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Abstract

A widely-used approach for estimating camera orienta-
tion is to use points at infinity, i.e., vanishing points (VPs).
By enforcing the orthogonal constraint between the VPs,
called the Manhattan world constraint, a drift-free cam-
era orientation estimation can be achieved. However, in
practical applications this approach suffers from many spu-
rious parallel line segments or does not perform in non-
Manhattan world scenes. To overcome these limitations, we
propose a novel method that jointly estimates the VPs and
camera orientation based on sequential Bayesian filtering.
The proposed method does not require the Manhattan world
assumption, and can perform a highly accurate estimation
of camera orientation in real time. In addition, in order to
enhance the robustness of the joint estimation, we propose
a feature management technique that removes false posi-
tives of line clusters and classifies newly detected lines. We
demonstrate the superiority of the proposed method through
an extensive evaluation using synthetic and real datasets
and comparison with other state-of-the-art methods.

1. Introduction
The projections of parallel lines onto an image plane in-

tersect at a point called a vanishing point (VP). Because of
the advantages of its special geometric attributes, the VP
has been extensively studied in computer vision commu-
nities and employed in many applications, such as camera
calibration [15, 6] and rotation estimation [3, 20, 19, 16]. In
particular, the estimation of camera orientation using VPs is
applied to 3D scene reconstruction [20, 19] and vehicle con-
trol [16, 11] because a VP is a translation-invariant feature
and therefore the rotation estimation can be more accurate
by using VPs.

In previous researches [3, 20, 19], rotation estimation us-
ing VPs has been studied for elaborate 3D reconstruction of
urban scenes from multiple wide-baseline images. In the
case of urban scenes, the so-called Manhattan world con-
straint, where a triplet of mutually orthogonal VPs com-
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Figure 1. In a general scene (top left), given the line segments
detected in the image sequence (top right), the proposed method
clusters parallel lines (bottom left) and jointly estimates the cam-
era orientation and VPs (bottom right).

monly appears, is imposed on the 3D reconstruction be-
cause the constraint allows VPs to be matched more easily
in wide-baseline images and aligned more precisely. Thus,
the methods produce highly accurate rotation estimates in
cooperation with optimization techniques.

In recent years, the computation of rotation from VPs
has been implemented for smartphone applications and un-
manned aerial vehicles (UAV), and therefore noise-robust
and real-time processing in sequential images is required.
In [8, 4, 5], methods for achieving robust and real-time
rotation estimation in an image sequence were proposed.
A key point of the methods is to incorporate the Manhat-
tan world constraint into the rotation estimation. This al-
lows us to quickly find the VP correspondences in a small-
baseline image sequence and improve the robustness of the
rotation estimation even when noisy line segments are ex-
tracted. However, some difficult problems still remain. The
previous methods use accumulation- or sample consensus-
based VP detection techniques, and therefore many domi-
nant parallel lines corresponding to VPs should appear and
be observed on an image. Unfortunately, in the real-world
scenes, a cluster of parallel lines often includes many spuri-
ous parallel lines on the image, or the scene may be a non-
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Manhattan world scene. Therefore, the rotation estimates
by the existing methods are prone to be inaccurate and un-
stable in practical applications in general scenes.

In this paper, we propose a novel method that jointly
estimates camera orientation and VPs based on nonlinear
Bayesian filtering as shown in Fig. 1. We first develop the
system models for the joint estimation in order to enable the
proposed method not to require the Manhattan world con-
straint and but to perform robustly using a few VPs that are
not necessarily orthogonal to each other. This also improves
the accuracy of the estimation. In addition, we propose a
feature management technique, which detects and removes
parallel line segments and VPs, to enhance the robustness
against spurious lines and VPs. Consequently, the proposed
method provides a highly accurate and robust performance
in general scenes.

The paper is organized as follows. We review the liter-
ature on VPs and rotation estimation in Section 2 and rep-
resent a brief description of background information related
to this work in Section 3. We then describe the details of the
proposed method in Section 4 and demonstrate its superior-
ity with experimental results using synthetic and real data
in Section 5. Finally, we conclude the paper in Section 6.

2. Related work
A VP is independent of the camera’s position, and there-

fore it has been widely used for estimating the rotation of
the camera more accurately as in [3, 20, 19, 8, 4, 5]. Most
previous researches focused on VP detection and matching
among multiple images, which are the main issues in the
rotation estimation using VPs.

