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Abstract

The Riemannian three-factor matrix completion (R3MC)
algorithm is one of the state-of-the-art geometric optimiza-
tion methods for the low-rank matrix completion problem.
It is a nonlinear conjugate-gradient method optimizing on
a quotient Riemannian manifold. In the line search step,
R3MC approximates the minimum point on the searching
curve by minimizing on the line tangent to the curve. How-
ever, finding the exact minimum point by iteration is too ex-
pensive. We address this issue by proposing a new retrac-
tion with a minimizing property. This special property pro-
vides the exact minimization for the line search by establish-
ing correspondences between points on the searching curve
and points on the tangent line. Accelerated R3MC, which is
R3MC equipped with this new retraction, outperforms the
original algorithm and other geometric algorithms for ma-
trix completion in our empirical study.

1. Introduction

The problem of low-rank matrix completion is complet-
ing a matrix X∗ ∈ Rn×m from a small number of known
entries under the low-rank assumption. Applications of ma-
trix completion pervade in machine learning [9], computer
vision [10], system identification [5], and so on. One for-
mulation of the matrix completion problem [3] consists of
finding the lowest rank matrix that agrees with known en-
tries of X∗. The other formulation takes the presence of
noise into consideration and admits misfit within a given
tolerance ε. We focus on the second approach with the rank
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information given, i.e., finding a rank-r matrix X such that

min
X∈Rn×m

r

f(X) :=
1

|Ω|
‖PΩ(X)− PΩ(X∗)‖2F , (1)

where Rn×mr is the set of rank-r matrices of size n × m,
Ω := {(i, j)|X∗i,j is given} is the set of indices of known
entries and |Ω| the cardinality of Ω. ‖A‖F is the Frobe-
nius norm of matrix A, and PΩ is the orthogonal sampling
operator defined as

PΩ(X)i,j =

{
Xi,j when (i, j) ∈ Ω,
0 otherwise.

(2)

We assume that the solution to Equation (1) exists.
It is well known in differential geometry that the set of

rank-r n × m matrices Rn×mr forms a submanifold of the
nm-dimensional vector space Rnm×1. The fixed-rank ma-
trix completion problem can be cast as a geometric opti-
mization problem because the rank constraint could be in-
corporated into the manifold structure. In this point of view,
the problem is turned into an unconstrained optimization.
Notice that the dimension of Rn×mr , namely (n+m− r)r,
is much smaller than that of the ambient space Rn×m in
the case r � min(n,m), thus making geometric methods
suitable to solve large-scale matrix completion problems.

There are a few geometric optimization algorithms avail-
able for the matrix completion problem such as LRGeom-
CG [11], RTRMC [2], ScGrass-CG [8], and R3MC [7], etc.
They differ in manifold structures, Riemannian metrics and
optimization methods.

LRGeomCG is a nonlinear conjugate-gradient method
over the embedded submanifold Rn×mr ⊂ Rn×m, which
inherits the canonical Riemannian metric of Rn×m. The
algorithm takes the embedding point of view of Rn×mr .



RTRMC exploits the factorization X = UV t, where
U ∈ Rn×r and V ∈ Rm×r, and U is chosen to be or-
thonormal. It recasts the problem on the Grassmann mani-
fold G(r, n) and solves the optimization using Riemannian
trust-region method.

ScGrass-CG constructs the searching manifold as the
product of two Grassmann manifolds, G(r, n) × G(r,m).
The authors of ScGrass-CG also propose a scaled metric
and harness a conjugate-gradient method to minimize the
cost function.

R3MC, the Riemannian three-factor algorithm for low-
rank matrix completion, is a geometric optimization tech-
nique using the nonlinear conjugate-gradient method on a
quotient Riemannian manifold. It utilizes the factorization
X = URV T to construct the searching manifoldM. The
quotient manifold structure of M captures the symmetry
of the factorization and the metric of this manifold further
takes advantage of Hessian information of the cost function.
R3MC is both robust and efficient, and it outperforms the
state-of-the-art algorithms for addressing the matrix com-
pletion problem.

Motivated from both the geometric and the optimization
perspectives, we improve R3MC by finding the exact min-
ima in the line-search subroutine of the conjugate-gradient
method. Instead of approximating the minima by inner iter-
ations, we achieve this goal by proposing a new retraction,
which is more suitable for the task of minimization as de-
scribed in Proposition 3. Our numerical experiments show
that the design of a suitable retraction, which helps the line
search, could boost the performance of an existing geomet-
ric optimization method.

