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Abstract

Recently, there have been many proposals with state-

of-the-art results in subspace clustering that take advan-

tages of the low-rank or sparse optimization techniques.

These methods are based on self-expressive models, which

have well-defined theoretical aspects. They produce ma-

trices with (approximately) block-diagonal structure, which

is then applied to spectral clustering. However, there is

no definitive way to construct affinity matrices from these

block-diagonal matrices and it is ambiguous how the per-

formance will be affected by the construction method. In

this paper, we propose an alternative approach to detect

block-diagonal structures from these matrices. The pro-

posed method shares the philosophy of the above subspace

clustering methods, in that it is a self-expressive system

based on a Hadamard product of a membership matrix.

To resolve the difficulty in handling the membership ma-

trix, we solve the convex relaxation of the problem and then

transform the representation to a doubly stochastic matrix,

which is closely related to spectral clustering. The result

of our method has eigenvalues normalized in between zero

and one, which is more reliable to estimate the number of

clusters and to perform spectral clustering. The proposed

method shows competitive results in our experiments, even

though we simply count the number of eigenvalues larger

than a certain threshold to find the number of clusters.

1. Introduction

Subspace clustering [6, 7, 11, 15, 25, 26] is a subfield

of clustering research which has been established recently.

Unlike K-means or kernel K-means clustering1 which

forms clusters based on minimizing the intra-cluster vari-

1Since spectral clustering was shown to be equivalent to kernel K-

means clustering [27, 29], spectral clustering can also be classified as this

type of clustering problem.

ance in the data space or in a high-dimensional kernel space,

it aims to segment data into low-dimensional subspaces.

Subspace clustering can be a useful tool in computer vi-

sion, because there are many types of data that can be well-

represented by a low-dimensional structure such as face,

motion, video segments, etc. Accordingly, there have been

many successful applications of subspace clustering [4,31].

Subspace clustering has been studied extensively, and

there are tons of different approaches. According to [5],

they can be roughly categorized into 7 different classes.

Among them, the focus of this paper is the low-rank or

sparse optimization approach, which is largely based on the

recent advances in nonsmooth optimization [1, 2, 14] and

shows state-of-the-art results. Most of the methods in this

approach model the data by self-expressive dictionaries in

conjunction with low-rank or sparse coefficients, i.e., they

find a simplest way to represent the original data by using

the data itself. Sparse subspace clustering (SSC) [5, 6] as-

sumes the coefficients to be sparse, while low-rank repre-

sentation (LRR) [15] assumes them to be low-rank. Low-

rank subspace clustering (LRSC) [7] extends both methods

and proposes an alternative non-convex formulation, which

can be solved efficiently and gives a closed-form solution

when there is no outlier. These methods have advantages

in handling noise and outliers in data, and do not require to

know the dimension of each cluster in advance. Theoreti-

cally speaking, even the number of clusters is not required if

the input data is clean, i.e., there is neither noise nor outlier.

Unlike the well-defined theory, however, they need post-

processing steps that can impact the performance signifi-

cantly but are not clearly explained in theory. The outputs

of these methods are matrices that have (approximately)

block-diagonal structure, which we call as latent matrices

in this paper. These latent matrices are used for spectral

clustering to find the actual clusters, and to do that, they

need to be transformed to affinity matrices. For example,

LRR uses a heuristic post-processing step to make the ma-



(a) Input (latent matrix W = output

of SSC/LRR)

(b) Output of the 1st stage: Approxi-

mation of membership matrix (M̆)

(c) Dissimilarity matrix (H =
11

T − M̆)

(d) Output of the 2nd stage: Ap-

proximation of normalized member-

ship matrix (F̆)

Figure 1. A typical example of the intermediate results of the proposed algorithm (Hopkins155, K = 2, n = 276).

trix symmetric and nonnegative [15]. Later, LRR-PSD [17]

has been proposed to resolve this issue by enforcing the la-

tent matrix to be positive semidefinite (PSD). However, the

performance is not very different from that of LRR. On the

other hand, the solution of SSC has zero-diagonal entries

to avoid the trivial solution (so it is obviously not PSD) and

they construct the affinity matrix by absoluting the elements

and dividing them by the maximum element in each row.

Intuitively, it makes sense that the elements with large mag-

nitudes in the latent matrix will represent stronger affinity.

However, it is ambiguous how the way of constructing affin-

ity matrix will affect the performance. Moreover, since all

of these methods use spectral clustering, they need to know

the number of clusters in advance or to estimate it heuristi-

cally.