Some camera orientation estimation methods [3, 20, 19]
were developed for more accurately reconstructing a 3D
scene using multiple wide-baseline images. In the case of
wide-baseline images, it is very difficult to match VPs as
well as to distinguish spurious VPs. For this reason, ap-
proximations of camera orientation were initially given in
[3, 20]. In [3], VPs were estimated based on the expectation
maximization (EM) algorithm in Hough space and VP cor-
respondences were determined through an iterative scheme.
Unlike in [3], where the accumulation-based method that
clusters VPs in discretized space was used, in [20] VPs were
estimated by using a multiple RANSAC-based method, and
three mutually orthogonal VPs were found in each view and
then matched. The VP correspondences could be found
more easily by the Manhattan world assumption. In [19],
VPs were matched using a color histogram-based line de-
scriptor. This method is able to estimate camera orientation
without the initial rotation approximations. All the methods
presented in [3, 20, 19] commonly optimized the rotation
estimate in the final step for elaborate 3D reconstruction,
which is computationally expensive.

Recently, methods for real-time performance in sequen-

tial images, i.e., small-baseline images, were proposed. In
an image sequence, VP correspondences can be found more
easily than in wide-baseline images since matching a VP
is restricted to a narrow range. The simplest method was
to detect VPs, which are not necessary to be orthogonal to
each other, by using VP extraction methods in [22, 25, 14]
and then match VPs by selecting the nearest VP in the next
frame. However, the VP matching method provided unreli-
able matches because temporally unstable and inconsistent
VP extraction was caused by noisy or spurious parallel line
segments. Hence, several methods in [8, 4, 5] solved the
problem by enforcing the Manhattan world constraint as
well. The method in [8] found triplets of orthogonal VPs
using the RANSAC-based method and then matched the
triplets in consecutive frames by computing an Euclidean
distance between VPs. However, the method was not robust
in the presence of noisy or spurious parallel lines. In [4],
a top-bottom approach was proposed based on an exhaus-
tive search that found a maximal consensus set of mutu-
ally orthogonal parallel lines for given rotational hypothe-
ses. Accordingly, this method was more robust than that
proposed in [8] but did not guarantee a globally optimal so-
lution of the maximum consensus set. On the other hand, in
[5] the author adopted a branch-and-bound (BnB) strategy,
which guarantees the optimality of the solution. Neverthe-
less, these methods still have significant limitations: 1) find-
ing VP correspondences is based on the Manhattan world
constraint, and 2) the rotation estimate is prone to be inac-
curate and unstable in the presence of many noisy or spu-
rious line measurements. In this paper, we propose a novel
method for accurately and rapidly computing camera orien-
tation without the Manhattan world constraint by estimating
camera rotation and VPs jointly.

3. Background knowledge
3.1. Gaussian sphere

The Gaussian sphere is a unit sphere centered on the
principle point, i.e., the center of projection, in the pinhole
camera model. As shown in Fig. 2, on the space, a line on
the image plane is represented by a great circle, which is
the intersection of the unit sphere and a plane defined by
the line and the center of projection. All the great circles of
parallel lines intersect at a point on the unit sphere. A direc-
tion from the center of projection to the intersection point
eventually becomes a vanishing direction (VD). The VD is
orthogonal to all the normals of the great circles.

3.2. Rotational dependence of a vanishing point

Given a VD on 3D space d ∈ R3 , the VD on homoge-
neous coordinates D ∈ P3 is represented as

D =
[

dT 0
]T

=
[
X Y Z 0

]T
. (1)
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Figure 2. The lines in 3D space are projected onto the line seg-
ments on the image plane. A plane composed of one line segment
and the center of projection crosses over the Gaussian sphere in
which a great circle is formed. The normals of the great circles of
the parallel lines in 3D space are orthogonal to a vanishing direc-
tion estimated from a set of the parallel lines.

