our method clearly out-
performs these methods. Furthermore, we present a qualita-



Method rel log10 rms

Depth transfer [13] C1 0.355 0.127 9.2
C2 0.361 0.148 15.1

Liu et al. [11] C1 0.335 0.137 9.49
C2 0.338 0.134 12.6

Regression only C1 0.283 0.094 7.01
C2 0.281 0.102 10.74

Our method C1 0.278 0.092 7.188
C2 0.279 0.102 10.27

Table 3: Depth estimation errors on the Make3D data set.

tive comparison of the depth estimation with these methods
on representative images from Make3D data set, which fur-
ther demonstrates the superior performance of our method.

4.3. Performance analysis

We present an analysis over our depth regression and
depth refining framework. Formally, we investigate the ef-
fect of different sizes of super-pixel, aiming at understand-
ing the trade off between efficiency and effectiveness. Then,
we give an illustration of how our framework can be ex-
tended to predict depth for images not similar to the train-
ing data set, thus demonstrating the generalization capabil-
ity empirically.

Effect of the size of super-pixels In our depth regres-
sion and depth refining framework, depth regression is con-
ducted at the super-pixel level while depth refining is done
at the pixel level by inferring with CRF. The size of the
super-pixels has an effect on the final depth estimation re-
sult. A larger super-pixel size results in a smaller number of
regression tasks thus the evaluation is more efficient. How-
ever, the depth refining on such a sparse node structure may
cause performance deterioration. A smaller super-pixel size
can reduce the difficulty in depth refining but increase the
CPU time. Meanwhile, if using very small super-pixels or
pixel-wise regression at the extreme, it may cause a non-
smoothness effect. Therefore, there should be a trade-off in
setting the size of super-pixels. Here we present experimen-
tal results on the NYU V2 data set by setting different sizes
of super-pixels. Results were reported in Table 4. Clearly,
performance in depth estimation improves with decreasing
the size of super-pixels. However, decreasing the size be-
low 10 does not improve performance further. Therefore, in
this paper, we fix the size of super-pixels to 10.

Generalization capability Finally, we present an illus-
tration on how the regression-refining framework can be
used to predict depth for images not related to the train-
ing data set, thus illustrating the generalization ability of
the proposed method in Fig. 5.
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Figure 4: Qualitative comparison of the depth map estimated by
our method and the state-of-the-art [11] and [13]. Color indicates
depth (red is far, blue is close).

4.4. Estimation of surface normals

We now report the results of surface normal estimation.
Table 5 compares the performance of our method against a
few recent methods. As we can see, our method compares
on par with the best results. Note that we have directly



Figure 6: Qualitative results to show the surface normal estimation of our method on the NYU V2 data set. Our method successfully
captures the layout of the indoor scenes.

SLIC size
δ < 1.25
δ < 1.252

δ < 1.253
rel log10 rms

7
61.82%
88.63%
96.82%

0.232 0.094 0.825

10
62.07%
88.61%
96.78%

0.232 0.094 0.821

15
59.80%
87.74%
96.57%

0.2410 0.0979 0.859

20
56.37%
85.73%
95.63%

0.2574 0.1045 0.9245

30
49.21%
80.07%
92.86%

0.3003 0.1217 1.0738

Table 4: Depth estimation results on the NYU V2 data set with
varying sizes of super-pixels.

Figure 5: Demonstration of the generalization capability of our
method, where we estimate depth map for images not in the NYU
V2 or Make3D data set.

trained a regression model for this surface normal estima-
tion task. It is expected that following the idea of convert-
ing surface normal regression into classification (triangular

coding), better performance can be achieved. We here do
not pursue this strategy to show the simplicity and versatil-
ity of our framework.

We also demonstrate some qualitative results in Fig. 6.
One can see that our method can successfully capture the
overall layout of the indoor scenes.

Method mean err (◦) median (◦) % 11.25◦ 22.5◦ 30◦

[6] 35.1 19.2 37.6 53.3 58.9
[12] 32.5 22.4 27.4 50.2 60.2
[30] 34.2 30.0 18.6 38.6 49.9
Ours 30.6 27.8 19.6 40.6 53.7

Table 5: Surface normal estimation results on the NYU V2 data
set. The results are evaluated on valid pixels. The last three
columns show the percentages of “good pixels” against three
thresholds.

5. Conclusions
In this paper, we have presented a new and common

framework for depth and surface normal estimation from
single monocular images, which consists of regression us-
ing deep CNNs and refining via a hierarchical CRF. With
this simple framework, we have achieved promising results
for both tasks of depth and surface normal estimation.

In the future, we plan to investigate different data aug-
mentation methods to improve the performance in handling
real-world image transformations. Furthermore, we plan to
explore the use of deeper CNNs. Our preliminary results
show that improved depth estimation can be obtained with
VGGNet, compared with AlexNet. In addition, the effect of
joint depth and semantic class estimation with deep CNN
features also deserves attention.

Acknowledgements
B. Li’s contribution was made when he was a visiting

student at the University of Adelaide, sponsored by the Chi-
nese Scholarship Council.

This work was also in part supported by ARC Grants
(FT120100969, DE140100180), National Natural Science
Foundation of China (61420106007), and the Data to Deci-
sions Cooperative Research Centre, Australia.