The rest of the paper is organized as follows. We first
review the basic geometric notions in Section 2. Then in
Section 3, we describe the implementation of the original
R3MC algorithm. We present our improvements in Sec-
tion 4. We show numerical experiments Section 5. In Sec-
tion 6, we give our concluding remarks.

2. Geometric Optimization Framework
Optimization on manifolds is a natural generalization of

traditional optimization methods on Euclidean spaces. In
this section, we introduce the geometric framework for op-
timization on a quotient manifold and illustrate the basic
geometric ingredients using R3MC as one of the examples.
A detailed elaboration of optimization algorithms on matrix
manifolds can be found in [1]. Readers could refer to [4]
for mathematical definitions of notions in Riemannian ge-
ometry and [7] for implementation details of R3MC.

2.1. Manifold Structure

R3MC performs on the manifold

M := (St(r, n)×GL(r)×St(r,m))/(O(r)×O(r)), (3)

where St(r, n) := {X ∈ Rn×r|XTX = Ir} is a Stiefel
manifold, GL(r) := {X ∈ Rr×r||X| 6= 0} is a gener-
al linear group and O(r) := {X ∈ Rr×r|XTX = Ir}
is an orthogonal group. |X| is the determinant of ma-
trix X and Ir is the identity matrix of size r × r. Let
(O1, O2) ∈ O(r)×O(r) be an element of Lie group acting
on the product manifoldM := St(r, n)×GL(r)×St(r,m)
as

(O(r)×O(r))×M→M
((O1, O2), (U,R, V )) 7→ (UO1, O

T
1 RO2, V O2),

(4)

where (U,R, V ) ∈ M. We denote the canonical projection
map ofM quotient by the group action as

π :M→M, (5)

whereM is the quotient space andM the total space.
This quotient manifold structure originates from the

three factor model of rank-r matrices

X = URV T , (6)

where X ∈ Rn×mr is of rank r and (U,R, V ) ∈ M. The
factorization is non-unique and is invariant under the group
action (4). In particular, there is a homeomorphism between
the following two manifolds

Rn×mr 'M =M/(O(r)×O(r)). (7)

It is convenient to represent an element x ∈ M of the
abstract quotient manifoldM by an element

x̄ = (U,R, V ) ∈ π−1(x) ⊂M (8)

in the total spaceM, which has a matrix form. Correspond-
ingly, the tangent spaces for points x and x̄, say TxM and
Tx̄M, can have certain relations established through the
horizontal space, a concept we will address in Section 2.3.

Using identification (7) and the canonical projection (5),
cost function (1) can be lifted to the total spaceM as

f̄(U,R, V ) := f(URV T )

=
1

|Ω|
‖PΩ(URV T )− PΩ(X∗)‖2F .

(9)

2.2. Riemannian Metric

The Riemannian metric g onM is induced by the metric
ḡ [7, Section II] on the total spaceM. The definition is

ḡx̄(ξ̄x̄, η̄x̄) := tr((RRT )ξ̄TU η̄U ) + tr(ξ̄TRη̄R)

+ tr((RTR)ξ̄TV η̄V ), (10)

where x̄ = (U,R, V ) ∈ M, ξ̄x̄ = (ξ̄U , ξ̄R, ξ̄V ) ∈ Tx̄M
and η̄x̄ ∈ Tx̄M. This metric captures the Hessian informa-
tion of the expression ‖URV T − X∗‖2F and serves as an
adaptive preconditioner for optimization.



2.3. Horizontal Space

Horizontal space Hx̄ at x̄ ∈ M is the orthogonal com-
plement of the vertical space Vx̄ := Tx̄π

−1(x) in Tx̄M.
Tangent space TxM at point x in the quotient spaceM

is identified with the horizontal space Hx̄ ⊂ Tx̄M of point
x̄ ∈ π−1(x) in the total space M through the horizontal
lift [1, Section 3.6.2]. The projection [7, Section III] of a
tangent space Tx̄M onto the horizontal spaceHx̄ is denoted
by the operator

Πx̄ : Tx̄M→Hx̄. (11)

2.4. Ambient Space

Total space M is a submanifold of the ambient vector
space

E := Rn×r × Rr×r × Rm×r. (12)

Intermediate steps of the optimization algorithms, for exam-
ple, computing vector transports as shown in Equation (20)
may produce vectors in Tx̄E that do not belong to Tx̄M.
The linear operator Ψ [7, Section III],

Ψx̄ : Tx̄E → Tx̄M, (13)

is used to project vectors in Tx̄E orthogonally to the sub-
space Tx̄M.