The vector D can be transformed into D′ by a 4× 4 matrix
representing rotational and translational transformations in
Euclidean 3D space as

D′ =

[
R t

01×3 1

]
D =

[
Rd
0

]
, (2)

where R is the rotation matrix and t the translation vec-
tor. From Eq. (2), the transformed VD d′ equals Rd. This
means the Euclidean 3D transformation of a VD is influ-
enced only by rotation. Since a VP is a projection of the
VD, the VP also has the same property. Given a 3× 4 cam-
era projection matrix P that consists of a camera calibration
matrix K, a rotation matrix RCW , and a translation matrix
tCW relative to the camera, a VP p ∈ P2 for a VD D is

p = K
[

RCW | tCW

]
D = KRCWd, (3)

which also shows that the VP depends on the camera rota-
tion only.

4. Joint estimation of camera orientation and
vanishing points

The main idea of the proposed method is to jointly es-
timate camera orientation and VPs by utilizing the knowl-
edge that a line, a VP, and the camera orientation are ge-
ometrically correlated as described in Section 3. That is,
given the parallel line segments observed in the image,
the proposed method estimates the camera orientation and
VPs jointly by using the correlation. This means that the
method does not match orthogonal VPs across images to
find the rotation, but rather tracks only the parallel line seg-
ments. Therefore, it is not necessary to enforce the Manhat-
tan world constraint. In addition, our system model design
takes into consideration the uncertainties of measurement

and camera motion. The proposed method consequently
improves the accuracy of the estimation, despite of mea-
surement noise.

For the joint estimation, we design a nonlinear Bayesian
filtering framework based on the geometric property, i.e.,
the rotational dependence, of a VP. We consider two geo-
metric properties: a VD is orthogonal to the normal of a
great circle corresponding to a line measurement, and VPs
are dependent only on the rotation of the camera. These two
properties lead to a correlation between a line, a VP, and the
camera orientation. In Section 4.1, the design of a camera
motion model and measurement model in which this corre-
lation is implemented is described1. In this work, we use
the extended Kalman filter (EKF) system [18] for nonlin-
ear Bayesian filtering. It is noteworthy that a non-iterative
scheme of the EKF is computationally efficient. Thus, we
can expect the system to perform rapidly. Moreover, addi-
tional proposed steps, such as the RANSAC-based outlier
rejection described in Section 4.3 and the feature manage-
ment described in Section 4.4, improve the accuracy and
robustness of the proposed method. Figure 3 shows the pro-
posed joint estimation system.

4.1. System modeling

The proposed system estimates a state of the camera and
VPs based on Bayesian filtering. The state vector x is de-
fined by x = [xT

v , yT
1 , yT

2 , · · · ]T, where xv is a camera
state vector and yi is a VD vector. The camera state vector
is composed of a quaternion for the camera orientation in
world coordinates qWC and an angular velocity relative to
the camera ωC and defined by xv = [qT

WC , ω
T
C ]T. A VD

vector yi is defined as yi = [θi, φi]
T. The two elements θi

and φi, which represent angles between each axis, are used
to express a direction. This representation is sufficient to
denote a VD in world coordinates and efficient for estimat-
ing a VD since it represents the directional characteristic of
a VD more effectively than a directional vector in Cartesian
coordinates does; that is, a covariance of a VD estimated in
spherical coordinates will be more informative than the co-
variance computed in Cartesian coordinates when the state
is updated in the nonlinear stochastic filtering. A newly de-
tected VD vector ynew is additionally augmented after the
last VD vector of the state vector.

4.1.1 System model

The estimation based on the Bayesian filtering uses a mo-
tion model, which is necessary for predicting the next state.
Since we aim only at estimating the camera orientation in
an image sequence, we consider a constant angular velocity
model as the motion model for the system. It may be a less
limited and more reasonable assumption than the Manhat-
tan world assumption in image sequence processing. Our

1More detailed derivations are provided in the supplementary material.
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Figure 3. A flowchart of the proposed joint estimation of camera orientation and VPs

system model function fv is then defined as

fv =

[
qnew
WC

ωnew
C

]
=

[
qold
WCq((ωold

C + Ω)∆t)
ωold
C + Ω

]
, (4)

where Ω is a noise of the angular velocity and q(θ) a quater-
nion function for an angle θ.

