
Predicting the Future Behavior of a Time-Varying Probability Distribution

Christoph H. Lampert
IST Austria

chl@ist.ac.at

Abstract

We study the problem of predicting the future, though
only in the probabilistic sense of estimating a future state
of a time-varying probability distribution. This is not only
an interesting academic problem, but solving this extrapo-
lation problem also has many practical application, e.g. for
training classifiers that have to operate under time-varying
conditions.

Our main contribution is a method for predicting the next
step of the time-varying distribution from a given sequence
of sample sets from earlier time steps. For this we rely on
two recent machine learning techniques: embedding proba-
bility distributions into a reproducing kernel Hilbert space,
and learning operators by vector-valued regression.

We illustrate the working principles and the practical
usefulness of our method by experiments on synthetic and
real data. We also highlight an exemplary application:
training a classifier in a domain adaptation setting without
having access to examples from the test time distribution at
training time.

1. Introduction
It is a long lasting dream of humanity to build a machine

that can predict the future. For long time intervals this is
likely going to stay a dream. For shorter time spans, how-
ever, this is not such an unreasonable goal. For example, hu-
mans can predict rather reliably how a video will continue
over the next few seconds. In this work we aim at making a
first step towards giving computers similar abilities.

We study the situation of a time-varying probability dis-
tribution from which sample sets at different time points are
observed. Our main result is a method for learning an op-
erator that captures the dynamics of the time-varying data
distribution. It relies on two recent techniques: the embed-
ding of probability distributions into a reproducing kernel
Hilbert space, and vector-valued regression. By extrapolat-
ing the learned dynamics into the future we obtain an es-
timate of the future distribution. This estimate can be used
to solve practical tasks, for example, learn a classifier that is
adapted to the data distribution at a future time step, without

having access to data from this situation already. One can
also use the estimate to create a new sample set, which then
can serve as a drop-in replacement for an actual sample set
from the future.

2. Method
We first define the problem setting of predicting the fu-

ture of a time-varying probability distribution. Let Z be a
data domain (formally a Polish space [22]), and let dt(z) for
t ∈ N be a time-varying data distribution over z ∈ Z . At
a fixed point of time, T , we assume that we have access to
sequences of sets, St = {zt1, . . . , ztnt

}, for t = 1, . . . , T ,
that are sampled i.i.d. from the respective distributions,
d1, . . . , dT . Our goal is to construct a distribution, d̃T+1,
that is as close as possible to the so far unobserved dT+1,
i.e. it provides an estimate of the data distribution one step
into the future. Optionally, we are also interested in obtain-
ing a set, S̃, of samples that are distributed approximated
according to the unknown dT+1.

Our main contribution is a regression-based method that
tackles the above problem for the case when the distribution
dt evolves smoothly (Sections 2.1 and 2.2). We evaluate
this method experimentally in Section 4. Subsequently, we
show how the ability to extrapolate the distribution dynam-
ics can be exploited to improve the accuracy of a classifier
in a domain adaptation setting without observed data from
the test time distribution (Section 5).

2.1. Extrapolating the Distribution Dynamics

We propose a method for extrapolating the distribution
dynamics (EDD) that consists of four steps:

a) represent each sample set as a vector in a Hilbert space,
b) learn an operator that reflects the dynamics between

the vectors,
c) apply the operator to the last vector in the sequence,

thereby extrapolating the dynamics by one step,
d) (optionally) create a new sample set for the extrapo-

lated distribution.

In the rest of this section we discuss the details of each step,
see Figure 1 for a schematic illustration.

1



t=1 t=2 t=3 t=4

RKHS 
embedding He

rdi
ng

RKHS 
embedding

RKHS 

embedding

observed predicted

Figure 1. Schematic illustration of EDD: we observe samples sets, St (blue dots), from a time varying probability distribution, dt, at
different points of time (blue curves). Using the framework of RKHS embeddings, we compute their empirical kernel mean maps, µ̂t =
1
|St|

∑
z∈St

φ(z) in a Hilbert spaceH. We learn an operator A : H → H that approximates the dynamics from any µ̂t to µ̂t+1 by vector-
valued regression (thick gray arrows). By means of A we extrapolate the distribution dynamics beyond the last observed distribution
(thick dashed arrow), thereby obtaining a prediction, µ̃4, for the embedding of the unobserved target distribution d4 (dotted blue curve). If
desired, we apply herding (thin dashed arrow) to produce a new sample set (orange dots) for the predicted distribution (orange curve).

a) RKHS Embedding. In order to allow the handling
of arbitrary real data, we would like to avoid making any
domain-specific assumptions, such as that the samples cor-
respond to objects in a video, or parametric assumptions,
such as Gaussianity of the underlying distributions. We
achieve this by working in the framework of reproducing
kernel Hilbert space (RKHS) embeddings of probability dis-
tributions [19]. In this section we provide the most impor-
tant definitions; for a comprehensive introduction see [20].

Let P denote the set of all probability measures on the
data domain Z . Let k : Z × Z → R be a positive definite
kernel function with induced RKHS H and feature map φ :
Z → H that fulfills ‖φ(z)‖ ≤ 1 for all z ∈ Z . The kernel
mean embedding, µ : P → H, associated with k is defined
by

p 7→ µ(p), for µ(p) = Ez∼p(z){φ(z)}. (1)

Since we assume k (and therefore H) fixed in this work,
we also refer to µ(p) as ”the” RKHS embedding of p. We
denote by µ(P) the image of P under µ, i.e. the set of vec-
tors that correspond to embedded probability distributions.
For characteristic kernels, such as the Gaussian, the kernel
mean map is an bijection between P and µ(P), so no in-
formation is lost by the embedding operation [19]. In the
rest of this section, we will use the term distribution to refer
to objects either in P or in µ(P), when it is clear from the
context which ones we mean.