2.5. Retraction

Retraction [1, Definition 4.1.1] is an analog of the geo-
metric exponential map providing a way to move along a
direction while constraint to the manifold. A retraction R̃
should satisfy two conditions: 1) Centering: R̃x̄(0x̄) = x̄,
where the vector 0x̄ is the zero element of Tx̄M; and 2)
Local rigidity:

DR̃x̄(0x̄) = idTx̄M, (14)

where DR̃x̄(0x̄) is the differential of the map R̃x̄ at the zero
element 0x̄ ∈ T0x̄

Tx̄M ' Tx̄M. In R3MC, the retraction
R at point x̄ = (U,R, V ) ∈M is a map

Rx̄ : Tx̄M→M
ξ̄x̄ 7→ (uf(U + ξ̄U ), R+ ξ̄R, uf(V + ξ̄V )),

(15)

where ξ̄x̄ = (ξ̄U , ξ̄R, ξ̄V ) ∈ Tx̄M is a given direction and

uf(A) := A(ATA)−1/2 (16)

is the orthogonal factor of the full column-rank matrix A in
polar decomposition.

To get a sense how it works, we illustrate the behavior of
R in a low-dimensional toy model.

Example 1. Consider a simple manifold

M0 := St(1, 2)× GL(1)× St(1, 1) ' S1 × R∗ × {±1},
(17)

where St(1, 2) := {X ∈ R2|XTX = 1} ' S1, R∗ :=
{x ∈ R|x 6= 0} and St(1, 1) = {±1}. Pick one component

M+

0 := S1 × R+ × {1} ' S1 × R+ ⊂ R3, (18)

where R+ := {x ∈ R|x > 0} andM+

0 is identified with
a cylinder in R3. Using coordinates of R3, retraction R at
x̄ = (x0, y0, z0) is

Rx̄(ξ̄x̄) = ((x0 + ξ1)/l, (y0 + ξ2)/l, z0 + ξ3), (19)

where ξ̄x̄ = (ξ1, ξ2, ξ3) and l := ((x0 + ξ1)2 + (y0 +
ξ2)2)1/2. In the equation, R keeps z coordinate of x̄ + ξ̄x̄
fixed and scales the other two coordinates to the unit circle
parallel to the x-y plane, as shown in Figure 1.

Retracting the line t 7→ tξ̄x̄ in Tx̄M, we’ll get a curve
φ(t) := Rx̄(tξ̄x̄) onM+

0 which plays the role of a geodesic.
Tangent line γ(t) := x̄+tξ̄x̄ is the first-order approximation
of the curve φ(t). Moving along direction ξ̄x̄ means moving
along the curve φ(t) and parameter t is the step-size.

Figure 1. Illustration of Example 1: Retraction R on the cylinder
M+

0 . The definitions of M+
0 and R are in Equations (18) and

(19), respectively. ξ̄x̄ is a direction. x̄ and Rx̄(ξ̄x̄) are points on
the curve φ(t), which both lie on the cylinder. γ(t) is a straight
line tangent to φ(t) at point x̄.

2.6. Vector Transport

Vector transport [1, Definition 8.1.1] is an analog of par-
allel transport in geometry. It moves a vector from the tan-
gent space of one point to the tangent space of another one.
In R3MC, vector transport Tηxξx on manifoldM could be
written as

Tηxξx = Πȳ(Ψȳ(ξ̄x̄)), (20)

where x̄ ∈ π−1(x) and ȳ := Rx̄(η̄x̄). η̄x̄, ξ̄x̄ and Tηxξx
are horizontal lifts of ηx, ξx, and Tηxξx, respectively. In the
expression Ψȳ(ξ̄x̄), vector ξ̄x̄ is seen as an element of the
tangent space TȳE . Equation (20) shows that the transport
Tηxξx of vector ξx ∈ TxM from point x to point y := π(ȳ)
can be obtained by translating the lifted vector ξ̄x̄ ∈ Hx̄ ⊂
Tx̄E from point x̄ to point ȳ, and then projecting the new
ξ̄x̄ ∈ TȳE by Ψȳ and Πȳ to the horizontal spaceHȳ .



3. Optimization Algorithm of R3MC
Theoretically, R3MC is running on the abstract quotient

manifoldM. In order to do computation in simple matrix
forms, it is convenient to employ the corresponding lifted
objects (with ‘bar’ notations) onM as working variables.

The original R3MC method [7, Algorithm 1] is shown in
Algorithm 1.