4.1.2 Measurement model

To design a measurement model, we exploit the property
that a VD is orthogonal to a normal of a great circle of a line
parallel to the VD as in Fig. 4. A measurement model hij
for the i-th VD of the state vector and the j-th line feature
is defined by

hij = dT
i R(qWC)nij , (5)

where di is the i-th unit VD vector transformed from spher-
ical coordinates to Cartesian coordinates, R(q) the trans-
formation of a quaternion q into a 3 × 3 rotational matrix,
and nij the unit normal vector of the great circle defined
by the j-th line feature parallel to the i-th VD in the camera
coordinates. The normal nij is computed from a plane pass-
ing through the camera center and both endpoints of the j-th
line on the image plane. A value of the measurement model
hij itself is considered as a measurement residual, which is
used to update the current state. All the line measurements
parallel to the i-th VD are used to update the camera orien-
tation and the i-th VD.

4.2. Initialization

At the beginning of the estimation, it is necessary to de-
tect VPs and then initialize a state vector and its covariance.
First, we employ the multiple RANSAC-based VP detec-
tor [17] in order to cluster the lines extracted by a line seg-
ment detector. We test two line segment detectors, LSD [23]
and EDLines [2] since they offer a trade-off between accu-
racy and computational efficiency. We will show the perfor-
mance according to the detectors in Section 5. From among
many clusters taken from the VP detector, we select a few
clusters that the numbers of the parallel lines are larger than
a threshold (in our experiments, 6) since they may include
false positive clusters. Then, the clustered lines are used to
approximately compute the VDs. The computation is for-
mulated as a problem that minimizes the inner products of
an unknown VD vector and the normals of the great circles

W 

Cold Cnew 

qold
 WC 

qnew
 WC 

ωR∆t 
nij di 

lij 

WC R(qold )nij 

nij 
~ 

Figure 4. When the camera moves from Cold to Cnew, the cam-
era orientation qold

WC is changed to qnew
WC according to the rotation

ωC∆t. A normal nij corresponding to a line lij is orthogonal to a
vanishing direction di of the line lij .

defined from the clustered lines. We solve the minimiza-
tion problem using singular value decomposition, and then
the approximately estimated VDs are augmented in the state
vector as initial values. In addition, the sets of the clustered
lines are dealt with in the feature management step, which
is described in Section 4.4.

To initialize a covariance of a new VD ynew, we consider
uncertainties of the VD and the camera orientation since the
initial estimate of the new VD contains noise of the current
camera orientation. The covariance Pynew is defined as

Pynew
=
∂ynew

∂xv
Pxv

∂ynew

∂xv

T

+ P̃ynew , (6)

where ∂ynew

∂xv
is a jacobian of the new VD for the camera

state, Pxv a covariance of the current camera state, and
P̃ynew a noise of the estimate of the new VD. The covari-
ance P̃ynew is initially set along the environment.

4.3. Measurement acquisition

In the proposed method, measurements are obtained
by tracking line features at each frame. The tracking of
line segments has been addressed in many previous stud-
ies. Here, we consider two methods: a simplified and a
descriptor-based method.

4



First, we consider a simple method to quickly track line
segments for reducing the computational load of the sys-
tem. We detect line segments in a current image using the
line segment detector. Then, the length of each line and the
gradient at the center point of each line are computed. We
use the noise robust gradient operator [12] for computing
the gradient. It provides a more reliable description for a
line. The line features are updated by matching the detected
line segments. If the rate of the lengths is between 1/lth and
lth, the difference in the gradient magnitudes is below mth,
and the angle between the gradient directions of two line
segments is below θth, then the line segment is regarded as
a correspondence candidate. From the set of the candidates,
we select one correspondence with the minimum difference
in gradient magnitudes. In the experiments, the parameters
lth, mth, and θth are set to 1.5, 30, and 15, respectively.

We also consider the descriptor-based method, which
produces a better matching performance particularly in a
complex scene although it is slower than the above simple
method. In this method, a line segment is accepted as a
candidate in a manner similar to that in the above simple
method. Here, the distance of the descriptors should be be-
low m̄th instead of the magnitude of the gradient. We then
select one correspondence with the minimum distance of
the descriptors. A modified LBD descriptor [26] is used in
our method since the LBD descriptor is simpler and faster
than other descriptors [24, 9] and has high distinctiveness.
The modified descriptor is computed by using sample points
equally spaced in the line support region. This is computa-
tionally efficient and does not degrade the matching perfor-
mance. We set the parameters lth, m̄th, and θth to 4, 0.3,
and 25, respectively, because of the high distinctiveness of
the descriptor. The number of bands and the width of a band
for the LBD descriptor are set to 5 and 7, respectively.