In this paper, we propose the membership represen-

tation (MR), which detects the block-diagonal structures

from these latent matrices, as an alternative. Our mo-

tivation is that this detection problem can be formulated

as another self-expressive system with a semidefinite con-

straint. Our formulation represents a latent matrix by a

Hadamard product of the latent matrix itself and a member-

ship matrix, which frequently appears in correlation clus-

tering [3, 16, 20]. Handling a membership matrix, however,

is a difficult problem, because it is a discrete matrix with

a special structure. We resolve this issue by dividing the

problem into two-fold: First, we solve a convex relaxation

of this problem to find an approximate solution. Second, we

propose another problem to transform the representation to

a normalized membership matrix, which is closely related

to spectral clustering, and also solve the convex relaxation

of the second problem. Figure 1 shows the intermediate re-

sults of the proposed algorithm, which can give a general

sense of the method. The final output matrix of our method

has eigenvalues in the range of [0, 1] regardless of the in-

put data, which is more reliable to estimate the number of

clusters and perform spectral clustering. In this paper, we

simply set the number of clusters K as the number of eigen-

values of this matrix above a certain threshold, which gave

better or at least similar results than the plain spectral clus-

tering approach.

This work has been largely inspired by the recent studies

in correlation clustering [3, 9, 16, 20], and doubly stochas-

tic normalization [22, 27, 28] in spectral clustering. The re-

mainder of this paper is organized as follows: We present

a brief review of SSC and LRR, and present the main idea

of MR in Section 2. The details of the proposed method is

introduced in Section 3, and the experimental results follow

in Section 4. Finally, we conclude the paper in Section 5.

2. Detecting block-diagonal structure

2.1. A brief review of SSC and LRR

SSC and LRR try to represent the original data by us-

ing the data itself as a dictionary. Let X ∈ R
d×n be

the data matrix to be clustered, whose column vectors are

sample features. For ease of explanation, we will assume

X = [X1 . . . XK ] where Xk (1 ≤ k ≤ K) is a ma-

trix that contains the samples belonging to the kth cluster,

which resides on a low-dimensional subspace. Note that,

however, all the formulas in this paper hold after arbitrary

column and/or row permutations. Roughly speaking, SSC

and LRR both solve the following optimization problem:

min
W,E

‖W‖oW + λE ‖E‖oE ,

s.t. X = XW +E,
(1)

where ‖·‖oW and ‖·‖oE are some norms. Here, W ∈ R
n×n

represents the latent matrix and E ∈ R
d×n contains noise

and outliers. If ‖ · ‖oW is a low-rank or sparse norm, the

solution of W becomes approximately block-diagonal. In

LRR, the nuclear norm ‖W‖∗ (sum of singular values) is

used to minimize the rank of W, and the reason is stated in

the following theorem [15]:



Theorem 1. The minimizer of the problem

min
W

‖W‖∗ , s.t. X = XW, (2)

has a block-diagonal form such that the row and column

indices for each block correspond to the indices of samples

that belong to each cluster, i.e., Xk, in X.

Please refer to [15] for the proof. Note that we have

slightly changed the description of the original theorem for

explanation, but it essentially states the same fact. Thus,

if there is no noise or outlier, W becomes block-diagonal.

If there is some noise or outliers in X, then E in (1) will

contain them as far as possible, and the resulting W will

still be approximately block-diagonal. In [15], l1-norm and

the group sparsity norm (l2·1-norm) [24] was used for ‖ ·
‖oE .

In SSC, l1-norm is used for ‖ · ‖oW , and the diagonal

entries of W are constrained to be zeros to avoid trivial so-

lution W = I. Hence, SSC seeks to represent a sample

by a linear combination of a few other samples. [6] gives a

similar theorem to Theorem 1 for this formulation, which

ensures the block-diagonal structure of W for a clean X.

For E, it is divided into two terms and each of them are

subjected to l1- or l2-norm, in order to model both noise

and outliers.

After solving (1) to obtainW, both methods construct an

affinity matrix W
′ based on it. In LRR, W′ is set as W′

ij =

([U′
U

′T ]ij)
2 where U

′ is formed of the normalized rows

of US
1

2 from the singular value decomposition (SVD) of

W = USV
T . In SSC, small elements are discarded from

W and the absolute values of each row is divided by the

largest element in the row to build W
′. After constructing

W
′, spectral clustering is applied to find the final clusters.

To estimate the number of clusters K , [15] proposes to use

the following heuristic estimator:

K̂ = n− round
Ä∑

fτ (σi)
ä

, (3)

where σi is the singular value of the normalized Laplacian

matrixL = I−D− 1

2W
′
D

− 1

2 ofW′ whereDii =
∑

j W
′
ij

and

fτ (σ) =

®

1, if σ > τ,

log2(1 +
σ2

τ2 ), otherwise.
(4)

2.2. Membership representation

Now, we will introduce our MR formulation to detect

block-diagonal structure. First, let us define membership

matrix:

Definition 1. A membership matrix M is a symmetric ma-

trix whose elements are either one or zero, which can be

transformed into a block-diagonal matrix by permuting the

same indices of rows and columns.

