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Abstract

The mainstream approach to structured prediction prob-
lems in computer vision is to learn an energy function such
that the solution minimizes that function. At prediction time,
this approach must solve an often-challenging optimization
problem. Search-based methods provide an alternative that
has the potential to achieve higher performance. These
methods learn to control a search procedure that constructs
and evaluates candidate solutions. The recently-developed
HC-Search method has been shown to achieve state-of-the-
art results in natural language processing, but mixed suc-
cess when applied to vision problems. This paper stud-
ies whether HC-Search can achieve similarly competitive
performance on basic vision tasks such as object detection,
scene labeling, and monocular depth estimation, where the
leading paradigm is energy minimization. To this end, we
introduce a search operator suited to the vision domain that
improves a candidate solution by probabilistically sampling
likely object configurations in the scene from the hierar-
chical Berkeley segmentation. We complement this search
operator by applying the DAGGER algorithm to robustly
train the search heuristic so it learns from its previous mis-
takes. Our evaluation shows that these improvements re-
duce the branching factor and search depth, and thus give a
significant performance boost. Our state-of-the-art results
on scene labeling and depth estimation suggest that HC-
Search provides a suitable tool for learning and inference
in vision.

1. Introduction

This paper explores whether HC-Search [7] can be effec-
tive in computer vision problems; it has already shown the
state-of-the-art performance on structured prediction prob-
lems in natural language processing. A number of tractable
heuristic methods for structured prediction have been used
in vision, including Dual Decomposition [26], Graph-Cuts

[6], Swendsen-Wang (SW) cut [4], Variational inference
[49], Quadratic Programming (QP) [33, 19], Message pass-
ing [24], a hybrid of Linear programming (LP) and QP [25],
and search-based methods [15, 11, 23, 32, 36]. Instead of
training a single global energy function and then solving a
global optimization problem, as is done in these approaches,
HC-Search decomposes the problem into three steps: (Step
1) Find an initial complete solution, (Step 2) Explore a
search tree of alternative candidate solutions rooted at the
initial solution, and (Step 3) Score each of these candidates
to select the best one. Any existing method can do Step 1.
Step 2 is guided by a learned heuristic function H, and Step
3 is performed by a learned cost (energy) function C.

Doppa et al. [7] claim several advantages for
HC-Search. First, in the standard approaches a global
energy function must be trained to “defend against” the
exponentially-large set of all possible wrong answers to
the problem. This is expensive both computationally and
in terms of sample complexity. It can require highly ex-
pressive representations (e.g., higher-order potentials). In
contrast, the heuristic function H only needs to correctly
rank the successors of each state that is expanded during the
heuristic search in Step 2, and the cost function C only needs
to correctly find the best of these in Step 3. These are much
easier learning problems, and hence, simpler potential func-
tions can be applied. Second, for making predictions there
is no need to solve a global optimization problem at predic-
tion time. In effect, the system learns not only how to score
candidate solutions but also how to find good candidates—
it learns to do inference more efficiently. Third, HC-Search
can be applied to non-decomposable loss functions. This
is another consequence of using a search space formula-
tion instead of a global optimization approach. Finally,
HC-Search provides a clean engineering methodology for
determining which components of the system would most
benefit from additional engineering effort.

Many computer vision problems can be formulated as
structured prediction [40, 14, 26, 22, 2, 28, 48, 10, 41, 50,
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30]. If HC-Search can be applied to these, it could be-
come a suitable inference tool for solving computer vision
problems. Previous work has tested HC-Search on two
vision problems [27]. Results on semantic scene labeling
were promising, but initial experiments on object detection
against significant background clutter were disappointing.
In this paper, we claim that the shortcoming of previous
work was in Step 2: the formulation of the search space
and the learning algorithm employed to train H. This is
because the HC-Search specification in previous work [27]
used a naive search space defined over relatively small im-
age patches, and thus required an immense branching factor
and a very deep search depth (to find a good solution). Pre-
vious work developed ad hoc search spaces that sometimes
worked and sometimes did not.