Algorithm 1 The Original R3MC Method

Input: Given an initial point x̄0 ∈M.
1: Compute Riemannian gradient ξ̄i = gradx̄i

f̄ ∈ Hx̄i
.

2: Compute the conjugate direction η̄i ∈ Hx̄i ⊂ Tx̄iM
by Polak-Ribière+ .

3: If η̄i is not a descent direction, reset η̄i = −ξ̄i.
4: Compute an initial step-size si.
5: Perform the Armijo backtracking and modify si when

necessary.
6: Retract along η̄i with step-size si to iterate x̄i+1.
7: Repeat until convergence.

In the above algorithm, Riemannian gradient ξ̄i is the lift
of the gradient of f onM to the total spaceM. Conjugate
direction η̄i is defined as

η̄i = −ξ̄i + βiΠx̄i
(Ψx̄i

(η̄i−1)), (21)

where Πx̄i
(Ψx̄i

(η̄i−1)) is the transport of vector η̄i−1 from
point x̄i−1 to x̄i as in Equation (20) and βi is computed by
the Polak-Ribière+ method

βi =
〈ξ̄i, ξ̄i − Tsi−1η̄i−1

(ξ̄i−1)〉
〈ξ̄i−1, ξ̄i−1〉

. (22)

The initial step-size si is estimated by minimizing a
degree 6 polynomial f̄(t) := f̄(x̄i + tη̄i) in variable t
which is the cost function f̄ restricted on the tangent line
γ(t) = x̄i + tη̄i. R3MC can apply the degree 2 approx-
imation of f̄(t) which is called the accelerated linearized
step-size guess.

This optimization process is illustrated on the toy model
M+

0 , as shown in Figure 2.
We will define a new retraction R̃ on M with a good

minimizing property in the next section. This special prop-
erty ensures that minimization on the retracted curve is e-
quivalent to minimization along the tangent line. So the
exact minimum point could be found and this leads to a ro-
bust performance for the completion of ill-conditioned ma-
trices.

4. Accelerated R3MC
We accelerate R3MC by changing the line-search strate-

gy from a rough initial guess to an exact minimization. This

Figure 2. R3MC optimization on the manifold M+
0 . Starting from

point x̄i−1, two consecutive steps with search directions η̄i−1 and
η̄i are drawn. The algorithm goes to point x̄i and x̄i+1 using si−1

and si as step-sizes, respectively. Point si−1η̄i−1 is the minimum
point of f̄ along the tangent line through x̄i−1. However, the re-
tracted point x̄i is just an approximation to the minimum point
along the retracted curve on the cylinder.

is done by introducing a new retraction with good proper-
ty of minimization such that we can find the exact minima
without computation overhead.

There are two motivations for tuning the line-search step:
1) As suggested in [1, Section 8.3], exact minimum value
should always be employed if computation overhead is not
prohibitive because the next search direction would more
likely be a decent direction. 2) The selection of step-size
has a great influence on geometric optimization algorithms.
As observed in [11, Section 3], a good initial guess assures
that the backtracking step is almost unnecessary.

4.1. A-R3MC with New Retraction

Our new retraction R̃ at point x̄ = (U,R, V ) on M is
defined as

R̃x̄ : Tx̄M→M
ξ̄x̄ 7→ (P1, Q1(R+ ξ̄R)QT2 , P2),

(23)

where ξ̄x̄ = (ξ̄U , ξ̄R, ξ̄V ) is the given direction and P1, Q1,
P2 and Q2 are defined by polar decompositions U + ξ̄U =
P1Q1 and V + ξ̄V = P2Q2, respectively. In fact

P1 = uf(U + ξ̄U )

= (U + ξ̄U )((U + ξ̄U )T (U + ξ̄U ))−1/2

= (U + ξ̄U )(Ir + UT ξ̄U + ξ̄TUU + ξ̄TU ξ̄U )−1/2

= (U + ξ̄U )(Ir + ξ̄TU ξ̄U )−1/2

(24)

and Q1 = (Ir + ξ̄TU ξ̄U )1/2, where we use the characteriza-
tion of the tangent space of a Stiefel manifold [1, Example
3.5.2]: UT ξ̄U + ξ̄TUU = 0. Similarly, P2 = uf(V + ξ̄V ) =
(V + ξ̄V )(Ir + ξ̄TV ξ̄V ).

First we prove that the expression (23) indeed defines a
retraction onM.



Proposition 1. R̃ is a retraction onM.