A noteworthy property of the kernel mean map is that it
allows us to express the operation of taking expected values
by an inner product using the identity Ez∼p(z){f(z)} =
〈µ(p), f〉H for any p ∈ P and f ∈ H.

For a set S = {z1, . . . , zn} of i.i.d. samples from p,

S 7→ µ̂(S), for µ̂(S) =
1

n

∑
z∈S

φ(z) (2)

is called the empirical (kernel mean) embedding of S. It
is known that under mild conditions on H, the empirical
embedding, µ̂(S), converges with high probability to the
true embedding, µ(p), at a rate of O(1/

√
n) [1].

The first step of EDD consists of forming the embed-
dings, µ̂1, . . . , µ̂T of the observed sample sets, S1, . . . , ST .
Note that for many interesting kernels the vectors µ̂t cannot
be computed explicitly, because the kernel feature map, φ,
is unknown or would require infinite memory to be repre-
sented. However, as we will see later and as it is typical for
kernel methods [13], explicit knowledge of the embedding
vectors is also not required. It is sufficient that we are able
to compute their inner products with other vectors, and this
can be done via evaluations of the kernel function.

b) Learning the Dynamics. We use vector-valued regres-
sion [16] to learn a model of the process how the (embed-
ded) distribution evolves from one time step to the next.
Vector-valued regression generalizes classical scalar-valued
regression to the situation in which the inputs and outputs
are vectors, i.e. the learning of an operator. Again, we start
by providing a summary of this technique, here following
the description in [15].

As basis set in which we search for a suitable operator,
we define a space, F , of linear operators on H in the fol-
lowing way. Let L(H) be the space of all bounded linear
operators from H to H, and let L : H× H → L(H) be



the nonnegative L(H)-valued kernel defined by L(f, g) =
〈f, g〉H IdH for any f, g ∈ H, where IdH is the identity
operator on H. Then L can be shown to be the repro-
ducing kernel of an operator-valued RKHS, F ⊆ L(H),
which contains at least the span of all rank-1 operators,
fg∗ : H → H, for all f, g ∈ H, with g∗(·) = 〈g, ·〉H. The
inner product between such operators is 〈f1g

∗
1 , f2g

∗
2〉F =

〈f1, g1〉H〈f2, g2〉H for any f1, g1, f2, g2 ∈ H, and this in-
duces the inner product of all other operators in F by lin-
earity and completeness.

As second step of EDD we solve a vector-valued regres-
sion in order to learn a predictive model of the dynamics of
the distribution. For this we assume that the changes of the
distributions between time steps can be approximated by an
autoregressive process, e.g. µt+1 = Aµt + εt, for some op-
erator A : H → H, such that the εt for t = 1, . . . , T are
independent zero-mean random variables. To learn the op-
erator we solve the following least-squares functional with
regularization constant λ ≥ 0:

min
A∈F

T−1∑
t=1

‖µ̂t+1 −Aµ̂t‖2H + λ‖A‖2F . (3)

Equation (3) has a closed-form solution,

Ã =

T−1∑
t=1

µ̂t+1

T−1∑
s=1

Wtsµ̂
∗
s, (4)

with coefficient matrix W = (K + λI)−1, where K ∈
R(T−1)×(T−1) is the kernel matrix with entries Kst =
〈µ̂s, µ̂t〉H, and I is the identity matrix of the same size,
see [15] for the derivation. Recently, it has been shown
that the above regression on distributions is consistent under
certain technical conditions [23]. Consequently, if A ∈ F ,
then the estimated operator, Ã, will converge to the true op-
erator, A, when the number of sample sets and the number
of samples per set tend to infinity.

c) Extrapolating the Evolution. The third step of EDD is
to extrapolate the dynamics of the distribution by one time
step. With the results of a) and b), all necessary components
for this are available: we simply apply the learned opera-
tor, Ã to the last observed distribution µ̂T . The result is a
prediction, µ̃T+1 = Ãµ̂T , that approximates the unknown
target, µT+1. From Equation (4) we see that µ̃T+1 can be
written as a weighted linear combination of the observed
distributions,

µ̃T+1 =

T∑
t=2

βtµ̂t with βt+1 =

T−1∑
s=1

Wts〈µ̂s, µ̂T 〉H, (5)

for t = 1, . . . , T − 1. The coefficients, βt, can be computed
from the original sample sets by means of only kernel eval-
uations, because 〈µ̂s, µ̂t〉H = 1

nsnt

∑ns

i=1

∑nt

j=1 k(zsi , z
t
j).