In this paper, we present an elegant and general method
based on a randomized segmentation search space. The
search space is defined by probabilistic sampling of a plau-
sible image segmentation from the hierarchy of Berkeley
segmentations of the image (UCM [1, 3]). This sampling is
realized by randomly picking a threshold on the saliency of
region boundaries present in the segmentation.

Each search step then involves changing the label of
the regions defined by intersecting the chosen segmenta-
tion with connected regions defined by the current candi-
date solution. By choosing different thresholds for UCM,
we obtain segmentations at different scales, which when in-
tersected with the candidate solution give us search steps at
multiple scales.

This search space is a big improvement, but to success-
fully apply HC-Search, we also complement this search
space by training H using the advanced imitation learn-
ing algorithm DAGGER [35]. The deeper search depths
of computer vision problems mean that training H using
simple exact-imitation learning [34] is not sufficient, be-
cause exact-imitation learning does not “learn from its own
mistakes.” During learning, DAGGER blends the current
heuristic H with an oracle heuristic, which is more effec-
tive at teaching H to recover from its errors.

We demonstrate that with these two improvements,
HC-Search is able to match or exceed the state of the art
on three challenging problems: (1) semantic scene labeling,
(2) monocular depth estimation, and (3) objected detection
against highly-cluttered background. The paper also applies
the HC-Search engineering methodology to evaluate the
improvements introduced by the segmentation search space
and DAgger training. The results show that HC-Search,
when combined with these two improvements, is a suitable
inference tool for solving computer vision problems.

In the following, Sec. 2 places HC-Search in the context
of prior work; Sec. 3 provides an overview of HC-Search;
Sec. 4 specifies our two improvements; Sec. 5 presents our
experiments; and Sec. 6 concludes the paper.

2. Closely Related Prior Work in Vision

Inference complexity in computer vision has been ad-
dressed with cascade architectures which perform multiple
runs of inference from coarse to fine levels of abstraction
[12, 44, 43, 31, 45]. These make inference more efficient,
but they place strong restrictions on the form of the cost
functions to facilitate “cascading,” and they typically re-
quire that the loss function be decomposable in a way that
supports “loss augmented inference.” HC-Search places
minimal restrictions on the cost function.

Classifier-based structured prediction algorithms [16,
46] make a series of local decisions towards producing a
complete output y (e.g., sequential labeling of superpix-
els [32]). However, they typically apply the classifier in
a greedy manner. This is not robust, because some greedy
decisions are hard to make correctly, but they are crucial for
good performance. In contrast, HC-Search searches over
complete candidate solutions, which allows it to recover
from errors made during greedy or local search.

Our work is also related to work on learning for inference
including cost-sensitive inference [9], reinforcement learn-
ing [42, 21], and speedup learning [13]. In these paradigms,
the cost function is typically known and the goal is to learn a
heuristic function for directing a search algorithm to a low-
cost terminal node in the search space. HC-Search learns
the cost function too, and the goal is to find good solutions
at any depth rather than only at well-defined terminal nodes.

Yadollahpour et al. [5, 47] proposed a re-ranking ap-
proach that is similar in spirit to HC-Search. They generate
a diverse set of plausible segmentations and learn a rank-
ing function to score them. However, their approach does
not provide any guarantees for the quality of the generated
outputs. In contrast, HC-Search imitates the search behav-
ior of an oracle heuristic on training data. Based on stan-
dard learning theory considerations, it can be proved that
the learned heuristic and cost function will generalize and
perform well on new instances [8, 7, 35].

3. Overview of the HC-Search Framework

The key elements of the HC-Search framework include
the Search space over complete outputs S; Search strategy
A; Heuristic function H : X×Y 7→ ℜ to guide the search
towards high-quality outputs; and Cost function C :X×Y 7→
ℜ to score the candidate outputs generated by the search
procedure. An overview of HC-Search is shown in Fig. 1.