Proof. The first condition, R̃x̄(0x̄) = x̄, for R̃ being a
retraction is obvious. Now we verify the local rigidity con-
dition (14). Let x̄ = (U,R, V ), ξ̄x̄ = (ξ̄U , ξ̄R, ξ̄V ) ∈ Tx̄M.
Define curve γ(t) := tξ̄x̄ in Tx̄M, then γ(0) = 0x̄ and
γ̇(0) = ξ̄x̄. Denote R̃x̄(γ(t)) =: (A(t), B(t), C(t)) where

A(t) = (U + tξ̄U )(Ir + t2ξ̄TU ξ̄U )−1/2

= U + tξ̄U −
t2

2
Uξ̄TU ξ̄U + · · · , (25a)

B(t) = (Ir + t2ξ̄TU ξ̄U )1/2(R+ tξ̄R)(Ir + t2ξ̄TV ξ̄V )1/2

= R+ tξ̄R +
t2

2
(Rξ̄TV ξ̄V + ξ̄TU ξ̄UR) + · · · , (25b)

C(t) = (V + tξ̄V )(Ir + t2ξ̄TV ξ̄V )−1/2

= V + tξ̄V −
t2

2
V ξ̄TV ξ̄V + · · · . (25c)

The first line of (25a) uses Equation (24) and the second line
uses Taylor expansion. So we have

DR̃x̄(0x̄)(ξ̄x̄) =
d

dt

∣∣∣∣
t=0

R̃x̄(γ(t))

= (Ȧ(0), Ḃ(0), Ḃ(0)) = ξ̄x̄.

(26)

This means that condition (14) is satisfied.

We illustrate the new retraction together with the original
one on the example manifoldM+

0 in Figure 3. Two curves
drawn on the cylinder show the different behaviors of these
retractions. Notice that points on the blue dashed curve ψ(t)
connecting γ(t) and φ(t) share the same function value of
f̄ . In fact, suppose x̄ = (x0, y0, z0) and ξ̄x̄ = (ξ1, ξ2, ξ3) ∈
Tx̄M

+

0 , then the curve ψ(t) passing through points x̄ + ξ̄x̄
and R̃x̄(ξ̄x̄) has the expression

ψ(t) : t 7→ ((x0 + ξ1)/t, (y0 + ξ2)/t, t(z0 + ξ3)), (27)

where t ranges from 1 to ((x0 + ξ1)2 + (y0 + ξ2)2)1/2. So
the identity f̄(ψ(t)) ≡ f̄(x0 + ξ1, y0 + ξ2) is apparent by
simple computations. This observation is the motivation for
Propostion 3 later in this section.

Since the algorithm performs on the quotient manifold
M, the new retraction R̃ should be compatible with the
quotient structure of M, in the sense that it can induce a
retractionR onM,

Rx : TxM→M

ξx 7→ π(R̃x̄(ξ̄x̄)),
(28)

where x̄ ∈ π−1(x) and ξ̄x̄ is the horizontal lift of ξx.

Proposition 2. R is a well-defined retraction onM.

Figure 3. New retraction R̃ and the original retraction R.In this
figure, x̄ is a point on the cylinder M+

0 , γ(t) a line passing through
x̄with direction ξ̄x̄. The upper red curve φ(t) is the retracted curve
φ(t) := R̃x̄(tξ̄x̄) under the new retraction R̃, and the lower green
curve is the one generated by the retraction R. The curve ψ(t) is
defined in Equation (27).

Proof. We verify that R̃ satisfies the condition of Proposi-
tion 4.1.3 in [1] which reads

π(R̃x̄a
(ξ̄x̄a

)) = π(R̃x̄b
(ξ̄x̄b

)), (29)

where x̄a and x̄b are any two points in the fiber π−1(x)
for point x ∈ M, and ξ̄x̄a ∈ Hx̄a and ξ̄x̄b

∈ Hx̄b

are both horizontal lifts of ξx ∈ TxM. Let x̄a =
(Ua, Ra, Va) and ξ̄x̄a

= (ξ̄Ua
, ξ̄Ra

, ξ̄Va
), then x̄b can be

written as (UaO1, O
T
1 RaO2, VaO2) for some orthogonal

matrices O1, O2 ∈ O(r). Now compute the expression for
ξ̄x̄b

. Suppose γa(t) = (A(t), B(t), C(t)) is a curve inM
such that γa(0) = x̄a and γ̇a(0) = ξ̄x̄a . Define curve

γb(t) := (A(t)O1, O
T
1 B(t)O2, C(t)O2), (30)

then γb(0) = x̄b, and

γ̇b(0) = (ξ̄Ua
O1, O

T
1 ξ̄Ra

O2, ξ̄Va
O2). (31)