In addition, we perform a RANSAC-based outlier rejec-
tion inspired by [7]. In this work, three lines are sampled
to generate a hypothesis. This offers a more accurate and
robust performance while the resulting increase in compu-
tational time is small.

4.4. Feature management

VP estimates and line features often become unreliable
because of incorrect line tracking or VP detection. This
is fatal to the rotation estimation in the joint estimation
method. We propose some techniques for managing the
VPs and line features to achieve a noise-robust and long-
term estimation.

We employ the rotational dependence for detecting new
line features. We first calculate the normal of the great cir-
cle for all the line segments newly extracted in the current
frame. Then, the line segment is accepted as a line feature
candidate if an absolute value of an inner product of the VD
and the normal is less than a threshold αth. If the candi-

Figure 5. Synthetic and real datasets. Two synthetic datasets were
generated for the experiments: images of the Manhattan world
scene (top-left) and images of the non-Manhattan world scene
composed of three mutually non-orthogonal VPs (top-right). The
real datasets are the Metaio (bottom-left) and TUM (bottom-right)
datasets. Many spurious parallel line segments are observed from
the cars, trees, and clouds.

date is tracked during a few frames or a rotation by a few
degrees, the candidate is registered as a new line feature in
the class of the VD. Here, we empirically set αth to 0.02.
If a line feature is not observed during a few frames or the
normal of its great circle is regarded as not being orthogonal
to its VD, we remove the line feature in the class.

The RANSAC-based VP detector presented in Sec-
tion 4.2 is used to detect new VPs. We run the detector
every β frame or in the case where the number of the VPs is
less than two. In addition, spurious VPs should be deleted
in the state vector since they degrade the accuracy and ro-
bustness of the estimation. We observed that they tend to
rotate by some degrees from their initial orientation or have
very few line measurements. Thus, we delete any VP that
has very few measurements in the current frame or rotates
more than γ degrees from the initial direction. In the exper-
iments, we set β and γ to 30 and 10, respectively.

5. Results
To evaluate the proposed joint estimation method, we

used several synthetic and real datasets. The images in
the synthetic datasets were generated at a resolution of
640 × 480 and composed of two different kinds of scene:
the Manhattan world scene and the non-Manhattan world
scene. For the evaluation in real-world tasks, we used the
Metaio [13] and TUM [21] datasets as shown in Fig. 5. The
Metaio dataset was captured at a resolution of 480 × 360
and the TUM dataset at 640 × 480. In this section, we
compare the proposed method to the state-of-the-art meth-
ods, Exhaust[4] and BnB[5], and a method that detects VPs
from the VP extraction method of [22] without the Man-
hattan world assumption and then matches the nearest VP,
called Nearest.
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Table 1. Performance comparison of the synthetic datasets. The
performance is evaluated by the average ratio of rotation error for
each rotation of 10, 50, 100, and 150 degrees (%).

Algorithm Manhattan Non-Manhattan
σ = 0.5 σ = 1.0 σ = 2.0 σ = 0.5

Nearest 14.21 29.23 44.42 14.87
Exhaust[4] 2.80 2.94 3.18 -

BnB[5] 3.25 3.78 3.64 -
Proposed 0.76 0.94 1.19 0.70
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Figure 6. Results of the proposed method in the non-Manhattan
world scene. The line measurements (colored lines) extracted in
the input images (top) are used to jointly estimate the camera ori-
entation and VPs (bottom). In the bottom images, the red, green,
and blue solid lines represent the orientation of the camera, the
colored dotted lines are VD vectors, and the black solid lines rep-
resent the ground truth pose of the camera orientation. The blue
line represents the head of the camera. Each of the colored lines
in the top images corresponds to the VD of the same color.

5.1. Synthetic datasets

For fair comparison, we generated image sequences of
a synthesized scene containing three mutually orthogonal
VPs because some existing methods assume the Manhattan
world. Gaussian noise was added to the end-point positions
of line measurements. Accordingly, we ran the experiment
100 times and evaluated the average errors of the rotation
estimates. The error was defined by the ratio of the rotation
error for each rotation of 10, 50, 100, and 150 degrees as
in a manner similar to the method introduced in [10]. Ta-
ble 1 shows the performance comparison for the synthetic
Manhattan world scene with different levels of noise. The
results show that the Nearest was very susceptible to noisy
measurements whereas the Exhaust and the BnB increased
the accuracy considerably since the Manhattan world con-
straint was enforced. On the contrary, the proposed method
did not enforce the Manhattan world constraint but yielded
the more accurate results than the other existing methods.
Since only noisy line segments were given as measurements
without any spurious lines in this experiment, these results
experimentally verify that the proposed method, which is
designed to estimate the camera orientation and VPs jointly
and consider the uncertainties of camera motion and mea-
surements, is accurate and robust to noisy measurements.
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(a) Non-singular cases

X

Y
VD 1

Z

X

Y
VD 1

Z

X

Y
VD 1

Z

Frame 10 Frame 60 Frame 90
(b) Singular cases

Figure 7. Singularity of the proposed method. The non-singular
VD is not the same as the axis of the camera rotation in (a). In
these cases, the camera orientation is estimated well although only
one VP is used for the estimation. On the other hand, the VD
estimated in (b) and the axis of the camera rotation look in the
same direction. The estimated orientation (the red, green, blue
solid lines in the bottom) is fixed over all the frames although the
actual orientation (black solid lines in the bottom) is changing.

On the other hand, to demonstrate the applicability of
the proposed method in a non-Manhattan world scene, we
synthesized an image sequence of the non-Manhattan world
scene containing three mutually non-orthogonal VPs. The
camera was rotated with yawing, pitching, and rolling. We
also added Gaussian noise (σ = 0.5 pixels) to the end-
points of the line measurements. The experimental results
are presented in Fig. 6 and the camera orientation estimate
is compared with the ground truth in Table 1. The results
demonstrate that the proposed method still remains an accu-
rate and robust performance although the Manhattan world
constraint is not enforced.

However, when the proposed method estimates camera
orientation using only one VP2, we can encounter a prob-
lem, called singularity. If the axis of the camera rotation is
equal to the VD, the estimation is not aware of any change
in the rotation. Here, the direction denotes a singular di-
rection. This property can be explained by using Eq. (5).
Regardless of the amount of rotation, a VD is always or-
thogonal to the normal of the great circle corresponding to

2Note that any methods cannot work with only one VP but the proposed
method can work with only one VP except the singularity case.
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Figure 8. Camera orientation estimates of the several selected
methods, the proposed method and the existing methods [4, 5], for
the sequence, Metaio-100. The rotation estimate of the proposed
method is more accurate and robust than the others.

the VD if the VD is the singular direction. Since all innova-
tion errors from the measurements become zero according
to the orthogonality, the camera orientation is not updated
but fixed despite the fact that the camera rotates. Figure 7
shows the non-singular and singular cases, illustrating that
only one VD is sufficient to successfully estimate the state
if the VD is different from the singular direction, while the
estimation fails when a VD is equal to the singular direc-
tion . Therefore, we need at least two different VPs in or-
der to successfully complete the estimation regardless of the
singularity. Nevertheless, it should be noted that the pro-
posed method is still superior to other methods in the sense
that our method performs using one or more non-orthogonal
VPs, while the other methods for improving accuracy [4, 5]
require three orthogonal VPs. In addition, since the fea-
ture management technique detects and adds new VPs to
the state, the singularity can be handled well in practical
applications of the proposed method.

5.2. Real datasets
We used the Metaio and TUM dataset for evaluating the

performance of our method in real-world image sequences.
The image sequences comprised complex scene structures
and hence provided many spurious lines as well as noisy
measurements. The existing methods based on the Man-
hattan world assumption [4, 5] suffer from those factors
because the three orthogonal sets of parallel lines are not
dominantly seen in the image and thus the factors do not
allow the correct triplet of VPs to be found. For this rea-

son, their rotation estimates fluctuate as shown in Fig. 8.
In contrast, the proposed method gives a reasonably accu-
rate result in practice for the following reasons. First, the
joint estimation method can estimate the camera orienta-
tion accurately although noisy measurements are given, as
explained in Section 5.1. In addition, the proposed feature
management and the RANSAC-based outlier rejection tech-
niques efficiently handle spurious lines and incorrect line
correspondences. Unlike the existing methods that find the
rotation with the maximum number of inliers and therefore
include several spurious lines, the proposed techniques are
intended to maintain only valid VPs and line features and
exclude the spurious lines and VPs. These techniques con-
tribute greatly to achieving a robust and accurate perfor-
mance in real-world image sequences.