Search Space. Every state in S consists of an input-
output pair, s = (x,y), representing the possibility of pre-
dicting y as the output for input image x. Such a search
space is defined in terms of two functions: (1) Initial state
function, I, such that s0 = I(x) is the initial state; and (2)
Successor function, S, such that for any state (x,y), S(x,y)
returns a set of next states {(x,y1), · · · ,(x,yk)} that share the



Figure 1: An overview of HC-Search for the semantic scene
labeling problem. Given an input x, an initial solution
s0 = I(x) is computed by an (unspecified) procedure I. This
forms the starting state in a search space S. Each node in
S consists of a candidate labeling y for x. Nodes are ex-
panded according to search procedure A, which is guided
by a learned heuristic H. The search continues until time
bound τ . In this figure, A is greedy search, and the nodes
with grey outlines are the nodes visited by A. These nodes
are then evaluated by learned cost function C, and the node
with the lowest cost is selected as the predicted output ŷ.

same input x. The initial state function can be any method
that produces a complete candidate solution. In our work, I
will be implemented by a classifier that has been trained to
predict the label of each primitive region independently.

Search Strategy. Guided by the heuristic function H,
the search strategy A seeks high-quality candidate solu-
tions. In this paper, we will use greedy search. Greedy
search traverses a path of length τ through the search space,
selecting as the next state, si+1 = argmins∈S(si)H(s), the
best successor of the current state si according to H.

Making Predictions. Given a input x and time bound
τ , HC-Search first runs the search strategy A guided by the
heuristic H until the time bound is exceeded. Let YH(x)
be the set of states visited by the search strategy A within
time bound τ . The next step in HC-Search is to compute
the cost C(s) of each state s ∈ YH(x). The final prediction
ŷ = argmins∈YH(x)C(s).

Heuristic and Cost Function Learning. To define the
objective functions for learning H and C, we first decom-
pose the overall prediction error into the errors due to H

and C. The error of HC-Search, εHC, for a given H, τ , and
C can be decomposed into two parts: 1) Generation error,

εH, due to H not generating high-quality outputs within
time limit τ; and 2) Selection error, εC|H, the additional er-
ror (conditional on H) due to C not selecting the best loss
output generated by H. This is formalized as

εHC = L(x,y∗H,y∗)︸ ︷︷ ︸
εH

+L(x, ŷ,y∗)−L(x,y∗H,y∗)︸ ︷︷ ︸
εC|H

. (1)

, where y∗H denote the best output that HC-Search could
possibly return when using H with time limit τ . Guided by
the error decomposition in (1), the learning approach opti-
mizes the overall error, εHC, in a greedy stage-wise manner
by first training H to minimize εH, and then, training C to
minimize εC|H conditioned on H.

H is trained by imitating the search decisions made by
the true loss function (only available with ground truth
data). We run the search procedure A for a time bound of τ

for input x using a heuristic equal to the true loss function,
i.e. H(x,y) = L(x,y,y∗), and record a set of ranking con-
straints that are sufficient to reproduce the search behavior.
For greedy search, at every search step i, we include one
ranking constraint for every node (x,y) ∈ Ci \ {(x,ybest)},
such that H(x,ybest) < H(x,y), where (x,ybest) is the best
node in the candidate set Ci (ties are broken at random). The
aggregate set of ranking examples is given to a rank learner
(e.g., SVM-Rank) to learn H. This approach is called exact
imitation training.

C is trained to score the outputs YH(x) generated by H

according to their true losses. Specifically, this is formu-
lated as a bi-partite ranking problem to rank all the best
loss outputs Ybest higher than all the non-best loss outputs
YH(x)\Ybest .

4. Improvements for Computer Vision
In this section, we describe our two main improvements

to HC-Search for computer vision: (1) The randomized seg-
mentation space; and (2) Training robust heuristic functions
via DAGGER.

4.1. The Randomized Segmentation Space

Previous work employed simple search spaces that can-
not deal with the huge branching factors and search depths
of computer vision problems. Lam et al. [27] employed
a search space called “Flipbit.” The Flipbit space gener-
ates one successor state by changing the current label of one
primitive image region (i.e., superpixel). Because the num-
ber of such regions is huge, this gives an immense branch-
ing factor, even if the number of labels is only two (hence,
the name “bit”).