Their values can be positive or negative, so µ̃T+1 is not just
an interpolation between previous values but potentially an
extrapolation. In particular it can lie outside of the convex
hull of the observed distributions. At the same time, the es-
timate µ̃T+1 is guaranteed to lie in the subspace spanned
by µ̂2, . . . , µ̂T , for which we have sample sets available.
Therefore, so we can compute expected values with respect
to µ̃T+1 by forming a suitably weighted linear combina-
tions of the target function at the original data points. For
any f ∈ H, we have

Ẽµ̃T+1
{f} = 〈µ̃T+1, f〉H =

T∑
t=2

βt
〈
µ̂t, f

〉
H (6)

=

T∑
t=2

βt
1

nt

nt∑
i=1

〈
φ(zti), f

〉
H =

T∑
t=2

nt∑
i=1

βt
nt
f(zti),

where the last identity is due to the fact thatH is the RKHS
of k, which has φ as its feature map, so 〈φ(z), f〉H = f(z)
for all z ∈ Z and f ∈ H. We use the symbol Ẽ instead of E
to indicate that 〈µ̃T+1, f〉H does not necessarily correspond
to the operation of computing an expected value, because
µ̃T+1 might not have a pre-image in the space of probability
distributions. The following lemma shows that µ̃T+1 can,
nevertheless, act as a reliable proxy for µT+1:

Lemma 1. Let µT+1 = AµT + εT and µ̃T+1 = Ãµ̂T , for
some µT ∈ µ(P), µ̂T , εT ∈ H and A, Ã ∈ F . Then the
following inequality holds for all f ∈ H with ‖f‖H ≤ 1,

|EµT+1
{f} − Ẽµ̃T+1

{f}| ≤ ‖A‖F‖µT − µ̂T ‖H (7)

+ ‖A− Ã‖F + ‖εT ‖H.

The proof is elementary, using the properties of the inner
product and of the RKHS embedding.

Lemma 1 quantifies how well µ̃T+1 can serve as a drop-
in replacement of µT+1. The introduced error will be small
if all three terms on the right hand side are small. For the
first term, we know that this is the case when the number
of samples in ST is large enough, since ‖A‖F‖ is a con-
stant, and we know that the empirical distribution, µ̂T , con-
verges to the true distribution, µT . Similarly, the second
terms becomes small in the limit of many samples set and
many samples per set, because we know that the estimated
operator, Ã, converges to the operator of the true dynamics,
A, in this case. Consequently, EDD will provide a good es-
timate of the next distribution time step, given enough data
and if our assumptions about the distribution evolution are
fulfilled (i.e. ‖εt‖ is small).

d) Generating a Sample Set by Herding. Equation (6)
suggests a way for associating a set of weighted samples,

S̃T+1 =

T⋃
t=2

{βt
nt
· zt1, . . . ,

βt
nt
· ztnt

}
, (8)



with µ̃T+1, where a · b indicates not multiplication but
that the sample b appears with a weight a. As we show
in Section 5, this representation suffices for many pur-
poses, in particular for learning a maximum-margin clas-
sifier. Other situations, however, might require a repre-
sentation of µ̃T+1 by uniformly weighted samples, i.e. a
set S̄T+1 = {z̄1, . . . , z̄m} such that µ̃T+1 ≈ µ(S̄T+1) =
1
m

∑m
i=1 φ(z̄i). To obtain such a set we use the RKHS vari-

ant of herding [4], a deterministic procedure for approxi-
mating a probability distribution by a set of samples. For
any embedded distribution, η ∈ µ(P), herding constructs a
sequence of samples, z̄1, z̄2, . . . , by the following rules,

z̄1 = argmax
z∈Z

〈
φ(z), η

〉
H, (9)

z̄n = argmax
z∈Z

〈
φ(z), η− 1

n

n−1∑
i=1

φ(z̄i)
〉
H, for n ≥ 2.

Herding can be understood as an iterative greedy optimiza-
tion procedure for finding examples z̄1, . . . , z̄n that mini-
mize ‖η − 1

n

∑n
i=1 φ(z̄i)‖H [2]. This interpretation shows

that the target vector, η, is not restricted to be an embedded
distribution, so herding can be applied to arbitrary vectors in
H. Doing so for µ̃T+1 yields a set S̄T+1 = {z̄1, . . . , z̄nT+1

}
that can act as a drop-in replacement for an actual train-
ing set ST+1. However, it depends on the concrete task
whether it is possible to compute S̄T+1 in practice, because
it requires solving multiple pre-image problems (9), which
could be computationally intractable. A second interesting
aspect of herding is that for any η ∈ H, the herding approx-
imation always has a pre-image in P (the empirical distri-
bution defined by the herded samples). Therefore, herding
can also be interpreted as an approximate projection from
H to µ(P).

In Algorithm 1 we provide pseudo-code for EDD. It also
shows that despite its mathematical derivation, the actual
algorithms is easy to implement and execute.

2.2. Extension to Non-Uniform Weights

Our above description of EDD, in particular Equa-
tion (3), treats all given samples sets as equally important.
In practice, this might not be desirable, and one might want
to put more emphasis on some terms in the regression than
on others. This effect can be achieved by introducing a
weight, γt, for each of the summands of the least-squares
problems (3). Typical choices are γt = ρ−t, for a constant
0 < ρ < 1, which expresses a belief that more recent obser-
vations are more trustworthy than earlier ones, or γt =

√
nt,

which encodes that the mean embedding of a sample set is
more reliable if the set contains more samples.