It is easy to check that the tangent vector γ̇b(0) fulfills the
requirements for the horizontal space Hx̄b

[7, Section III].
Since π(γa(t)) = π(γb(t)),

Dπ(x̄b)(γ̇b(0)) = Dπ(x̄a)(γ̇a(0)) = ξx, (32)

where Dπ(x̄b)(γ̇b(0)) is the image of tangent vector γ̇b(0)
under the differential of canonical projection π at point x̄b.
The second equal sign comes from the fact that γ̇a(0) = ξ̄x̄a

is the horizontal lift of ξx. So Equation (32) shows that
γ̇b(0) ∈ Hx̄b

is the horizontal lift of ξx at x̄b and we have
ξ̄x̄b

= γ̇b(0).
If Ua + ξ̄Ua

= P1Q1 and Va + ξ̄Va
= P2Q2 by polar

decomposition, then UaO1 + ξ̄UaO1 = (P1O1)(OT1 Q1O1),
and VaO2 + ξ̄VaO2 = (P2O2)(OT2 Q2O2). By Equation
(23), R̃x̄a

(ξ̄x̄a
) = (P1, Q1(Ra + ξ̄Ra

)QT2 , P2) and

R̃x̄b
(ξ̄x̄b

) = (P1O1, O
T
1 Q1O1(OT1 RaO2

+OT1 ξ̄RaO2)OT2 Q
T
2 O2, P2O2). (33)



Now it is easy to check that Equation (29) holds.
We come back to Figure 3. Recall that the invariance of

the cost function on curve ψ establishes a correspondence
between points on γ and points on φ. This correspondence
in fact can induce an minimizing property that allow exact
minimizations for the line-search steps of Algorithm 1. This
minimizing property is stated as follows:

Proposition 3. Suppose that x̄ ∈ M and η̄x̄ ∈ Hx̄. Let
φ(t) := R̃x̄(tη̄x̄) be the retracted curve of line t 7→ tη̄x̄ and
γ(t) : t 7→ x̄+ tη̄x̄ be the tangent line passing through x̄. If
the solution of mint f̄(γ(t)) is t∗, then the minimum point
of f̄ restricted on curve φ is R̃x̄(t∗η̄x̄).

Proof. Let x̄ = (U,R, V ) and η̄x̄ = (η̄U , η̄R, η̄V ). For
any fixed t > 0, suppose we have polar decompositions
U + tη̄U = P1Q1 and V + tη̄V = P2Q2. According to the
definition of R̃ and the definition of f̄ (Equations (23) and
(9), respectively),

f̄(γ(t)) = f̄(x̄+ tη̄x̄)

= f̄(P1Q1, R, P2Q2)

= f̄(P1, Q1RQ
T
2 , P2)

= f̄(R̃x̄(tη̄x̄)) = f̄(φ(t)).

(34)

So there is a one-to-one correspondence between values of
f̄ on curve γ(t) and values on φ(t). Conclusion of the
proposition is clear.

Incorporating this minimizing property into the theoretic
framework of the original R3MC, we propose the improved
version A-R3MC as shown in Algorithm 2.

Algorithm 2 A-R3MC with New Retraction

Input: Given an initial point x̄0 ∈M.
1: Compute Riemannian gradient ξ̄i ∈ Hx̄i

⊂ Tx̄i
M.

2: Compute the conjugate direction η̄i ∈ Hx̄i
by Polak-

Ribière+ or Fletcher-Reeves.
3: If η̄i is not a descent direction, reset η̄i = −ξ̄i.
4: Find exact minimum point x̄i+1 along η̄i using R̃.
5: Repeat until convergence.

In step 2 of Algorithm 2, we can replace the Polak-
Ribière+ method by Fletcher-Reeves method in which the
factor β in Equation (21) is computed by

βi =
〈ξ̄i, ξ̄i〉

〈ξ̄i−1, ξ̄i−1〉
. (35)

We investigate the performance of A-R3MC under Fletcher-
Reeves and Polak-Ribière+ in Section 5.1.1. In step 3, the
reset operation seldom takes place because of the exact line
search. In step 4, the exact minimum point x̄i+1 is comput-
ed according to Proposition 3. Note that we always expect a

positive step-size, so the minimization of cost function f̄(t)
is done for t > 0. Solution t∗ of the minimization of this
degree 6 polynomial f̄(t) on the positive real line can be
efficiently computed numerically. Then retract the vector
t∗η̄x̄ by R̃x̄ to find the next iterate x̄i+1 := R̃x̄(t∗η̄x̄).