In our new approach, we apply the Berkeley segmenta-
tion algorithm to create an ultrametric contour map (UCM).
The UCM assigns every pixel a probability (the UCM
value) of belonging to an object boundary. These values



have the property that for any threshold θ , the regions re-
sulting from thresholding the UCM values at θ form a set
of closed regions. Regions defined by smaller thresholds
are strict hierarchical refinements of the regions defined by
larger thresholds. A threshold of 0 yields the finest-scale
segmentation, while a threshold of 1 yields a single full-
image segment.

Suppose si is a candidate state in the search space and
we wish to generate its successors S(si). We do this as fol-
lows. First, we choose a value θ uniformly at random in
[0,1] and threshold the UCM values to obtain a segmenta-
tion of the image. Second, within each segment, we define
a subgraph whose nodes are the superpixels in the segment
and whose edges connect adjacent superpixels. The current
labeling specified by si defines a coloring of these nodes.
We compute the connected components of this subgraph,
such that all nodes in a single connected component have
the same color (label). For each such connected compo-
nent, we generate one successor s′ by assigning a new label
to that component.

Our approach differs from Swendsen-Wang Cuts (SW-
Cut), because SW-Cut proposes merges of only pairs of
neighboring image regions and proposes splits that only
produce two previously-generated regions. The SW-Cut
proposals are accepted based on the KL divergence of the
two regions’ likelihoods. In contrast, we leverage the UCM
map to propose meaningful segments. These may result in
merging more than two superpixels or may split a region in
a novel way, even though the whole had been assigned a sin-
gle label by si. Finally, instead of using Berkeley Segmen-
tation, we could use any multiscale segmentation as input.

4.2. DAGGER for Training Robust Heuristics

Our second improvement is to apply DAGGER to learn
robust heuristic functions when compared to the simple ex-
act imitation training approach (see Section 3). DAGGER
is an iterative algorithm that can be viewed as generating a
sequence of heuristics (one per iteration), with the property
that the further we go along the sequence, the greater the
risk of overfitting.

Let R be the set of pairwise constraints that we will use
to train H. R is initialized with the training examples gen-
erated by the exact imitation approach. Thus, the initial
heuristic Ĥ1 corresponds to the function learned from exact
imitation. In all subsequent iterations j, we perform search
using a mixture of the learned heuristic from the previous
iteration Ĥ j and the oracle heuristic H∗, i.e., at each search
step we make search decisions using H∗ (oracle) with prob-
ability β j and Ĥ j with probability 1−β j, and generate ad-
ditional ranking constraints whenever we make search er-
rors. This allows DAGGER to learn from states visited by
its possibly erroneous learned heuristic and correct its mis-
takes using oracle heuristic input. In the end, we select the

Figure 2: Overview of our successor function. Given an in-
put state (x,y), Berkeley Segmentation extracts UCM from
x. All edges that fall below a random threshold θ ∼U(0,1)
are cut to yield subgraphs. Every connected component in
every subgraph is relabeled to yield a set of candidate states
(x,y1),(x,y2), ...,(x,yn).

heuristic that performs best on the validation data from the
sequence of heuristic functions H1, · · · ,Hdmax . Algorithm 1
provides the pseudocode for greedy heuristic learning with
DAGGER.

Algorithm 1 Greedy Heuristic Learning via DAGGER

Input: D= Training examples, (I,S) = Search space definition, L = Loss
function, τmax = search time bound, dmax = dagger iterations
Output: H, the heuristic function
1: Initialization: R= Rei // Exact imitation data
2: Ĥ1 =Rank-Learner(R)
3: for each dagger iteration j = 1 to dmax do
4: Current Heuristic: H j = β jH

∗+(1−β j)Ĥ j
5: for each training example (x,y∗) ∈D do
6: s0 = I(x) // initial search state
7: for each search step t = 1 to τmax do
8: Compute next states: Ct =S(st−1)
9: if H j(Ct) 6=H∗(Ct) then