As in ordinary least squares regression, per-term weights
impact the coefficient matrix W , and thereby the concrete
expressions for βt. However, they do not change the over-

Algorithm 1 Extrapolating the distribution dynamics
input kernel function k : Z × Z → R
input sets St = {zt1, . . . , ztnt

} ⊂ Z for t = 1, . . . , T
input regularization parameter λ ≥ 0

K ← (T−1)×(T−1)-matrix with entries
Kst = 1

nsnt

∑ns
i=1

∑nt
j=1 k(zsi , z

t
j)

κ← (T−1)-vector with entries
κs = 1

nsnT

∑ns
i=1

∑nT
j=1 k(zsi , z

T
j )

β∗ ← (K + λI)−1κ ∈ RT−1

output weighted sample set
S̃T+1 =

⋃T
t=2

{
βt
nt
· zt1, . . . , βt

nt
· ztnt

}
, with βt = β∗t−1

optional Herding step:
input output size m
z̄1 ← argmaxz∈Z

∑T
t=2

βt
nt

∑nt
i=1 k(z, zti)

for n = 2, . . . ,m do
z̄n←argmax

z∈Z

[∑T
t=2

βt
nt

∑nt
i=1 k(z, zti)−1

n

∑n−1
i=1 k(z, z̄i)

]
end for

output sample set S̄T+1 = {z̄1, . . . , z̄m}

all structure of µ̃T+1 as a weighted combination of the ob-
served data, so herding and PredSVM (see Section 5) train-
ing remain possible without structural modifications.

3. Related Work
To our knowledge, the problem of extrapolating a time-

varying probability distribution from a set of samples has
not been studied in the literature before. However, a large
of body work exists that studies related problems or uses
related techniques.

The prediction of future states of a dynamical system or
time-variant probability distribution is a classical applica-
tion of probabilistic state space models, such as Kalman fil-
ters [10], and particle filters [7]. These techniques aim at
modeling the probability of a time-dependent system jointly
over all time steps. This requires observed data in the form
of time series, e.g. trajectories of moving particles [24].
EDD, on the other hand, learns only the transitions between
the marginal distribution at one point of time to the marginal
distribution at the next point of time. For this, independent
sample sets from different time points are sufficient. The
difference between both approaches become apparent, e.g.,
by looking at a system of homogeneously distributed parti-
cles that rotate around a center. A joint model would learn
the circular orbits, while EDD would learn the identity map,
since the data distributions are the same at any time.

A related line of existing work aims at predicting the fu-
ture motion of specific objects in videos [11, 25, 28, 29],
or anticipating the behavior of a human in order to facil-
itate interaction with a robot [12, 26]. Such model-based
approaches rely on task-specific assumptions, e.g. on the
visual appearance of objects. This allows them to make pre-



8 4 0 4 8
µ̂1

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̂2

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̂3

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̂4

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̂5

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̂6

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̃7

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̄7

0.0

0.1

0.2

0.3

4 0 4
µ̂T−2

0.0

0.1

0.2

0.3

4 0 4
µ̂T−1

0.0

0.1

0.2

0.3

4 0 4
µ̂T

0.0

0.1

0.2

0.3

4 0 4
µ̃T+1

0.0

0.1

0.2

0.3

4 0 4
µ̄T+1

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̂T−2

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̂T−1

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̂T

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̃T+1

0.0

0.1

0.2

0.3

8 4 0 4 8
µ̄T+1

0.0

0.1

0.2

0.3

Figure 2. Illustration of Experiment 1: mixture of Gaussians with changing proportions (top), translating Gaussian (bottom left) and
Gaussian with contracting variance (bottom right). Blue curves illustrate the RKHS embeddings µ̂1, . . . , µ̂T of the given sample sets
(n = 1000). The orange curves are EDD’s prediction of the distribution at time T + 1, as output of the learned operator (µ̃T+1) and after
additional herding (µ̄T+1).

cise predictions about possible model states at future times,
but renders them not applicable to our situation of interest,
where the goal is to predict the future behavior of a proba-
bility distribution, not of an individual object.

In the literature of RKHS embeddings, a line of work
related to EDD is the learning of conditional distributions
by means of covariance operators, which has also be inter-
preted as a vector-valued regression task [14]. Given a cur-
rent distribution and such a conditional model, one could
infer the marginal distribution of the next time step [21].
Again, the difference to EDD lies in the nature of the mod-
eled distribution and the training data required for this. To
learn conditional distributions, the training data must con-
sist of pairs of data points at two subsequent time points
(essentially a minimal trajectory), while in the scenario we
consider correspondences between samples at different time
points are not available and often would not even make
sense. For example, in Section 4 we apply EDD to images
of car models from different decades. Correspondence be-
tween the actual cars depicted in such images do not exist.

4. Experiments

We report on experiments on synthetic and real data in
order to highlight the working methodology of EDD, and to
show that extrapolating the distribution dynamics is possi-
ble for real data and useful for practical tasks.

Experiment 1: Synthetic Data. First, we perform exper-
iments on synthetic data for which we know the true data
distribution and dynamics, in order to highlight the working
methodology of EDD. In each case, we use sample sets of
size n = {10, 100, 1000} and we use a regularization con-
stant of λ = 1

n . Where possible we additionally analytically
look at the limit case n → ∞, i.e. µ̂t = µt. For the RKHS
embedding we use a Gaussian kernel with unit variance.

First, we set dt = αtN (3; 1) + (1−α)N (−3; 1), a mix-
ture of Gaussians distribution with mixture coefficients that

vary over time as αt ∈ {0.2, 0.3, . . . , 0.8}. Figure 2 (top)
illustrates the results: trained on the first six samples sets
(blue lines), the prediction by EDD (orange) match almost
perfectly the seventh (dashed), with or without herding. In
order to interpret this result, we first observe that due the
form of the distributions dt it is not surprising that µT+1

could be expressed as linear combination of the µ1, . . . , µT ,
provided we allow for negative coefficients. What the result
shows, however, is that EDD is indeed able to find the right
coefficients from the sample sets, indicating that the use of
an autoregressive model is justified in this case.