This type of matrix frequently appears in correlation

clustering [3, 16, 20]. For ease of explanation, we will as-

sume that the rows and columns of M are aligned as

M =







11
T · · · 0

...
. . .

...

0 · · · 11
T






, (5)

where the blocks of ones2 corresponds to the “cluster

blocks” in W. Note that M is PSD because every block

is PSD. In fact, a discrete matrix that is PSD can conversely

define a membership matrix, by the following theorem:

Theorem 2. M
′ is a membership matrix iff it is a matrix

of ones and zeros with diagonal elements being ones and is

PSD.

Proof. Only-if part is based on the definition and the prop-

erty of the membership matrix. To prove the if part, let us

define a new matrix M
∗ by permuting the same indices of

rows and columns of M′, so that M∗ is block-diagonal with

irreducible blocks (or itself is a irreducible matrix). Then,

every irreducible block must be PSD. What we need to show

is that these blocks are matrices of ones. Let M′′ be one of

the blocks and suppose that there are i1, i2, and i3 such that

M
′′
i1i2

= M
′′
i2i3

= 1. Then, the submatrix of M′′ with these

indices will look like




1 1 M
′′
i1i3

1 1 1
M

′′
i3i1

1 1



 . (6)

In order for this matrix to be PSD, the unknown values in

above expression should be M′′
i1i3

= M
′′
i3i1

= 1.

Now, let {ij} be the indices from which an all-one sub-

matrix of M′′ is formed. If {ij} does not contain all the

indices of M
′′, then we can always find another entry i′

such that some of {ij} are connected to, i.e., M′′
i′ij

= 1 for

some j, because M
′′ is irreducible. Then, it is obvious that

the submatrix of M′′ with indices {i′}∪ {ij} must be filled

with ones because M
′′
i′ij

= M
′′
ijij′

= 1 for all ij′ in {ij}.

This recursively proves that M′′ is a matrix of ones.

This theorem shows that the PSD property is a vital con-

dition for a membership matrix. Hereafter, we will denote

M as the set of all membership matrices.

Now, let us represent W self-expressively using the

membership matrix M. If W is a clean block-diagonal

matrix without any error and M is a membership matrix

whose all-one block locations are identical to those of diag-

onal blocks of W, then obviously

W = W ⊙M, (7)

2In this paper, we use 1 to denote vectors of ones, and 0 to denote both

vectors and matrices of zeros.



where ⊙ is the Hadamard product (element-wise product).

However, note that the trivial solution M = 11
T also sat-

isfies this equation, hence we have to minimize the number

of ones in M to find a valid answer. The following theorem

shows that minimizing the number of ones in M gives the

desired solution:

Theorem 3. Let W be a block-diagonal matrix whose

blocks are irreducible. Then, the minimizer of the problem

min
M

N(M), s.t. W = W ⊙M, M ∈ M, (8)

where N(·) is the number of non-zero entries, is the mem-

bership matrix that indicates the block-diagonal structure

of W. Moreover, this holds even if we replace N(·) to any

entry-wise norm.

Proof. To satisfy W = W⊙M, all the elements of M that

correspond to the non-zero entries in W should be ones.

Then, because a diagonal block of W is irreducible, the cor-

responding block of M should be filled with ones, based on

the proof of Theorem 2. To minimize N(M), all the other

elements should be zeros. Minimizing an entry-wise norm

by fixing some elements will make the other elements zeros,

hence this theorem also holds for any entry-wise norm.

Note that one might think of using the nuclear norm for

M, based on the fact that the rank of M is K . However, it

is meaningless since ‖M‖∗ = n for any M ∈M.

In reality, there can be errors in W, hence we consider

the following alternative problem:

min
M

‖W −W ⊙M‖o′
W

+ λM‖M‖oM ,

s.t. M ∈M,
(9)

where ‖ · ‖o′
W

and ‖ · ‖oM are entry-wise norms, of which

choices will be discussed later. However, this problem is

NP-hard because it has both discrete and PSD constraints.

Instead, we can relax the constraints as

diag(M) = 1, M � 0, M ≥ 0, (10)

where � and ≥ are semidefinite and element-wise inequal-

ity, respectively. Note that the first two conditions also im-

ply M ≤ 11
T . A similar relaxation technique has been

used in correlation clustering [16, 20]. Based on this re-

laxation, (9) becomes a convex problem which can be effi-

ciently solved either by a semidefinite programming (SDP)

or an augmented Lagrangian method (ALM) [14]. The solu-

tion M̆ of this relaxed problem is not a membership matrix,

but the elements will be close to one (zero) if it is within

(outside of) a cluster block. This can be interpreted as the

similarities between the samples, hence, we will call M̆ as

the similarity matrix3.

Note that M̆ is a boosted version of W that emphasizes

the block-diagonal structure, but we still do not know the

actual clusters. There can be several ways to cluster this

result. First, we may use Single Linkage (SLINK) [19] for

post-processing as in some work [9] in correlation or spec-

tral clustering. The merit of this approach is that the num-

ber of clusters is not required. However, SLINK is a greedy

method that is based on local information, thus it often gives

a poor result. Second, since M̆ is PSD and the scale of its

elements are evenly distributed, it may be regarded as an

affinity matrix for the normalized cut [18]. The disadvan-

tage is that it requires the number of clusters, but it is better

in that it considers global information. In this work, we

take the third approach which is closely related to the sec-

ond one.

2.3. Normalized membership representation

In this section, we will explain how to transform the sim-

ilarity matrix M̆ to an affinity matrix that is more adequate

for spectral clustering. For this, we introduce the normal-

ized membership matrix, which can be considered as a vari-

ant of the membership matrix. A normalized membership

matrix F is similar to a membership matrix, except that the

cluster blocks are filled with 1

nk
instead of ones, where nk is

the number of samples in the kth cluster. Formally speak-

ing, by permuting the same indices of rows and columns,

this symmetric matrix can be made to be a block-diagonal

matrix whose diagonal blocks are filled with the inverse of

the dimension of each block. For ease of explanation, we

will also assume that the rows and columns of F are also

aligned as in (5).

If we denote F as the set of all normalized membership

matrices, then every membership matrix has its counterpart

in F. F shares some properties with M, such as it being

PSD and its elements being nonnegative. The differences

between them are that (i) F is doubly stochastic [27], i.e.,

F1 = 1 and F
T
1 = 1, and (ii) all the eigenvalues of F are

either zero or one. Therefore, the nuclear norm gives the

same result as the rank of F, i.e., rank(F) = ‖F‖∗ = tr(F).
In fact, these properties lead to another fundamental prop-

erty of the normalized membership matrix: A normalized

membership matrix F can be completely described by the

following conditions4:

F ≥ 0, F1 = 1, F
2 = F = F

T . (11)

3In this paper, we distinguish the terms latent matrix, affinity matrix

and similarity matrix. A latent matrix is an output of a subspace clustering

method, while an affinity matrix is an input of the spectral clustering. Sim-

ilarity matrix is a matrix that represents the similarity between samples,

where the range of similarity is [0, 1]
4Analogous conditions were given in [27], however, they are based on

the nonnegative factorization of F. Our conditions do not need any factor-

ization, thanks to Lemma 1 in the supplementary material.



In other words, a matrix is a normalized membership matrix

if and only if it is doubly stochastic and is an orthogonal

projection. Due to space limitation, the proof is shown in

the supplementary material. Note that this description does

not need an explicit discreteness constraint, which is a new

finding as far as we know.

The importance of the normalized membership matrix is

that F is the feasible set for kernel K-means clustering [27],

which is closely related to spectral clustering. Kernel K-

means clustering can be reduced to the following problem

[27, 29]:

max
F

tr(ΦF), s.t. F ∈ F, (12)

where Φ is a kernel matrix. Of course, this is a difficult

problem to solve in exact sense, and spectral clustering can

be considered as an approximate procedure in solving this

problem. In recent studies [28] of spectral clustering, nor-

malizing Φ has been suggested so that it is close to a mem-

ber of F. Actually, it is shown that the normalization step

in the normalized cut makes Φ closer to a doubly stochas-

tic matrix, which is a convex relaxation of F [27]. This

can be an explanation of why the normalized cut has better

chance of providing good results. Accordingly, there have

been many different proposals on normalizing Φ to a dou-

bly stochastic matrix [22, 27, 28].

awsdfgasdfgdfswrtghn

Thus, it might be beneficial if we can find an efficient

way to directly transform M̆ into a normalized membership

matrix. An intuitive way is to utilize the equation (7) con-

versely: In an ideal case where M̆ ∈M, it is obvious that

F = F⊙ M̆, (13)

where F is the normalized membership counterpart of M̆.

From another perspective, this can also be expressed as

H⊙ F , (11T − M̆)⊙ F = 0, (14)

where H is a dissimilarity matrix, which has the opposite

meaning of M̆. In other words, F fills the empty elements

of H. In real situations, M̆ /∈ M, so we have to minimize

‖H⊙F‖oF for some entry-wise norm ‖·‖oF . However, note

that there is a trivial solution F = I to this problem, hence

we need a regularization term ‖F‖∗ = tr(F). The resulting

cost function will be something like ‖H⊙F‖oF +λF ‖F‖∗.

Yet, there is another problem. Note that ‖H ⊙ F‖oF is

roughly proportional to the errors in H, but tr(F) is directly

related to the number of clusters in F. Which means, the

appropriate value of λF will vary largely for different prob-

lems. Hence, we instead minimize tr(F) with a constraint

‖H⊙ F‖oF ≤ c, where the constant c is decided based on

H. Since handling a normalized membership matrix is also

difficult, we may relax the constraint to make it tractable as

min
F

tr(F),

s.t. F ≥ 0, F1 = 1, F � 0, ‖H⊙ F‖oF ≤ c.
(15)

Note that the constraint F2 = F in (11) is relaxed to a PSD

constraint on F.

The solution F̆ of the above problem can be consid-

ered as a doubly stochastic normalization [27] of M̆, which

is more appropriate for spectral clustering. In performing

spectral clustering on F̆, we do not need the normalization

step of the normalized cut, because our affinity matrix is al-

ready doubly stochastic. Since all the eigenvalues of F̆ are

in between zero and one regardless of the input data, it can

be more reliable to infer the number of clusters from F̆ than

from W
′. In our experiments, we just counted the eigenval-

ues above 1

2
to estimate K . We observe that, in many cases,

F̆ gives a solution that is already very close to F, as shown

in Fig. 1(d).

3. Design of the algorithm

In this section, we explain the detailed procedure of MR.

For all the subproblems of MR, we used ALM [14] to opti-

mize the cost functions.

3.1. Finding M̆

First of all, we will discuss the choices of ‖ · ‖o′
W

and

‖ · ‖oM in (9). For ‖ · ‖o′
W

, we use the entry-wise l1-norm to

handle outliers. For ‖ · ‖oM , it is natural to use l1-norm

because it is a convex surrogate of N(·), the number of

nonzero elements. An interesting fact is that ‖M‖1 is the

same as ‖M‖2F for M ∈ M, i.e., ‖M‖1 = ‖M‖2F , for a

membership matrix but they are not for its convex relax-

ation, so using either one or even an elastic-net norm [32]

can be considered as a valid relaxation. In this work, we

use the Frobenius norm because of the following reason: F̆

is found by filling the empty elements of H, thus, rather

than having many zeros in M̆, making the elements of the

non-cluster blocks in H evenly large is more important. An-

other thing to mention is that, in fact, we use W
′, the post-

processing result of LRR or SSC, instead of W for the input

of our algorithm, because the post-processing steps regulate

the scale of elements. Since our algorithm is based on mini-

mizing the element-wise errors, the performance will not be

good if the scale of the elements varies largely.

Now, we reformulate (9) with an auxiliary variable as

min
M1,M2

‖W −W ⊙M1‖1 + λM‖M1‖
2

F ,

s.t. M1 ≥ 0, M2 � 0, M1 = M2,

diag(M1) = 1.

(16)

Since M1 ≤ 11
T , the above cost function is equivalent to

λM‖M1 − B‖2F , where B = 1

2λM
sign(W) ⊙W. The



corresponding ALM problem is

min
M1,M2

1

2
‖M1 −B‖2F

+ 〈Π,M1 −M2〉+
µ

2
‖M1 −M2‖

2

F ,

s.t. M1 ≥ 0, diag(M1) = 1, M2 � 0,

(17)

where Π is the Lagrange multiplier. Note that the min-

imizer for M1 (M2) fixing M2 (M1) can be found as a

closed-form. Since this is a convex problem with two vari-

ables, it can be efficiently solved using the alternating di-

rection method of multipliers (ADMM) [14]. Accordingly,

the update formulas are given as

M1 ← max(µM2 +B−Π,0)/(1 + µ),

diag(M1)← 1,

M2 ← P�0(M1 + µ−1
Π),

Π← Π+ µ(M1 −M2),

µ← ρµ,

(18)

for a constant ρ > 1. Here, the max operator is an element-

wise operator. P�0(·) is a projection operator to the near-

est PSD matrix, i.e., P�0(Y) = Vmax(S,0)VT where
1

2
(Y+Y

T ) = VSV
T is an eigenvalue decomposition. We

find M̆ by iterating (18) until convergence.

3.2. Finding F̆

Solving the optimization problem (15) is similar to the

previous section. We use l1-norm for ‖ · ‖oF , in order to

make many zeros in F̆. If we assume that the ratio of error

in H is consistent, then the amount of errors in ‖H ⊙ F‖1
will be roughly proportional to ‖H‖1/n, where n is divided

because the sum of all the elements ofF is n, notn2. Hence,

we set c = β‖H‖1/n for some constant β > 0. Since the

elements of M̆ are in between zero and one, the same is also

true for those of H. Moreover, the last constraint of (15) is

equivalent to 〈H,F〉 ≤ c, since F is nonnegative.

The corresponding ALM problem is

min
F1,F2

tr(F1) + 〈Π,F1 − F2〉+
µ

2
‖F1 − F2‖

2

F ,

s.t. F11 = 1, F1 � 0, F2 ≥ 0, 〈H,F2〉 ≤ c.
(19)

Note that we have reused the notations of Π and µ. The

corresponding update formulas are

F1 ← P�0(P1(F2 − µ−1(I+Π))),

F2 ← P{≥0,H}(F1 + µ−1
Π),

Π← Π+ µ(F1 − F2),

µ← ρµ,

(20)

where P1(Y) = (I − 1

n
11

T )Y(I − 1

n
11

T ) + 1

n
11

T [27].

P{≥0,H}(Z) is a projection operator to the nonnegative ma-

trix that satisfies 〈H,Z〉 ≤ c: If max(Z,0) already satisfies

the condition, then this is the projected matrix. Otherwise,

max(Z + αH,0) is the projected matrix, for α that makes

the sum of elements equals to c. This α can be efficiently

found by sorting the elements of G , X ⊘ H, where ⊘
is the Hadamard division (element-wise division). For the

intervals between the consecutive (sorted) elements of G,

the variation of α will not change the “clipped” elements of

Z+αH due to max(·,0). Hence, by recursively updatingα
through the sorted elements of G, we can find the solution

in linear time.

Note that the first update equation of (20) simply cal-

culates P�0(P1(·)) to find a matrix that is both PSD and

doubly stochastic. It is usually not true that a projection to

the intersection of two convex sets is the same as consec-

utive projections to each set. However, this case is an ex-

ception. A symmetric matrix that is doubly stochastic must

have an eigenvector 1 with eigenvalue 1. Let us express F1

as a sum of two symmetric matrices, i.e., F1 , A + B,

so that B1 = B
T
1 = 0. Then, A must be A = 1

n
11

T

and B must be a PSD matrix that is closest to the compo-

nent of F2 − µ−1(I +Π) that is orthogonal to 1

n
11

T , be-

cause projecting w.r.t. the Euclidean distance is identical to

projecting each orthogonal component individually. Since

P1 eliminates any components related to 1

n
11

T and replace

them with 1

n
11

T , P�0(P1(·)) will yield the closest doubly

stochastic PSD matrix.

The computational complexity of the two subproblems

in MR is dominated by the corresponding eigenvalue de-

composition for each iteration (P�0(·) operation in (18)

and (20)). This surely requires more processing time than

a plain spectral clustering approach, but it is comparable

to that of LRR, of which the computational complexity is

dominated by the singular value decomposition for each it-

eration.

3.3. Postprocessing

After finding the solution F̆ of (19) and estimating K
based on it, we can perform spectral clustering. By per-

forming eigenvalue decomposition F̆ = VSV
T and se-

lecting the K largest eigenvalues S′ and the corresponding

eigenvectors V
′, we can calculate V́ , V

′
S
′ 1
2 ∈ R

n×k.

The most common way to cluster V́ is to perform K-means

clustering. However, K-means clustering is usually based

on random trials, and it can show poor performance when

K is large [23]. Instead, we take another approach, which

is similar to the optimal discrete solution method in [23].

Our approach is also related to the theory in [27], in which

they show that the nonnegative factorization of the doubly

stochastic normalization of a kernel matrix will indicate the

likelihood of each sample for different clusters. The opti-

mization problem for our approach is given as

min
Z

‖Z− V́R‖2F , s.t. Z ≥ 0, R
T
R = I, (21)



where Z has the same dimensions of V́. This problem can

be efficiently solved by updatingZ andR alternatingly. The

update formulas are

Z← max(V́R,0),

R← P⊥(V́
T
Z),

(22)

where P⊥(·) is a projection operator to the nearest orthog-

onal matrix, i.e., P⊥(Y) = U1U
T
2

where Y = U1ΣU
T
2

is SVD. The last update formula comes from the orthogo-

nal Procrustes problem [8]. Although this is a non-convex

problem, it is not sensitive to the initial choice of R due

to the same reason mentioned in [23]. This procedure con-

verges rapidly, within one or two dozens of iterations. After

finding the optimal Ẑ, we can find the clusters by finding

the maximum element for each row.

4. Experimental Results

We performed clustering experiments on synthetic toy,

face, and motion databases. We have largely followed the

experiments in [15] to examine the performance of MR.

The parameters of SSC and LRR were set as in the face

and motion experiments of [6] and [15], respectively. The

performance of MR was compared to the normalized cut

(NC) [18], however, we replaced the K-means clustering

step with (20) in both MR and the normalized cut for fair

comparison, because the random-trial-basedK-means clus-

tering often performs poorly when the number of classes

was large. We tested both the exact K and that estimated

from (4) by adjusting τ for the normalized cut. Note that,

for SSC and LRR, we used the code provided by the au-

thors in [6, 15]. MR has also been tested based both on the

exact K and that estimated by counting the eigenvalues of

F̆ above 0.5. The parameters of MR and the normalized cut

has been determined for each type of data so that they yield

the best performance.

We used two measures for evaluation: (i) The segmenta-

tion accuracy (vACC) and (ii) the normalized mutual infor-

mation (vNMI), which are given as follows:

vACC = max
Γ

∑

δ(ri,Γ(si))

n
,

vNMI =
I(ri, si)

(H(ri) +H(si))/2
,

(23)

where si and ri are ground truth and the obtained labels,

respectively, δ(a, b) is the Kronecker delta function and Γ
is the permutation mapping function. The optimal Γ can be

found in polynomial time by the Hungarian algorithm [10].

I(·, ·) and H(·) are the mutual information and the entropy,

respectively. The values of these measures are in the range

of [0, 1] and larger values indicate better performance.

We empirically observed that, generally, SSC often gen-

erates “cleaner” latent matrix than LRR, but the character-

istics of the generated matrix sensitively change for each
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Figure 2. Experiments on synthetic toy examples: “NC” denotes

the normalized cut and “MR” denotes the membership represen-

tation. “Exact K” means that the exact K was used for the final

clustering step, and “est. K” means that K was estimated based

on the estimation technique of each algorithm.

data. Accordingly, SSC may yield better results when there

is small noise and K is known, but is not robust and not

very reliable in estimating K from the latent matrix. This

will become apparent in the following experiments.

First, we performed experiments on synthetically gener-

ated toy data. We randomly generated 100 test cases, where

the number of clusters for each was in the range of [2, 10].
The number of samples in each cluster was in the range

of [5, 50], and the dimension of each sample was 50. For

each cluster, we randomly generated a linear subspace by

applying QR decomposition to a number of Gaussian ran-

dom vectors, with randomly selected rank less than half the

number of samples in that cluster. We generated zero-mean

Gaussian random vectors as the data samples on that linear

subspace, with randomly selected standard deviation (which

was also generated by a zero-mean Gaussian number with

unit standard deviation) for each axis of the linear subspace.

After generating the data, we added Gaussian noise with

various standard deviation to examine the robustness of the

schemes. The parameters of the normalized cut (for esti-

mating K) was τ = 0.45 for LRR and τ = 0.7 for SSC,

respectively, while those of MR was λM = 0.01, β = 0.03
for LRR and λM = 0.2, β = 0.4 for SSC.

Figure 2 shows the average clustering performance for

the 100 toy data. Here, we did not show vNMI, which had

similar characteristics with vACC, because of the space lim-

itation. For LRR, MR shows better performance than the

normalized cut, both for the exact and estimated K . For

SSC, the performance for the normalized cut and MR are

very close for the exact K . For the estimated K , the nor-

malized cut has a point that shows better performance than

MR, but generally it is strongly affected by the level of

noise. This is mainly due to the sensitiveness of SSC men-

tioned earlier. Nevertheless, MR shows steady performance

regardless of the amount of noise, due to the “enhancing”

effect of its nature.

For the motion clustering experiment, Hopkins155 mo-

tion database [21] was used. Hopkins155 motion database

contains 156 video sequences of rigidly moving objects, in



Table 1. Clustering performance for Hopkins155 data. The num-

bers in parentheses are the standard deviations.
K vACC vNMI pK (%)

LRR

NC
exact 0.965 (0.077) 0.883 (0.187) 1

est. 0.928 (0.107) 0.828 (0.236) 0.744

MR
exact 0.966 (0.075) 0.891 (0.156) 0.949

est. 0.941 (0.103) 0.869 (0.163) 0.814

SSC

NC
exact 0.974 (0.073) 0.909 (0.192) 1

est. 0.926 (0.120) 0.808 (0.320) 0.724

MR
exact 0.970 (0.076) 0.915 (0.158) 0.974

est. 0.939 (0.113) 0.893 (0.153) 0.801

Table 2. Clustering performance for Yale-Caltech data. Here,

“est.” was not evaluated for the normalized cut (NC), because it is

always possible to tune τ to make the estimated K be the same as

the true number of clusters.
LRR SSC

NC MR NC MR

exact exact est. exact exact est.