10: (x,ybest)= the best state in Ct as per H∗

11: for each (x,y) ∈Ct \ (x,ybest) do
12: Add H(x,ybest)<H(x,y) to R

13: end for
14: end if
15: st = the best state in Ct as per H j
16: end for
17: end for
18: Ĥ j+1 =Rank-Learner(R)
19: end for
20: return best heuristic Ĥ j on the validation data

5. Results
5.1. Setup

Datasets. We evaluate our approach on three datasets:
(1) the Stanford Background dataset [14], (2) the Make3D



dataset [40, 38], and (3) the Nematocyst dataset [27]. The
Stanford Background dataset contains 715 images of ap-
proximately 320×420 pixels. The ground truth assigns
one of 8 semantic class labels to every pixel: sky, tree,
road, grass, water, building, mountain and generic fore-
ground object. The Make3D dataset contains 534 images
of 2272×1704 pixels and their corresponding depth maps
of resolution 55×305. Depth is measured in meters. The
Nematocyst dataset consists of 130 grayscale images, each
with a resolution of 1024×864 pixels. The image dataset
was prepared by an expert biologist using a scanning elec-
tron microscope (SEM). The ground truth for each image
is manually annotated by dividing the image into a regu-
lar grid of 32×32 pixel patches, and labeling each patch
as belonging to the object class “basal tubule” or to “back-
ground.” The dataset is challenging due to occlusion and
heavily cluttered backgrounds.

Tasks. We evaluate our new successor function and
DAGGER training on scene labeling, monocular depth es-
timation, and object detection against clutter. For scene la-
beling, the task is to assign the correct semantic class label
to each pixel. For depth estimation, the task is to assign the
correct real-valued depth to each pixel. For the object de-
tection problem, the goal is to assign a label of “detected”
or “not detected” to each primitive patch.

Evaluation Setup. For the Stanford Background
dataset, we follow the five-fold cross validation experiment
setup in prior work [14]. For the Make3D dataset, we em-
ployed 400 images for training and 134 images for testing
as in previous work [40]. For the Nematocyst dataset, we
followed the setup of previous work [27]: 80 images for
training, 20 for hold-out validation, and 30 for testing.

Metrics. For scene labeling, our metric is accuracy, de-
fined as the number of correctly labeled pixels divided by
the total number of pixels. For depth estimation, our met-
rics are log-10 depth error and relative depth error. Log-
10 depth error is defined as | log10 d− log10 d̂|, and relative

depth error is defined as |d−d̂|
d , where d is the ground truth

depth and d̂ is the estimated depth. For object detection, our
metrics are precision, recall, and F1 measure, where true
positives are 32×32 patches that fall on the ground truth
basal tubules.

Search Space. Our heuristic H and cost C functions
are linear in the feature function ψ(x,y) that we will spec-
ify shortly: H(x,y) = w>Hψ(x,y) and C(x,y) = w>Cψ(x,y).
The feature function ψ(x,y) consists of unary, pairwise
and context features. The unary feature ψunary(x,y) is
the sum of superpixel descriptors φ(xi) for each class
1...K: ψunary(x,y) =

[
∑

n
i=1 I(yi = 1)φ(xi) , . . . , ∑

n
i=1 I(yi =

K)φ(xi)
]
. In the Nematocyst dataset, each superpixel

is described by a 128-dimensional SIFT descriptor. In
the Stanford background dataset, each superpixel is de-
scribed by 64-dimensional texture features using 64 tex-

tons, 64-dimensional color features in LAB space of 64
bins and 12-dimensional normalized grid location fea-
tures, totaling 140 dimensions, as similarly used in prior
work [18]. In the Make3D dataset, we used the convolu-
tional filter features from previous work [40]. The pair-
wise feature ψpair(x,y) captures smoothness by summing
all neighboring superpixel descriptors with different labels:
ψpair(x,y) = ∑i, j∈N I(yi 6= y j)|φ(xi)− φ(x j)|. The context
features ψcontext(x,y) count the