The prediction task can be expected to be harder if not
only the values of the density change between time steps
but also the support. We test this by setting dt = N (T +
1−t; 1), i.e. a Gaussian with shifting location of the mean,
which we call the translation setting. Figure 2 (bottom left)
illustrates the last three steps of the total nine observed steps
of the dynamics (blue) and its extrapolation (orange) with
and without herding. One can see that EDD indeed is able
to extrapolate the distribution to a new region of the input
space: the modes of the predicted µ̃T+1 and µ̄T+1 lie right
of the mode of all inputs. However, the prediction quality is
not as good as in the mixture setting, indicating that this is
in fact a harder task.

Finally, we study a situation where it is not clear on
first sight whether the underlying dynamics has a linear
model: a sequence of Gaussians with decreasing variances,
dt = N (0;T − t+ 1), which we call the concentration set-
ting. The last three steps of the nine observed steps of the
dynamics and its extrapolation with and without herding are
illustrated in Figure 2 (bottom right) in blue and orange, re-
spectively. One can see that despite the likely nonlinearity,
EDD is able to predict a distribution that is more concen-
trated (has lower variance) than any of the inputs. In this
case, we also observe that the predicted density function
exhibits negative values, and that Herding removes those.

As a quantitative evaluation we report in Tables 1
and 2 how well the predicted distributions correspond to



(a) Mixture setting

n true dist. last obs. EDD EDD+H
10 0 .13±0 .03 0.13±0.03 0.17±0.02 0.18±0.03

100 0 .03±0 .01 0.07±0.01 0.05±0.02 0.05±0.02
1000 < 0 .01 0.06±0.00 ≤ 0.01 < 0.01
∞ 0 .00 0.07 0.00 —

(b) Translation setting

n true dist. last obs. EDD EDD+H
10 0 .13±0 .12 0.28±0.21 0.31±0.17 0.27±0.18

X 100 0 .04±0 .04 0.27±0.12 0.20±0.10 0.18±0.11
1000 0 .01±0 .01 0.26±0.07 0.14±0.06 0.13±0.06
∞ 0 .00 0.27 0.09 —

(c) Concentration setting

n true dist. last obs. EDD EDD+H
10 0 .13±0 .12 0.25±0.20 0.32±0.17 0.32±0.18

100 0 .04±0 .04 0.20±0.10 0.22±0.12 0.22±0.12
1000 0 .01±0 .01 0.19±0.06 0.15±0.07 0.15±0.07
∞ 0 .00 0.19 0.07 —

Table 1. Approximation quality of EDD, EDD with herding (EDD
+H) and baselines measured in RKHS norm (lower values are bet-
ter) for different synthetic settings. For details, see Section 4.

the ground truth ones as measured by the Hilbert space
(HS) distance and the Kullback-Leibler divergences, re-
spectively. The latter is only possible for EDD after herd-
ing, when the prediction is a proper probability distribution
(non-negative and normalized). Besides EDD, we include
the baseline of reusing the last observed sample set as a
proxy for the next one. To quantify how much of the ob-
served distance is due to the prediction step and how much
is due to an unavoidable sampling error, we also report the
values for a sample set ST+1 of the same size from the true
distribution dT+1.

The results confirm that, given sufficiently many sam-
ples of the earlier tasks, EDD is indeed able to successfully
predict the dynamics of the distribution. The predicted dis-
tribution µ̃T+1 is closer to the true distribution µT+1 than
the most similar observed distribution, µ̂T . For translation
and concentration, the analytic results show that even for
n → ∞ the difference is non-zero, suggesting that the true
dynamics are not exactly linear in the RKHS. However, the
residual is small compared to the measured quantities.

Experiment 2: Real World Data. In a second set of ex-
periments, we test EDD’s suitability for real data by ap-
plying to video sequences from [6]. The dataset consists
of 1121 video sequences of six semantic categories, birth-
day, parade, picnic, show, sports, and wedding, from two
sources, Kodak and YouTube. Each video is represented by
a collection of spatio-temporal interest points (STIPs) with

(a) Mixture setting

n true dist. last obs. EDD+H
10 0 .08 ± 0 .05 0.08± 0.03 0.17± 0.05
100 < 0 .01 0.03± 0.01 0.02± 0.01

1000 < 0 .001 0.02± 0.00 < 0.005

(b) Translation setting

n true dist. last obs. EDD+H
10 0 .05 ± 0 .05 0.29± 0.19 0.28± 0.10
100 < 0 .005 0.26± 0.05 0.11± 0.04

1000 < 0 .001 0.25± 0.02 0.07± 0.02

(c) Concentration setting

n true dist. last obs. EDD+H
10 0 .05 ± 0 .05 0.23± 0.13 0.56± 0.18
100 < 0 .005 0.16± 0.04 0.20± 0.06

1000 < 0 .001 0.16± 0.01 0.06± 0.02

Table 2. Approximation quality of EDD, EDD with herding (EDD
+H) and baselines measured by KL divergence (lower values are
better) for different synthetic settings. For details, see Section 4.

162-dimensional feature vectors.1 For each video, except
six that are less than one second long, we split the STIPs
into groups by creating segments of 10 frames each. Differ-
ent segments have different numbers of samples, because
the STIPs are obtained from the response of an interest op-
erator. Different video also show a strong diversity in this
characteristics: the number of STIPs per segment varies be-
tween 1 and 550, and the number of segments per video
varies between 3 and 837.