vACC 1 1 1 0.936 0.982 0.950

vNMI 1 1 1 0.961 0.980 0.951

K 38 38 38 38 38 40

which significant features are detected and tracked along

the frames. Each sequences contains the cluster informa-

tion, and the numbers of clusters are in between 2 to 5. The

parameters of the normalized cut was τ = 0.35 for LRR

and τ = 0.09 for SSC, respectively, while those of MR was

λM = 0.02, β = 0.2 for LRR and λM = 10−8, β = 0.2 for

SSC. The reason for using such a small λM for SSC was

that SSC generates very sparse latent matrix for this type

of data, so we had to conserve the nonzero elements in W
′

as far as possible. For this experiment, we also measured

the rate pK of correct K estimation by counting the number

of sequences of which K was correctly estimated. Table 1

shows the clustering performance for the Hopkins155 data.

Here, we indicated the best performance in bold face. We

can confirm that MR shows better performance than the nor-

malized cut for most of the time, and even when it is worse,

the performance is very similar. The performance gain gets

larger when the estimated K is used, which is important

because it is difficult to know the number of clusters in ad-

vance in practical situations. Note that pK of MR is less

than 100% even when the exact K is used, which is due

to some cases that the number of nonzero eigenvalues in F̆

is less than K . In these cases, (mostly two) small clusters

are merged into a single cluster. Nevertheless, the accuracy

is very similar to that of the normalized cut, which indi-

cates that even though the normalized cut segments the data

strictly into K clusters, the accuracy may be worse.

For the face image clustering experiment, the extended

Yale database B [12] was used. Following the practice of

[15], we combined the images in the extended Yale database

B with those in Caltech101 database [13] to form a face data

set containing outliers. After finding the latent matrices, the

elements corresponding to outliers were removed before ap-

plying spectral clustering or MR, as in [15]. For this experi-

ment, the parameters of MR was set to λM = 0.07, β = 0.2

for LRR and λM = 0.08, β = 0.7 for SSC. Table 2 shows

the clustering performance for the face experiment. Care

should be taken that, in this case, there is only one data set

unlike the case of Hopkins155, so it is always possible to

find τ that gives the correct K . Hence, we did not evaluated

the normalized cut for the exact K . Here, for LRR, per-

fect clustering is possible both for the normalized cut and

MR. However, for SSC, the normalized cut with the exact

K shows much worse performance than MR even with the

estimated K , which indicates that MR indeed improves the

latent matrix for better clustering.

We would like to mention that some of the reviewers

asked whether applying the doubly stochastic normaliza-

tion techniques [22, 27, 28] used in spectral clustering can

replace the role of MR. We do not show the results in this

paper due to the space limitation, however they were very

poor. The reason is that the latent matrices from LRR

or SSC are sparse, which are not suitable for the doubly

stochastic normalization that are mainly designed for the

kernel matrices. On the contrary, MR was designed for

sparse matrices, which at this stage is not good for general

spectral clustering problem.

In summary, the proposed algorithm, MR, can act as a

robust post-processing step for subspace clustering. It de-

pends much less on the characteristics of the data than the

combination of a heuristic estimator and the normalized cut,

and gives a more reliable form to estimate the number of

clusters.

5. Conclusion

In this paper, we proposed the membership representa-

tion (MR) to detect block-diagonal structure from the out-

put of subspace clustering. MR is based on a self-expressive

system that expresses the latent matrix by a Hadamard prod-

uct of a membership matrix and itself. Since this problem

is NP-hard, we solve the convex relaxation of the problem,

and then transform the result to a doubly stochastic matrix,

which is a better form for the input of spectral clustering.

The output matrix of our method is more reliable to esti-

mate the number of clusters for spectral clustering, and a

simple eigenvalue-counting method was sufficient to find a

good clustering result in our experiments. Detecting block-

diagonal structure from a matrix is a fundamental problem

with many potential applications, thus applying MR to other

problems will also be an interesting issue. For example,

extending this technique to the general spectral clustering

problem will be very interesting, which is not possible at

this stage as mentioned earlier. On the other hand, since the

proposed method may suffer scalability problems for large

data sets because it requires an eigenvalue decomposition

for each iteration step, finding a modification of the formu-

lation as in [30] to achieve scalability is also an important

issue, which is also left as a future work.
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