(K
2

)
co-occurrences of dif-

ferent labels in four different spatial relationships: “left,”
“right,” “above” and “below.” Intuitively we are captur-
ing, for example, whether a superpixel labeled “sky” is be-
low another superpixel labeled “grass,” which the heuris-
tic and cost functions should learn to score less favor-
ably. Define ψsingle-context(x,y, l1, l2,c) = ∑i< j I(yi = l1 ∧
y j = l2 ∧ con f ig(i, j,c)) where con f ig(i, j,c) is a func-
tion that evaluates to true if superpixels i and j are in
the configuration of c ∈ {left, right, above, below}. Then
the context features ψcontext(x,y) is a concatenation of
ψsingle-context(x,y, l1, l2,c) features over all (l1, l2,c) combi-
nations. The overall feature function is a concatenation
of these unary, pairwise and context features: ψ(x,y) =[
ψunary(x,y) , ψpair(x,y) , ψcontext(x,y)

]
.

In the object detection and scene labeling tasks, we
employed the Hamming loss over all pixels: L(y, ŷ) =
1
n ∑

n
i=1 I(yi 6= ŷi). The initial state function applies an i.i.d.

classifier to all superpixels in the object detection and scene
labeling settings. For the successor function, we can keep
the branching factor of search reasonable by employing
smarter label proposals instead of using all possible labels.
In the object detection task, our successor function chooses
the neighboring label for all superpixel neighbors of a con-
nected component. Since there are only two possible labels,
this has the effect of “growing” or “shrinking” detection re-
gions of a state and not introducing “islands” of detections.
In the scene labeling task, for a particular connected compo-
nent cc, our proposal label set consists of the top B = 3 con-
fident labels of cc (provided by the initial state i.i.d. classi-
fier) and the labels of the neighboring superpixels of cc. We
found B = 3 to provide the best balance of accuracy versus
efficiency.

In the depth estimation setting, we can treat the problem
as scene labeling: each label corresponds to a depth. All
depth values in the ground truth are clustered into K = 20
ordinal labels using K-means. A label corresponds to a
depth and thus the larger the number of clusters K, the more
accurate the prediction. We found K = 20 to provide the
best trade-off of accuracy versus efficiency. There are sev-
eral differences in the search space setup compared to scene
labeling. The initial state function for depth estimation is an
i.i.d. regressor that predicts a depth value for all superpix-
els. Each regression output is then mapped to the nearest
label to yield an initial labeling for HC-Search. We decided



on the regressor over an i.i.d. classifier with 20 labels since
it was significantly faster without compromising much pre-
diction accuracy. The loss function is the log-10 depth er-
ror averaged over all pixels: L(y, ŷ) = 1

n ∑
n
i=1 | log10 d(y)−

log10 d(ŷ)| where d(y) is the depth value of label y. Each
label is mapped to a depth so this loss can be computed.
Finally the successor function proposes labels as follows:
for each connected component and its label l, propose label
l + j where j = 1,−1,5,−5. This has the interpretation of
increasing or decreasing the depth since the labels are or-
dinal; larger | j| correspond to larger “jumps” for improving
efficiency. The advantage of this setup is that despite having
a large number of labels, the number of proposed labels for
each connected component is not as many.

5.2. Baselines.

We define the following baseline methods.
B0. Edge Classifier: Instead of Berkeley segmentation,

one can assign weights to superpixel graph edges similar
in spirit to Swendsen-Wang Cuts. We generalize this to an
i.i.d. edge classifier. Specifically, we train a logistic re-
gression classifier on edge features and labels, where edge
features are the difference of superpixel unary features on
each side of the edge and labels indicate whether the edge
belongs to an object boundary.

B1. Flipbit Space: The successor function in the Flip-
bit space proposes candidates by “flipping” the label of a
superpixel to another label.

B2. Exact Imitation Learning: In exact imitation
learning, the heuristic function H is learned by “imitating”
the search trajectory of the oracle heuristic. DAGGER re-
fines this H by training on additional examples that correct
the trajectory mistakes from this H. This baseline does not
refine H.