References
[1] X. Ren, L. Bo, and D. Fox, “RDB-D scene labeling: Fea-

tures and algorithms,” in Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., 2012, pp. 2759–2766. 1

[2] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finoc-
chio, A. Blake, M. Cook, and R. Moore, “Real-time human
pose recognition in parts from single depth images,” Com-
munications of the ACM, vol. 56, no. 1, pp. 116–124, 2013.
1

[3] S. R. Fanello, C. Keskin, S. Izadi, P. Kohli, D. Kim,
D. Sweeney, A. Criminisi, J. Shotton, S. B. Kang, and
T. Paek, “Learning to be a depth camera for close-range
human capture and interaction,” ACM T. Graphics, vol. 33,
no. 4, pp. 86, 2014. 1

[4] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor
segmentation and support inference from rgbd images,” in
Proc. Eur. Conf. Comp. Vis., pp. 746–760. Springer, 2012. 1,
4

[5] A. Gupta, A. Efros, and M. Hebert, “Blocks world revis-
ited: Image understanding using qualitative geometry and
mechanics,” in Proc. Eur. Conf. Comp. Vis., pp. 482–496.
2010. 1

[6] D. Fouhey, A. Gupta, and M. Hebert, “Unfolding an indoor
origami world,” in Proc. Eur. Conf. Comp. Vis., pp. 687–702.
2014. 1, 8

[7] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-
shading: a survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 21, no. 8, pp. 690–706, 1999. 1

[8] C. Wu, J.-M. Frahm, and M. Pollefeys, “Repetition-based
dense single-view reconstruction,” in Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., 2011, pp. 3113–3120. 1

[9] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d
scene structure from a single still image,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 31, no. 5, pp. 824–840, 2009.
1, 2, 5

[10] A. Saxena, S. Chung, and A. Ng, “3-d depth reconstruction
from a single still image,” Int. J. Comp. Vis., vol. 76, no. 1,
pp. 53–69, 2008. 1, 2, 3

[11] M. Liu, M. Salzmann, and X. He, “Discrete-continuous
depth estimation from a single image,” in Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., 2014, pp. 716–723. 1, 2, 5, 6, 7

[12] L. Ladick, B. Zeisl, and M. Pollefeys, “Discriminatively
trained dense surface normal estimation,” in Proc. Eur. Conf.
Comp. Vis., pp. 468–484. 2014. 1, 2, 8

[13] K. Karsch, C. Liu, and S. B. Kang, “Depth extraction from
video using non-parametric sampling,” in Proc. Eur. Conf.
Comp. Vis., pp. 775–788. Springer, 2012. 1, 2, 6, 7

[14] J. Konrad, M. Wang, and P. Ishwar, “2d-to-3d image conver-
sion by learning depth from examples,” in Proc. IEEE Conf.
Computer Vis. & Pattern Recogn. Workshops. IEEE, 2012,
pp. 16–22. 1, 2

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in

Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097–1105.
2, 3, 5

[16] A. Saxena, J. Schulte, and A. Y. Ng, “Depth estimation using
monocular and stereo cues,” in Proc. IEEE Int. Joint Conf.
Artificial Intell., 2007, vol. 7. 2

[17] B. Liu, S. Gould, and D. Koller, “Single image depth esti-
mation from predicted semantic labels,” in Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., 2010, pp. 1253–1260. 2, 5

[18] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of
perspective,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
IEEE, 2014, pp. 89–96. 2, 5, 6

[19] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction
from a single image using a multi-scale deep network,” in
Proc. Adv. Neural Inf. Process. Syst., 2014. 2, 5, 6

[20] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and seman-
tic segmentation,” in Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., 2014. 2

[21] M. Oquab, L. Bottou, I. Laptev, J. Sivic, et al., “Learning
and transferring mid-level image representations using con-
volutional neural networks,” in Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., 2013. 2

[22] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. Int.
Conf. Learning Representations. 2015. 3, 5

[23] T. Lindeberg, “Scale-space theory: A basic tool for analysing
structures at different scales,” J. Applied Statistics, vol. 21,
no. 2, pp. 224–270, 1994. 3

[24] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation
and object localization with superpixel neighborhoods,” in
Proc. IEEE Int. Conf. Comp. Vis., 2009, pp. 670–677. 4

[25] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using
optimization,” in ACM T. Graphics, 2004, vol. 23, pp. 689–
694. 4

[26] J. Diebel and S. Thrun, “An application of markov random
fields to range sensing,” in Proc. Adv. Neural Inf. Process.
Syst., 2005, pp. 291–298. 4

[27] O. Mac Aodha, N. D. Campbell, A. Nair, and G. J. Bros-
tow, “Patch based synthesis for single depth image super-
resolution,” in Proc. Eur. Conf. Comp. Vis., pp. 71–84.
Springer, 2012. 4

[28] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Susstrunk, “SLIC superpixels compared to state-of-the-
art superpixel methods,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 11, pp. 2274–2282, 2012. 5

[29] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” in Proc. ACM Int.
Conf. Multimedia, 2014, pp. 675–678. 5

[30] D. F. Fouhey, A. Gupta, and M. Hebert, “Data-driven 3D
primitives for single image understanding,” in Proc. IEEE
Int. Conf. Comp. Vis., 2013. 8