As experimental setup, we use all segments of a movie
except the last one as input sets for EDD, and we mea-
sure the distance between the predicted next distribution and
the actual last segment. Table 3 shows the results split by
data source and category for two choices of kernels: the
RBF-χ2 kernel, k(z, z̄) = exp(− 1

2χ
2(z, z̄)) for χ2(z, z̄) =

1
d

∑d
i=1

(zi−z̄i)2
1
2 (zi+z̄i)

, and the histogram intersection kernel,

k(z, z̄) = 1
d

∑d
i=1 min(zi, z̄i), both for z, z̄ ∈ Rd+. For

each data source and category we report the average and
standard error of the Hilbert-space distance between distri-
bution. As baselines, we compare against re-using the last
observed segment, i.e. not extrapolating, and against the dis-
tribution obtained from merging all segments, i.e. the global
video distribution. One can see that the predictions by EDD
are closer to the true evolution of the videos than both base-
lines in all cases but two, in which it is tied with using
the last observation. The improvement is statistically sig-
nificant (bold print) to a 0.05 level according to Wilcoxon
signed rank test with multi-test correction, except for some
cases with only few sequences.

1http://vc.sce.ntu.edu.sg/index_files/
VisualEventRecognition/features.html

http://vc.sce.ntu.edu.sg/index_files/VisualEventRecognition/features.html
http://vc.sce.ntu.edu.sg/index_files/VisualEventRecognition/features.html


(a) Histogram intersection kernel

YouTube EDD last seg. all seg.
birthday(151) 0.15± 0.005 0.16± 0.006 0.16± 0.005

parade(119) 0.13± 0.006 0.15± 0.008 0.15± 0.007

picnic(85) 0.13± 0.007 0.15± 0.009 0.15± 0.008

show(200) 0.14± 0.004 0.15± 0.005 0.16± 0.005

sports(258) 0.14± 0.004 0.15± 0.004 0.16± 0.004

wedding(90) 0.16± 0.007 0.17± 0.009 0.18± 0.007

Kodak EDD last seg. all seg.
birthday(16) 0.17± 0.015 0.20± 0.022 0.18± 0.014

parade(14) 0.15± 0.023 0.17± 0.030 0.17± 0.022

picnic(6) 0.17± 0.028 0.17± 0.031 0.20± 0.027

show(55) 0.20± 0.011 0.23± 0.013 0.21± 0.011

sports(74) 0.15± 0.006 0.16± 0.007 0.16± 0.007

wedding(27) 0.18± 0.011 0.21± 0.013 0.19± 0.011

(b) RBF-χ2 kernel

YouTube EDD last seg. all seg.
birthday(151) 0.17± 0.006 0.19± 0.007 0.19± 0.006

parade(119) 0.15± 0.007 0.17± 0.009 0.18± 0.008

picnic(85) 0.15± 0.008 0.17± 0.010 0.18± 0.010

show(200) 0.17± 0.005 0.18± 0.005 0.20± 0.006

sports(258) 0.16± 0.004 0.17± 0.005 0.20± 0.005

wedding(90) 0.18± 0.008 0.20± 0.010 0.21± 0.008

Kodak EDD last seg. all seg.
birthday(16) 0.20± 0.018 0.24± 0.027 0.22± 0.015

parade(14) 0.18± 0.027 0.20± 0.035 0.20± 0.025

picnic(6) 0.19± 0.029 0.19± 0.032 0.24± 0.031

show(55) 0.23± 0.012 0.26± 0.015 0.25± 0.013

sports(74) 0.17± 0.007 0.18± 0.008 0.20± 0.008

wedding(27) 0.22± 0.012 0.24± 0.015 0.23± 0.013

Table 3. Experiment 2: Distance between last video segment and its prediction by EDD, the last observed segment (last seg.) and the union
of all segments (all seg.). Values in parentheses after the class names specify the number of test sequences.

5. Application: Predictive Domain Adaptation

We are convinced that being able to extrapolate a time-
varying probability distribution into the future will be use-
ful for numerous practical applications. As an illustrative
example, we look at one specific problem: learning a clas-
sifier under distribution drift, when for training the classifier
data from the time steps t = 1, . . . , T is available, but by
the time the classifier is applied to its target data, the distri-
bution has moved on to time t = T +1. A natural choice
to tackle this situation would be the use of domain adapta-
tion techniques [9]. However, those typically require that at
least unlabeled data from the target distribution is available,
which in practice might not be the case. For example, in
an online prediction setting, such as spam filtering, predic-
tions need to be made on the fly. One cannot simply stop,
collect data from the new data distribution, and retrain the
classifiers. Instead, we show how EDD can be used to train
a maximum margin classifier for data distributed according
to dT+1, with only data from d1 to dT available. We call
this setup predictive domain adaptation (PDA).

To our knowledge, the PDA problem has not appeared
in the literature before. Recent work on continuous do-
main adaptation [8, 27] has studied the problem of classifi-
cation under evolving distributions, but in a setting opposite
to ours: a static source distribution but a target distribution
that changes over time. We plan to study in future work if
both viewpoints can be unified.

Let St = {(xt1, yt1), . . . , (xtnt
, ytnt

)} for t = 1, . . . , T ,
be a sequence of labeled training sets, where X is the in-
put space, e.g. images, and Y = {1, . . . ,K} is the set of
class labels. For any kernel kX (x, x̄) on X , we form a joint
kernel, k((x, y), (x̄, ȳ)) = kX (x, x̄)Jy = ȳK on X × Y and
we apply EDD for Z = X × Y . The result is an estimate
of the next time step of the joint probability distribution,

dT+1(x, y), as a vector, µ̃T+1, or in form of a weighted
sample set, S̃T+1.