4.2. Discussion

The minimizing property in Proposition 3 for a retrac-
tion is an interesting phenomenon. It is a combination of
properties of the cost function, the geometric structure and
the optimization method. In designing retractions for a spe-
cific problem in the geometric optimization framework, this
minimizing property may be taken into consideration.

There is an intuitively similar yet different operation
called cascaded update algorithm in a line search as de-
scribed in [6, Section 4.1]. The cascaded algorithm pro-
ceeds in the context of quotient manifold and consists of
two updates. The first one minimizes across different e-
quivalence classes while the second “balancing” update is
a change of representative along the fiber. The cascaded
update algorithm is applicable in quotient manifold struc-
ture and aims at providing a better representative among the
equivalence classes while our line search adapts an embed-
ding point of view and establishes connections between the
tangent line in the ambient space and the searching curve
on the embedded manifold through a tailored retraction that
provides exact minima along the searching curve.

5. Numerical Experiments
We implemented A-R3MC on basis of the R3MC codes

provided by [7]. All experiments were conducted using
Matlab on a 2.90 GHz Intel Core i7 machine with 8G RAM.

5.1. Synthetic Data

Testing problems of synthetic data were generated by
multiplying three matrices M = USV T where, U and V
are orthogonal bases of two randomly generated matrices
according to the standard Gaussian distribution in sizes n×r
and m× r respectively, and S a diagonal matrix with expo-
nential decaying singular values. In the experiments, CN
denotes the condition number of a matrix and OS is the
over-sampling factor for a rank-r matrix which is defined
as the ratio |Ω|/(nr+mr− r2). OS represents the propor-
tion of known entries and these entries are selected from M
under uniform probability in the experiments. The initial
point x̄0 = (U0, R0, V0) ∈ M was generated by multiply-
ing two random matrices G ∈ Rn×r and HT ∈ Rr×m first-
ly, and then performed a SVD to GHT . We fixed the rank
r = 10 for the problem matrices and varied the dimension,
condition number, and over-sampling ratio in our tests. Un-
less specified otherwise, all algorithms were terminated if
the cost function went below 10−10 or the iteration number
exceeded the maximum count 500.



5.1.1 Comparing with R3MC

There are two settings for both A-R3MC and R3MC
in this comparison. A-R3MC1 and R3MC1 employ the
Polak-Ribière+ nonlinear conjugate-gradient method while
A-R3MC2 and R3MC2 adopt the Fletcher-Reeves method.
In the line search step, all the four algorithms are set to min-
imize the degree 6 polynomial f̄(t) defined on the tangent
line rather than the degree 2 approximation, so computa-
tion cost per iteration is about the same.Thus we present the
results in terms of iteration numbers as shown in Figure 4.

(a) Ill-conditioning and scaling. Figures 4(a), 4(b) and
4(c) in the first row of Figure 4 are matrix completion prob-
lems for small size 5000 × 5000 while problems in Fig-
ures 4(e), 4(f) and 4(g) in the second row are in large-scale
200, 000×200, 000. All these problem instances share same
OS ratio 3 and same rank 10. From left to right, condition
numbers increase from 100 to 1010. We can see that the
improvement of A-R3MC1 to R3MC1 is more apparent for
large-scale matrices while the improvement of A-R3MC2
to R3MC2 is substantial in all cases.

(b) Low sampling. As observed in [11, Section 5], gen-
erally OS > 2 is needed to reliably recover an incoherent
matrix after uniform sampling. Figures 4(d) and 4(h) are
two cases of low-sampling where the OS ratio is set to a s-
mall number 2.1. We see that A-R3MC1 provides a small
improvement to R3MC1 and the acceleration of A-R3MC2
over R3MC2 is satisfactory.

(c) Rectangular matrices. Completing a rectangular
matrix is more challenging than completing a square ma-
trix. Figure 4(h) takes a rectangular matrix with size
100, 000 × 1000, OS ratio 2.1 and condition number 100.
Both A-R3MC1 and A-R3MC2 show better performance in
this example.

(d) Polak-Ribière+ and Fletcher-Reeves nonlinear
conjugate-gradient methods. Figure 4 also illustrates in-
teresting behaviors of Polak-Ribière+ (PR) and Fletcher-
Reeves (FR) in different scenarios. In these experiments,
A-R3MC1 and R3MC1 are equipped with PR while A-
R3MC2 and R3MC2 with FR. PR is more efficient when
the condition number is small while FR performs better in
the ill-conditioned case. A-R3MC2 with the new retraction
is the most robust algorithm among the four algorithm set-
tings. The convergence of A-R3MC2 is little affected by the
matrix scale or the condition number. In the tested cases, we
can see that A-R3MC1 is in general faster than R3MC1 and
A-R3MC2 out performs R3MC2.

5.1.2 Comparing with Other Algorithms
We compare A-R3MC1/A-R3MC2 with R3MC, LRGe-

omCG [11], RTRMC [2], ScGrass-CG [8], and LMaFit [12]
as shown in Figure 5. Figure 5(a) are the results of complet-
ing a 5000 × 5000 matrix with condition number 10,000

and Figure 5(b) are completing a 10, 000 × 10, 000 matrix
with condition number 106. The OS ratios are 3 in these
two cases and the maximum iterations are set to be 1000.
R3MC is done as in paper [7], i.e., Polak-Ribière+ with ac-
celerated linearized step-size guess. Performances of these
algorithms are measured by time in second. The time axis
is truncated to a proper length for better visualization. In
Figure 5, A-R3MC2 is the only one that converges to the
tolerance of 10−10 and A-R3MC1 has the second best per-
formance.

5.2. MovieLens Dataset

We compared the algorithms on the MovieLens 10M
dataset, which contains the data of 10,000,054 ratings to
10,681 movies by 71,567 users. Ratings of the dataset were
made on a 5-star scale with half-star increments and all user-
s rated at least 20 movies. We trained the algorithms by 90
percent of randomly selected data and test them on the re-
maining 10 percent of data. All tests were repeated 10 times
and the values reported were averages. All algorithms took
random initializations and stop after 500 iterations, excep-
t that RTRMC is stopped when its outer iteration number
reaches 200. Both A-R3MC and R3MC employ the Polak-
Ribière+ method. In addition, R3MC adapts the accelerat-
ed linearized step-size guess. The costs and Mean Square
Errors (MSEs) were listed in Table 1. We can see that A-
R3MC shows better convergence and competes with other
methods in recovery precisions.

6. Conclusion
We proposed a new retraction for the quotient manifold

used in R3MC, which is a geometric optimization algo-
rithm for the matrix completion problem. This new re-
traction possesses a good minimizing property, which pro-
vides a way to find the exact minima along the retracted
curve on the searching manifold. Incorporating this spe-
cial retraction into R3MC, we obtained an accelerated ver-
sion A-R3MC. Extensive numerical experiments showed
that A-R3MC outperforms the state-of-the-art geometric al-
gorithms on the more structured synthetic data and is com-
petitive with other algorithms on the real-world data. The
interplay between geometry and optimization is interesting
and we will investigate deeper into retractions with special
properties in our future work.
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Figure 4. Comparing A-R3MC with R3MC in different scenarios. For the left three figures in the first row, we increased the condition
numbers (CNs) while kept other configurations fixed. The corresponding three figures in the second row, in contrast, shows the behaviour
of the various algorithms when the matrix sizes became large. Figures 4(d) and 4(h) illustrate the low-sampling case and the rectangular
matrix case, respectively.
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Figure 5. Comparisons of A-R3MC1/A-R3MC2 with R3MC, LRGeomCG, RTRMC, ScGrassMC and LMaFit. Two configurations were
shown. For better readability, the lines of RTRMC were pruned.

Rank A-R3MC R3MC LRGeom RTRMC ScGrass-CG LMaFit
6 0.5725/0.6573 0.5734/0.6572 0.5736/0.6577 0.5854/0.6655 0.5899/0.6626 0.7527/0.7897
7 0.5573/0.6549 0.5588/0.6549 0.5591/0.6555 0.5776/0.6697 0.5801/0.6639 0.7517/0.7937
8 0.5441/0.6543 0.5461/0.6539 0.5467/0.6548 0.5703/0.6654 0.5734/0.6633 0.7507/0.7977
9 0.5330/0.6548 0.5352/0.6541 0.5360/0.6552 0.5651/0.6827 0.5654/0.6652 0.7501/0.8030

10 0.5228/0.6561 0.5258/0.6560 0.5265/0.6571 0.5793/0.6948 0.5609/0.6696 0.7499/0.8094

Table 1. Costs/MSEs for MovieLens 10M dataset. The MSEs were selected by finding the minimum value in the history of the running
process to cope with possible over fitting. A-R3MC has the smallest cost among these methods. The original R3MC performs better in the
Test MSEs, but A-R3MC’s performance is very close to that of R3MC in most cases.
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