LL/HL/LC/HC Curves. To independently understand
the quality of H and C, we can replace either (or both) of
them by an oracle that “cheats” by using the true loss func-
tion L and the ground truth labels. We can generate four
performance curves. LL replaces both H and C with ora-
cles, so it shows the best performance that can be obtained
from the given search space S and time limit τ . LC gener-
ates the best possible search candidates, but evaluates them
using the learned C, so it tells us how good C is. HL uses
the learned H to generate the search candidates, but then
evaluates them using the oracle, so it allows us to assess the
learned heuristic. And of course HC shows the actual per-
formance of the system. By comparing these curves, we can
understand which design choices (search space, heuristic, or
cost function) would most benefit from more engineering.

5.3. Quantitative Results.

We first present results on the baselines. For baseline
B0, we run LL-Search (serves as an upper bound) with time

Table 1: Comparison of i.i.d. edge classifier versus Berke-
ley segmentation measured using LL-Search performance
with time bound τ = 25, evaluated on the Stanford Back-
ground dataset (SBD) and Make3D dataset.

Dataset (Metric) i.i.d. Edge Berkeley
Classifier Segmentation

SBD (Accuracy) 0.84 0.93
Make3D (Log-10 Error) 0.318 0.231

bound τ = 25 and evaluate on the appropriate metrics for
the Stanford Background and Make3D datasets. We do
not apply Berkeley segmentation to the Nematocyst dataset
because (1) the images contain so much background clut-
ter that Berkeley segmentation does not yield good UCMs
and (2) their groundtruth data are in terms of a regular grid
of patches for evaluation. Table 1 demonstrates that using
Berkeley segmentation outperforms the edge classifier. This
makes sense because Berkeley segmentation’s UCM yields
hierarchical closed contours, whereas the locally trained
i.i.d. classifier is not guaranteed to generate closed con-
tours. Therefore, Berkeley segmentation is important to our
search space for images of natural scenes.

Figure 3 compares the LL-Search performance of the B1
baseline with our approach as a function of the time bound
on the Nematocyst and Stanford Background datasets.
Since the LL-Search serves as an upper bound, it is clear that
the Flipbit space would require a larger time bound to reach
the same accuracy as our randomized segmentation space.
In fact our search space reaches about 94% accuracy in time
bound τ = 25 and 94% is the upper bound on the pixel-
wise accuracy given our segmentation. Thus our random-
ized segmentation space reduces the expected target depth
of the output and speeds up our inference. Figure 3 also
compares the performance of the B2 baseline on the Nema-
tocyst and Stanford Background datasets. Since DAGGER
seeks to improve the heuristic function, we plot the perfor-
mance of HL-Search. For DAGGER we set the parameter
βi = 0.1 and used 5 DAGGER iterations. We see DAGGER
indeed improves the heuristic function over exact imitation
learning. In addition, the variance of HL-Search decreases
with DAGGER, demonstrating that DAGGER learns robust
heuristics.

Figure 4 illustrates the performance of our approach in
terms of LL-Search, HL-Search, LC-Search and HC-Search
for each dataset. For the Stanford Background dataset,
we see that the learned heuristic and cost functions im-
prove upon the initial state. The HC-Search curve demon-
strates that our approach—in the absence of deeply-learned
features—meets the state of the art as shown in Table 2.
For the Make3D dataset, we see that we achieve the state-
of-the-art results as shown in 3. Despite our loss function



Figure 3: Baselines on the Nematocyst (ND) and Stanford
Background (SBD) datasets. Performance for the Nemato-
cyst dataset is the F1 score and the performance for SBD
is accuracy. B1 (left): The LL-Search performance of Flip-
bit (F) versus our randomized segmentation space (RS) as
a function of time bound. B2 (right): The HL-Search per-
formance of exact imitation learning (EI) versus DAGGER
(DA) as a function of time bound.

Table 2: State of the art comparison of segmentation accu-
racy (%) on the Stanford Background dataset.

Method Accuracy
Region Energy [14] 76.4
SHL [31] 76.9
RNN [41] 78.1
ConvNet [10] 78.8
ConvNet + NN [10] 80.4
ConvNet + CRF [10] 81.4
Pylon (No Bnd) [28] 81.3
Pylon [28] 81.9
Ours 81.4

optimizing the log-10 depth error, our relative depth error
meets close to the state of the art. For the Nematocyst
dataset, we see that the learned heuristic and cost functions
perform nearly as well as LL-Search. Indeed in table 4 we
see that we exceed the state-of-the-art results on the Nema-
tocyst dataset.

We also study the average number of candidates gen-
erated by the successor function and compare to an up-
per bound. We compute this for the three datasets in table
5. The upper bound is computed by multiplying the aver-
age number of patches or superpixels per image, n, by the
number of possible labels l minus 1 (the current label of a
patch): UB = n× (l− 1). This is a good upper bound be-
cause (1) the randomized segmentation space can select the
finest segmentation, which is a collection of all patches or
superpixels; and (2) the naive way of proposing labels is to
consider all other possible labels. We see that the average
number of candidates for all datasets is much less than the
upper bound, demonstrating that our search space is more

Table 3: State of the art comparison of relative depth error
and log-10 depth error on the Make3D dataset.

Method Relative Log-10
Error Error

Learn Depth: MRF [38, 37] .530 .198
Pointwise MRF [40, 39] .458 .149
Superpixel MRF [40, 39] .370 .187
Surface Layout [17] 1.423 .320
Semantic Labels [29] .375 .148
Depth Transfer [20] .361 .148
Ours .364 .148

Table 4: Comparison of precision, recall and F1 (%) on the
Nematocyst dataset.

Method Precision Recall F1
CRF [27] 43.2 36.0 39.3
HC-Search Flipbit [27] 47.2 54.5 50.6
Ours 83.1 65.1 72.9

Table 5: Comparison of the number of candidates generated
by the successor function averaged over all time steps and
the upper bound of the branching factor.

Dataset Avg. No. Candidates Upper Bound
Nematocysts 126.2 864
SBD 362.7 3591.9
Make3D 1003.5 10497.5

Figure 5: Qualitative results on the Nematocyst dataset. The
green boxes indicate detected patches.

efficient.

5.4. Qualitative Results.

Figures 5, 6, and 7 display qualitative results of our ap-
proach. We see that our approach yields excellent results.
In the Stanford dataset, the backgrounds are mostly labeled
correctly. In the Make3D dataset, the relative depths appear
correct in general, although the depth for the sky could be
closer to white (far away) than what is predicted. In the Ne-
matocyst dataset, most of the patches are detected correctly,
even in the presence of heavy background clutter.



Figure 4: The performance of our approach as a function of time bound for LL-Search, HL-Search, LC-Search and HC-
Search on the Nematocysts (left), Stanford Background (middle) and Make3D (right) datasets.

Figure 6: Qualitative results on the Stanford Background
dataset. The highlighted colors correspond to semantic
class labels.

6. Conclusion

We introduced two improvements to the HC-Search
framework for vision tasks: (1) a randomized segmentation
space as a generic search space that leverages UCM seg-
mentations; and (2) the application of DAGGER for train-
ing robust heuristic functions. We show that HC-Search
with these improvements gives performance comparable to
or better than the state of the art across three diverse vi-
sion tasks: semantic scene labeling, monocular depth esti-
mation, and object detection in biological images. Our er-
ror decomposition analysis demonstrates that our improve-
ments achieve significant performance boosts over previous
attempts to apply HC-Search in computer vision.

Our investigation showed that there is still much room
for improvement in the search space design for both scene
labeling (oracle accuracy is 93.32%) and depth estimation
(oracle error is 0.06). The cost functions are still making
many ranking errors, which suggests that there is scope for

Figure 7: Qualitative results on Make3D dataset. Darker
shades indicate depths closer to the viewer than lighter ones.

improving the cost function representation. Yadollahpour
et al. [47] observed similar phenomena in their re-ranking
approach. Further future work includes designing high-
quality search spaces for diverse computer vision problems,
learning cost functions with rich representations to improve
the accuracy and efficiency, and evaluating performance on
larger datasets such as PASCAL VOC datasets.
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