To see how this allows us to learn a better adapted clas-
sifier, we first look at the situation of binary classification
with 0/1-loss function, `(y, ȳ) = Jy 6= ȳK. If a correctly
distributed training ST+1 of size nT+1 were available, one
would aim for minimizing the regularized risk functional

1

2
‖w‖2 +

C

nT+1

∑
(xi,yi)∈ST+1

`( yi, sign〈w,ψ(xi)〉 ), (10)

where C is a regularization parameter and ψ is any fea-
ture map, not necessarily the one induced by kX . To do
so numerically, one would bound the loss by a convex sur-
rogate, such as the hinge loss, max{0, 1 − y〈w,ψ(x)〉},
which make the overall optimization problem convex and
therefore efficiently solvable to global optimality.

In the PDA situation, we do not have a training set ST+1,
but we do have a prediction S̃T+1 provided by EDD in the
form of Equation (8). Therefore, instead of the empirical
average in (10), we can form a predicted empirical average
using the weighted samples in S̃T+1. This leads to the pre-
dicted regularized risk functional,

1

2
‖w‖2 + C

T∑
t=2

βt
nt

nt∑
i=1

`( yti , sign〈w,ψ(xti)〉 ), (11)

that we would like to minimize. In contrast to the expres-
sion (10), replacing the 0/1-loss by the hinge loss does not
lead to a convex upper bound of (11), because the coeffi-
cients βt can be either positive or negative. However, we
can use that `( y, ȳ ) = 1− `(−y, ȳ ), and obtain an equiva-
lent expression for the loss term with only positive weights,∑T
t=2 bt

∑nt

i=1 `( ȳti, sign f(xti) ) + c, where bt = |βt|/nt
and ȳti = (signβt)yti. The constant c =

∑
t βt plays no

role for the optimization procedure, so we drop it from the



BMW Mercedes VW

Figure 3. Example images from CarEvolution dataset [18]. The goal is to classify images by their manufacturer (BMW, Mercedes, VW).
Each block shows one image from each the four groups: 1970s (top left), 1980s (top right), 1990s (bottom left), and later (bottom right).

notation for the rest of this section. Now bounding each 0/1-
loss term by the corresponding Hinge loss yields a convex
upper bound of the predicted risk,

1

2
‖w‖2 + C

T∑
t=2

bt

nt∑
i=1

max{0, 1−ȳti〈w,ψ(xti)〉}. (12)

Minimizing it corresponds to training a support vec-
tor machine with respect to the predicted data distribution,
which we refer to as PredSVM. It can be done by any SVM
package that support per-sample weights, e.g. libSVM [3].
A multi-class classifier can be obtained from this by the
usual one-vs-rest or one-vs-one constructions.

Experiment 3: Predictive Domain Adaptation. To
demonstrate the usefulness of training a classifier on a pre-
dicted data distribution, we perform experiments on the
CarEvolution [18] data set.2 It consists of 1086 images of
cars, each annotated by the car manufacturer (BMW, Mer-
cedes or VW) and the year in which the car model was in-
troduced (between 1972 and 2013).

The data comes split into source data (years 1972–1999)
and target data (years 2000-2013). We split the source part
further into three decades: 1970s, 1980s, 1990s. Given
these groups, our goal is to learn a linear PredSVM to dis-
tinguish between the manufacturers in the target part. For
a second set of experiments we split the target set further
into models from the 2000s and models from the 2010s,
and we learn a linear PredSVM with the 1970s as target
and the other tasks in inverse order as sources. As base-
line, we use SVMs that were trained on any of the ob-
served tasks, as well as an SVMs trained all the union of
all source tasks. In all cases we choose the SVM parameter,
C ∈ {100, . . . , 106}, by five-fold cross validation on the
respective training sets.

Table 4 summarizes the results for two different fea-
ture representations: Fisher vectors [17] and L2-normalized
DeCAF(fc6) features [5]. In all cases PredSVM improves

2http://homes.esat.kuleuven.be/˜krematas/VisDA/
CarEvolution.html

method FVs decaf
1970s→≥2000s 39.1% 38.2%
1980s→≥2000s 43.8% 44.9%
1990s→≥2000s 49.0% 51.2%

all→≥2000s 51.2% 52.1%
PredSVM (temporal order) 51.5% 56.2%

method FVs decaf
2010s→ 1970s 33.5% 34.0%
2000s→ 1970s 31.6% 42.7%
1990s→ 1970s 45.6% 50.0%
1980s→ 1970s 44.7% 29.1%

all→ 1970s 49.0% 49.0%
PredSVM (reverse order) 48.1% 50.5%

Table 4. Classification accuracy of PDA-SVM and baseline meth-
ods on CarEvolution data set (higher is better). Top: temporal
order, bottom: reverse order. See Section 4 for details.

the prediction quality over the other baselines, except once
where training on all observed data is more effective.

6. Summary and Discussion
In this work, we have introduced the task of predicting

the future evolution of a time-varying probability distribu-
tion. We described a method that, given a sequence of ob-
served samples set, extrapolates the distribution dynamics
by one step. Its main components are two recent techniques
from machine learning: the embeddings of probability dis-
tributions into a Hilbert space, and vector-valued regression.
We also showed how the predicted distribution can be used
to learn a classifier for a data distribution from which no
training examples are available, not even unlabeled ones.