Table 2 shows the performance evaluation for each real
dataset. We ran the methods over 300 frames of each dataset
in common. We manually initialized and fixed orthogo-
nal VPs for running the Exhaust and the BnB, while the
Nearest and the proposed method automatically detected
VPs regardless of the orthogonality constraint. In the ex-
periments, we considered the EDLines and LSD detector
as the line segment detectors, and the simplified and the
LBD descriptor-based methods as the line segment track-
ers. As in Table 2, the proposed methods provided a bet-
ter performance than the other methods. In particular, the
method using the LSD detector and the LBD descriptor-
based line tracking achieved significant accuracy improve-
ments because more accurate measurements could be ob-
tained by the line detector and more reliable line features
can be tracked for a long time by the descriptor. On the
other hand, the method using the EDLines detector and the
simplified line tracking was less accurate since the EDLines
detector provided more noisy measurements. However, the
method still produced the better performance in some se-
quences, Metaio-100 and 101, and was computationally ef-
ficient. Therefore, the method is suitable for the real-time
performance.

The BnB-based method [5] yielded the best performance
in the image sequences, the Metaio-102 and 103, where
most of the lines extracted from the line detector were suc-
cessfully clustered into an orthogonal triplet of VPs. How-
ever, the estimation of this method diverged in the image
sequence, the TUM-Hemisphere since many spurious lines
and measurement noise affect the estimation severely. In
contrast, the performance of the proposed method is accu-
rate consistently for all the sequences. This means that the
proposed method is superior to the other methods in term of
accuracy and robustness in practical applications.

5.3. Computation time
The proposed method was tested on an Intel i7 3.4 GHz

CPU and Matlab using a single core. The line detectors
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Table 2. Performance comparison for the Metaio and TUM datasets. Red denotes the best results and blue denotes the second best.

Algorithm Metaio-100 Metaio-101 Metaio-102 Metaio-103 TUM-Hemi. TUM-Pio.

Nearest (LSD) 49.49 41.56 38.43 43.51 68.39 54.60
Exhaust[4] (LSD) 20.03 17.97 8.51 11.39 18.66 17.53

BnB[5] (LSD) 14.21 13.44 6.91 6.62 41.61 17.16
Proposed (EDLines,Simplified) 13.97 12.17 12.43 8.81 21.06 18.40

Proposed (EDLines,LBD) 10.49 12.09 9.05 7.56 19.36 17.42
Proposed (LSD,Simplified) 9.42 9.46 8.31 7.40 18.08 15.17

Proposed (LSD,LBD) 8.17 9.19 7.47 7.32 17.30 11.94
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Figure 9. The colored lines on the input images (first row) are the measurements corresponding to the estimated VPs (dotted lines in the
second row). In all the datasets, the proposed method well estimates the camera orientation (red, green, and blue solid lines in the second
row) as compared with the ground truth pose (three black solid lines).

[2, 23] were run on C as compiled with the mex command.
When employing the EDLines detector and the simplified
line segment tracking, the proposed method can run in real
time; it takes about 40 ms for an average of 76 line fea-
tures at each frame. Most of the processing time is spent
on searching measurements. The searching process has a
complexity of O(nm) since it matches n line features with
the nearestm lines. Practically, the actual number ofm was
much smaller than n in the experiments. Thus, the process-
ing time is almost linear in the number of the line features.

6. Conclusion
The estimation of camera orientation through VPs is a

difficult problem because of noisy and spurious line seg-

ments, high computational complexity, and the geometric
constraint. In contrast to the previous methods that are de-
pendent on finding a triplet of orthogonal VPs under the
Manhattan world assumption, in the proposed method cam-
era orientation and VPs are jointly estimated based on non-
linear Bayesian filtering. The proposed method enhances
the robustness to measurement noise and overcomes the
limited scene constraint by the virtue of the joint estimation
technique. Therefore, our method can be robustly used in
many practical applications in general environments. The
proposed joint estimation method actually showed an out-
standing performance as compared to the state-of-the-art
methods as performing highly accurate estimation even if
noisy measurements and spurious line segments were ob-
tained. The code of our method is available from [1].
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