Our experiments on synthetic and real data gave in-
sight into the working methodology of EDD and showed
that it can –to some extend– predict the next state of a
time-varying distribution from samples of earlier time steps,
and that this can be useful for learning better classifiers.
One shortcoming of our current method is its restriction to
equally spaced time steps and that it extrapolates only by a
single time unit. We plan to extend our framework to more
flexible situations, e.g. continuous-time dynamics.

http://homes.esat.kuleuven.be/~krematas/VisDA/CarEvolution.html
http://homes.esat.kuleuven.be/~krematas/VisDA/CarEvolution.html


Acknowledgements
This work was funded in parts by the European Re-

search Council under the European Unions Seventh Frame-
work Programme (FP7/2007-2013)/ERC grant agreement
no 308036.

References
[1] Y. Altun and A. Smola. Unifying divergence minimization

and statistical inference via convex duality. In Workshop on
Computational Learning Theory (COLT), 2006. 2

[2] F. Bach, S. Lacoste-Julien, and G. Obozinski. On the equiv-
alence between herding and conditional gradient algorithms.
In International Conference on Machine Learing (ICML),
2012. 4

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011. 8

[4] Y. Chen, M. Welling, and A. J. Smola. Super-samples
from kernel herding. In Uncertainty in Artificial Intelligence
(UAI), 2010. 4

[5] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. DeCAF: A deep convolutional acti-
vation feature for generic visual recognition. In International
Conference on Machine Learing (ICML), 2014. 8

[6] L. Duan, D. Xu, I.-H. Tsang, and J. Luo. Visual event recog-
nition in videos by learning from web data. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (T-
PAMI), 34(9):1667–1680, 2012. 6

[7] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel ap-
proach to nonlinear/non-Gaussian Bayesian state estimation.
In IEE Proceedings F (Radar and Signal Processing), 1993.
4

[8] J. Hoffman, T. Darrell, and K. Saenko. Continuous manifold
based adaptation for evolving visual domains. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2014.
7

[9] J. Jiang. A literature survey on domain adaptation of sta-
tistical classifiers. http://sifaka.cs.uiuc.edu/
jiang4/domain_adaptation/survey, 2008. 7

[10] R. E. Kalman. A new approach to linear filtering and pre-
diction problems. Journal of Basic Engineering, 82:35–45,
1960. 4

[11] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert.
Activity forecasting. In European Conference on Computer
Vision (ECCV), pages 201–214, 2012. 4

[12] H. S. Koppula and A. Saxena. Anticipating human activities
using object affordances for reactive robotic response. In
Robotics: Science and Systems, 2013. 4

[13] C. H. Lampert. Kernel methods in computer vision. Foun-
dations and Trends in Computer Graphics and Vision,
4(3):193–285, 2009. 2

[14] G. Lever, L. Baldassarre, S. Patterson, A. Gretton, M. Pon-
til, and S. Grünewälder. Conditional mean embeddings as
regressors. In International Conference on Machine Learing
(ICML), 2012. 5

[15] H. Lian. Nonlinear functional models for functional re-
sponses in reproducing kernel Hilbert spaces. Canadian
Journal of Statistics, 35(4):597–606, 2007. 2, 3

[16] C. A. Micchelli and M. Pontil. On learning vector-valued
functions. Neural Computation, 17(1):177–204, 2005. 2

[17] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
Fisher kernel for large-scale image classification. In Euro-
pean Conference on Computer Vision (ECCV), 2010. 8

[18] K. Rematas, B. Fernando, T. Tommasi, and T. Tuytelaars.
Does evolution cause a domain shift? In ICCV Workshop on
Visual Domain Adaptation and Dataset Bias, 2013. 8

[19] A. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert
space embedding for distributions. In International Confer-
ence on Algorithmic Learning Theory (ALT), 2007. 2

[20] L. Song. Learning via Hilbert space embedding of distribu-
tions. PhD thesis, University of Sydney, 2008. 2

[21] L. Song, J. Huang, A. Smola, and K. Fukumizu. Hilbert
space embeddings of conditional distributions with applica-
tions to dynamical systems. In International Conference on
Machine Learing (ICML), 2009. 5

[22] B. K. Sriperumbudur, K. Fukumizu, and G. Lanckriet. Uni-
versality, characteristic kernels and RKHS embedding of
measures. Journal of Machine Learning Research (JMLR),
12:2389–2410, 2011. 1

[23] Z. Szabo, A. Gretton, B. Poczos, and B. Sriperumbudur.
Learning theory for distribution regression. arXiv:1411.2066
[math.ST], 2014. 3

[24] R. Talmon and R. R. Coifman. Empirical intrinsic ge-
ometry for nonlinear modeling and time series filtering.
Proceedings of the National Academy of Sciences (PNAS),
110(31):12535–12540, 2013. 4

[25] J. Walker, A. Gupta, and M. Hebert. Patch to the future:
Unsupervised visual prediction. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2014. 4

[26] Z. Wang, C. H. Lampert, K. Mülling, B. Schölkopf, and
J. Peters. Learning anticipation policies for robot table ten-
nis. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2011. 4

[27] J. Xu, S. Ramos, D. Vázquez, and A. M. López. Incremen-
tal domain adaptation of deformable part-based models. In
British Machine Vision Conference (BMVC), 2014. 7

[28] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg. Who
are you with and where are you going? In Conference on
Computer Vision and Pattern Recognition (CVPR), 2011. 4

[29] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peter-
son, J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa.
Planning-based prediction for pedestrians. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 2009. 4

http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey
http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey

