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Abstract

In this paper, we consider the problem of finding dense
intrinsic correspondence between manifolds using the re-
cently introduced functional framework. We pose the func-
tional correspondence problem as matrix completion with
manifold geometric structure and inducing functional lo-
calization with the L1 norm. We discuss efficient nu-
merical procedures for the solution of our problem. Our
method compares favorably to the accuracy of state-of-the-
art correspondence algorithms on non-rigid shape match-
ing benchmarks, and is especially advantageous in settings
when only scarce data is available.

1. Introduction

Correspondence problems are, without doubt, among the
most important problems that have to be dealt when an-
alyzing highly-complex geometric data. Establishing cor-
respondence between images is a cornerstone of many al-
gorithms in computer vision and image analysis [50]. In
geometry processing and graphics, finding intrinsic corre-
spondence between deformable 3D shapes is one of the
fundamental problems with a plethora of applications rang-
ing from texture mapping to animation [46]. In machine
learning applications, correspondence problems in high-
dimensional spaces arise in multi-modal data analysis prob-
lems such as manifold alignment and multi-view clustering
[49, 13].

Related work A wide class of correspondence methods
aims at minimizing some structure distortion, which can in-
clude similarity of local features [30, 9, 2, 52, 22], geodesic
[25, 7] or diffusion distances [11, 8], or a combination
thereof [44]. Zeng et al. [54] used higher-order structures.
Typically, the computational complexity of such methods is
high, and there have been several attempts to alleviate the
computational complexity using hierarchical [37] or smart
sampling [43] methods. Several approaches formulate the

correspondence problem as an NP-hard quadratic assign-
ment and propose different relaxations thereof [45, 19, 34].
A recent trend is to use machine learning techniques, such
as random forests, to learn correspondences [38, 36].

Another important class of methods strives to embed the
intrinsic structure of the manifold into some other space,
where the correspondence can be parametrized with a small
number of degrees of freedom. Elad and Kimmel [12] used
multi-dimensional scaling to embed the geodesic metric
of the matched manifolds into the Euclidean space, where
alignment of the resulting “canonical forms” is then per-
formed by simple rigid matching (ICP) [10, 3, 27]. Ma-
teus et al. [23] used the first eigenfunctions of the Laplace-
Beltrami operator as embedding coordinates. A more re-
cent method of spectral kernel map [39] follows this path.
Lipman et al. [21, 15, 16] used conformal embeddings to
parametrize correspondence as a Möbius transformation.

More recently, there is an emerging interest in soft cor-
respondence approaches. Several methods formulated soft
correspondence as a mass-transportation problem [24, 41].
Ovsjanikov et al. [29] introduced the functional correspon-
dence framework, modeling the correspondence as a lin-
ear operator between spaces of functions on two manifolds,
which has an efficient representation in the Laplacian eigen-
bases. In such a formulation, the problem of finding corre-
spondence is reduced to solving a linear system of equa-
tions given some known set of corresponding functions on
the two manifolds. Pokrass et al. [33] extended this ap-
proach to the case when the ordering of the corresponding
functions is unknown, and introduced a regularization on
the diagonal structure of the correspondence matrix repre-
sentation in the Laplacian eigenbases. Kovnatsky et al. [18]
proposed constructing coupled bases by simultaneous diag-
onalization of Laplacians. In such bases the correspondence
is represented by an approximately diagonal matrix, which
allows to solve the linear system of equations for diagonal
elements only.

Main contribution Our paper deals with the problem of
finding dense intrinsic correspondence between manifolds



in the functional formulation. We propose treating func-
tional correspondence as geometric matrix completion. Our
approach is inspired by the recent work on recovery of ma-
trices on graphs [14], which introduced geometric struc-
ture into the matrix completion problem. Treating the rows
and columns of the functional correspondence matrix as
vector-valued functions on the respective manifolds, we in-
troduce geometric structure using the Dirichlet energy. We
show that our method includes the previous approaches
of [29, 18] as particular settings, and compares favorably
to state-of-the-art methods for non-rigid shape correspon-
dence on the challenging Princeton benchmark [16]. The
advantage of our method is especially pronounced in the
scarce data settings. The proposed method is completely
generic and can be applied to any manifolds and high-
dimensional geometric data.

2. Background
Notation In this paper, we use bold capital letters to de-
note matrices, bold lower-case letters for vectors, and italic
lower-case letters for scalars. Given a matrix A, we de-

note by ‖A‖F =
(∑

ij a
2
ij

)1/2
its Frobenius norm, by

‖A‖1 =
∑
ij |aij | its L1-norm, and by ‖A‖∗ =

∑
i σi

its nuclear (or trace) norm, where σ1, σ2, . . . denote the sin-
gular values of A. Alternatively, provided a decomposition
of the form A = UV>, the nuclear norm can be written
as ‖A‖∗ = 1

2 (‖U‖2F + ‖V‖2F) [42]. We denote by δi the
Kronecker delta, i.e. a unit vector with one at position i and
all the rest zeros.

Laplacians Let us be given a Riemannian manifold sam-
pled at n points X = {x1, . . . ,xn} ⊆ Rd. The local
structure of the manifold is modeled as an undirected graph
(X,E) in case of abstract data, or as a simplicial complex
(triangular mesh) (X,E, F ) in case of 3D shapes, where
E ⊆ X × X and F ⊂ X3 denote the edges and faces,
respectively. We denote by L2(X) ∼= Rn the space of real
functions f = (f(x1), . . . , f(xn)) on the discrete manifold.

We define the Laplacian of X as L = A−1(D −
W), where D = diag(

∑
k 6=i wki), and W and A =

diag(a1, . . . , an) are some edge- and vertex weights, re-
spectively. The definition of the weights depends on the
particular discretization of the manifold. In this paper, we
consider two types of objects (see Figure 1):

Graphs, for which we use the Gaussian edge weights

wij =

{
e−‖xi−xj‖2/2σ2

ij ∈ E;
0 else,

(1)

and construct the edge set E using K-nearest neighbors.
The vertex weight is defined as A = D (random walk
Laplacian) or A = I (unnormalized Laplacian) [48]. 3D
shapes represented as point clouds are treated in this way.

xi

xj

wij

xi

xj

wij

αij

βij

ai

Figure 1. Laplacian construction for a graph (left) and a triangular
mesh (right).

Triangular meshes, for which we use the discretization
of the Laplace-Beltrami operator [20] based on the classical
cotangent weights [32, 26]

wij =

{
(cotαij + cotβij)/2 ij ∈ E;
0 else,

(2)

where αij , βij are the angles in front of the edge ij. The
vertex weights are defined as local area elements ai =
1
3

∑
jk:ijk∈F area(xixjxk), equal to one third of the sum of

the one-ring triangles areas (marked in green in Figure 1).

Harmonic analysis on manifolds The eigenvectors Φ =
(φ1, . . . ,φn) of the Laplacian satisfying LΦ = ΦΛ (here
λ1 ≤ λ2 ≤ . . . ≤ λn are the corresponding eigenval-
ues and Λ = diag(λ1, . . . , λn)) form an orthonormal basis
that generalizes the Fourier basis to non-Euclidean spaces.
Given a function f ∈ L2(X), its Fourier coefficients are
computed as α = Φ>f . Taking the first k coefficients, one
obtains a smooth (“low-pass”) approximation of the func-
tion f ≈

∑k
l=1 αlφl = ΦkΦ

>
k f , where Φk = (φ1, . . .φk).

Compressed manifold modes The Laplacian eigenbasis
can be found by minimizing the Dirichlet energy,

min
Φ

tr(Φ>LΦ) s.t. Φ>Φ = I. (3)

Neumann et al. [28], following Ozoliņš et al. [31], proposed
constructing localized approximate eigenbases on mani-
folds (referred to as compressed manifold modes or CMM)
by imposing the L1-penalty on ‖Φ‖1, which, in combina-
tion with the Dirichlet energy makes the basis functions lo-
calized,

min
Φ

tr(Φ>LXΦ) + µ‖Φ‖1 s.t. Φ>Φ = I, (4)

for µ > 0.

Functional maps Let X and Y denote two manifolds
sampled at n and m points, respectively. Ovsjanikov et al.
[29] propose to model the functional correspondence be-
tween the spacesL2(X) andL2(Y ) as them×nmatrix T0,
which maps a function f ∈ L2(X) into T0f = g ∈ L2(Y ).



Traditional point-wise correspondence is a particular case
of this model wherein T0 maps delta functions into delta
functions.

Let LX and LY be the Laplacians of X and Y , and
let Φk = (φ1, . . .φk) and Ψk = (ψ1, . . .ψk) be the re-
spective truncated Laplacian eigenbases. Let us be given
q corresponding functions F = (f1, . . . , fq) and G =
(g1, . . . ,gq) satisfying T0F = G, where T0 is the un-
known groundtruth correspondence. The functional corre-
spondence can be approximated in these bases as a rank-k
matrix T = ΨkCΦ>k , where C is a k×k matrix translating
Fourier coefficients from the basis Φk to the basis Ψk.

The matrix C can be found by solving the system of
equations G = ΨkCΦ>k F in the least-squares sense,

min
C
‖CΦ>k F−Ψ>k G‖2F. (5)

Note that since the groundtruth correspondence T0 is un-
known, in practice the matrices F,G must be computed
independently on X and Y such that T0F ≈ G. In the
simplest case, F = (δi1 , . . . , δiq ),G = (δj1 , . . . , δjq ) rep-
resent some known point-wise correspondences (“seeds”)
between points xi1 , . . . ,xiq and yj1 , . . . ,yjq . In shape cor-
respondence applications, F,G are typically computed us-
ing some intrinsic shape descriptor such as HKS [30], WKS
[2], MeshHOG [52], ShapeMSER [22], which is invariant
to shape deformations.

For applications requiring point-wise maps, Ovsjanikov
et al. [29] devise an iterative conversion scheme similar to
iterative closest point (ICP) methods [10, 3, 27]. Think-
ing of Φk and Ψk as k-dimensional point clouds (with
n and m points, respectively), the matrix C can be in-
terpreted of as an alignment between them. Starting with
some initial matrix C, first find the closest row ji in ΨkC
for each ith row of Φk (this step is equivalent to closest
point correspondence in ICP). Second, find an orthonor-
mal C minimizing

∑
i ‖(Φk)i − (ΨkC)ji‖ (this is equiv-

alent to the alignment step in ICP). The process is repeated
until convergence, producing point-wise correspondences
(x1,yj1), . . . , (xn,yjn).

Finally, note that in order for system (5) to be (over-)
determined, we must have k ≤ q, where q is the number
of given corresponding functions (data). At the same time,
the quality of the correspondence depends on k: the more
basis elements are taken, the better, since due to truncation
of the Fourier expansion, small k results in poor spatial lo-
calization of the correspondence. Furthermore, truncated
Fourier series of a discontinuous function manifest oscilla-
tions, a behavior known in harmonic analysis as the “Gibbs
phenomenon” (see examples in Figure 5).

Permuted sparse coding Pokrass et al. [33] addressed
the case when the ordering of the columns of F,G is un-
known and is modeled by a k × k permutation matrix Π.

n

m

ti′′ ti′ ti

xi

xi′

xi′′

yj

yj′

yj′′
xi′′

Figure 2. Illustration of functional correspondence as matrix com-
pletion. Column ti = Tδi of matrix T is the functional map of a
delta at xi. Geometric structure is imposed on the columns to en-
sure smoothness, i.e. ti, ti′ corresponding to spatially close points
xi, xi′ on X are similar.

Furthermore, they noted that for near-isometric manifolds,
the eigenbases satisfy φ>i T>0 ψj ≈ ±δij , i.e., the matrix C
is approximately diagonal. The diagonal structure of C was
induced using an L1 penalty,

min
Π,C
‖CΦ>k FΠ−Ψ>k G‖2F + µ‖M ◦C‖1, (6)

where µ > 0 and M is a weight matrix with zero diagonal
and ◦ denotes the Hadamard (element-wise) matrix multi-
plication. The problem was solved by means of alternating
minimization w.r.t. Π (which turns out a linear assignment
problem) and C (which is equivalent to sparse coding).

Coupled diagonalization Kovnatsky et al. [18] noted
that the matrix C encoding the correspondence depends
on the choice of bases, and proposed finding new approx-
imate eigenbases Φ̂k = ΦkP and Ψ̂k = ΨkQ by means
of k × k orthonormal matrices P,Q in which the Fourier
coefficients of F and G are as similar as possible. The
new bases behave as eigenbases if they approximately di-
agonalize the respective Laplacians, i.e., Φ̂>k LXΦ̂k =

P>Φ>k LXΦkP = P>ΛX,kP (respectively, Ψ̂>k LY Ψ̂k =
Q>ΛY,kQ), where ΛX,k = diag(λX1 , . . . , λ

X
k ) and

ΛY,k = diag(λY1 , . . . , λ
Y
k ). This property is enforced in

the optimization problem

min
P,Q

‖F>ΦkP−G>ΨkQ‖2F + µ1off(P>ΛX,kP)

+µ2off(QΛY,kQ
>) s.t. P>P = Q>Q = I, (7)

(with µ1, µ2 > 0) using the off-diagonal penalty off(A) =∑
i 6=j a

2
ij .

After P, Q are found, in the new bases ΦkP, ΨkQ the
matrix C is approximately diagonal. Then, the system of
equations CP>Φ>k F = Q>Ψ>k G is solved for diagonal
elements of C only.



3. Functional maps as matrix completion

Kalofolias et al. [14] studied the problem of matrix com-
pletion on graphs, where the rows and columns of the ma-
trix representing the correspondence have underlying geo-
metric structure. They show that adding geometric structure
to the standard matrix completion problem improves recov-
ery results.

We use the same philosophy to formulate the problem of
finding a functional map as matrix completion, whose rows
and columns are interpreted as functions on the respective
manifolds X and Y . For this purpose, we consider the ma-
trix T as a collection of columns T = (t1, . . . , tn) or rows
T = (t1>, . . . , tm>)>, where ti and tj denote the ith col-
umn and jth row of T, respectively. The column ti = Tδi
is the function on Y corresponding to a delta located at point
xi on X . Similarly, the row tj = δ>j T is the function on X
corresponding to a delta located at point yj on Y .

As in the classical matrix completion problem, we aim at
recovering the unknown correspondence matrix T0 from a
few observations of the form T0F = G, looking for a ma-
trix T ≈ T0 that explains the data in a “simple” way, in the
sense discussed in the following. Our problem comprises
the following terms:

Data term The correspondence should respect the data,
which is achieved by minimizing ‖TF−G‖F.

Smoothness The correspondence must be smooth, in the
sense that if xi, xi′ are two close points on X , then the re-
spective corresponding functions are similar, i.e., ti ≈ ti′

(see Figure 2). Similarly, for close points yj , yj′ on Y ,
the rows tj ≈ tj

′
. Smoothness is achieved by minimiz-

ing the row and column Dirichlet energy tr(T>LYT) +
tr(TLXT>).

Localization The correspondence is localized using the
L1-penalty ‖T‖1, which, in combination with smoothness,
results in a few non-zero elements that are close in space.
Note that differently from CMM [31, 28] where the penalty
is applied to the basis functions, we apply it to the cor-
respondence matrix. Furthermore, we do not impose any
structure but sparseness.

“Simplicity” By simplicity, we mean here that the corre-
spondence matrix is ‘explained’ using a small number of
degrees of freedom. The following models are commonly
used in matrix completion and recommendation systems lit-
erature.

Fixed rank. The most straightforward model is to as-
sume that rank(T) ≤ k � m,n. In this setting, we can
decompose T = UV> into the factors U,V of size m× k
and n×k, respectively. Combining all the above terms leads

to the optimization problem

min
U,V

‖UV>F−G‖2F + µ1tr(UV>LXVU>)

+µ2tr(VU>LY UV>) + µ3‖UV>‖1, (8)

where µ1, µ2, µ3 > 0 are parameters determining the trade-
off between smoothness and localization.

Low rank. Another popular model is to find the ma-
trix with smallest rank(T). However, this minimization is
known to be NP-hard, and the nuclear norm ‖T‖∗ is typi-
cally used as a convex proxy, leading to

min
T

‖TF−G‖2F + µ1tr(TLXT>) + µ2tr(T>LY T)

+µ3‖T‖1 + µ4‖T‖∗. (9)

This problem is convex and is typically solved using aug-
mented Lagrangian methods [5].

Low norm. Srebro et al. [42] rewrite problem (9) using
the decomposition T = UV> with U and V of size m× k
and n×k, respectively. Note that unlike the fixed rank case,
here k can be arbitrarily large. The nuclear norm is written
as ‖T‖∗ = 1

2 (‖U‖2F + ‖V‖2F). We thus have the problem

min
U,V

‖UV>F−G‖2F + +µ1tr(UV>LXVU>)

+µ2tr(VU>LY UV>) + µ3‖UV>‖1
+
µ4

2
(‖U‖2F + ‖V‖2F). (10)

Unlike (9), this problem is non-convex w.r.t. both U and V,
however behaves well for large k [42].

3.1. Subspace parametrization

The main disadvantage of problems (8)–(10) is that
the number of variables depends on the number of sam-
ples m,n, which may result in scalability issues for large
(m,n ∼ 106) manifolds. To overcome this issue, we ap-
proximate the n×k andm×k factors U,V in the truncated
Laplacian eigenbases of X and Y using k′ ≥ k first expan-
sion terms, U ≈ Ψk′A and V ≈ Φk′B, where matrices
A,B of the expansion coefficients are of size k′ × k. This
leads to a subspace version of problem (10) ,

min
A,B

‖AB>Φ>k′F−Ψ>k′G‖2F (11)

+µ1tr(AB>ΛX,k′BA>) + µ2tr(BA>ΛY,k′AB>)

+µ3‖Ψk′AB>Φ>k′‖1 +
µ4

2
(‖Ψk′A‖2F + ‖Φk′B‖2F)

where we used the invariance of the Frobenius norm to or-
thogonal transformations and the fact that Φ>k′LXΦk′ =
ΛX,k′ , Ψ>k′LY Ψk′ = ΛY,k′ to simplify the expressions.

Note that now the number of variables 2kk′ is indepen-
dent of the number of samples. We emphasize that k′, k can



φ2 φ7 φ12 φ17 φ27

ψ2 ψ7 ψ12 ψ17 ψ27

u2 u7 u12 u17 u27

v2 v7 v12 v17 v27

Figure 3. A few vectors from the standard Laplacian eigenbases
Φ,Ψ (first and second rows) and ad hoc bases U,V (third and
fourth rows) constructed as a result of our optimization over the
functional correspondence between the human and gorilla shapes.
Note that our bases are coupled, i.e. T0U ≈ V. Here and in the
following, hot colors represent positive values; cold colors repre-
sent negative values.

be arbitrarily large and are dictated only by complexity con-
siderations and not by the amount of data. This is one of the
major advantages of our approach compared to [29, 33, 18],
which we demonstrate experimentally in the following sec-
tion (see examples in Figure 5). Ideally, k′ (an upper bound
on the rank of T) should be chosen as large as possible,
which comes at the expense of computational complexity.
Minimization of the Dirichlet energy selects the smoothest
solution in the subspace of k′ first eigenvectors. Finally,
we observe that the subspace version of the fixed rank prob-
lem (8) is a particular setting of (11) with µ4 = 0.

3.2. Relation to other approaches

Ovsjanikov et al. [29] solve a fixed-rank approxima-
tion problem for T expressed in the truncated Laplacian
eigenbases as T = Ψk′CΦ>k′ . It boils down to a partic-
ular setting of our formulation (11) with C = AB> and
µ1 = µ2 = µ3 = µ4 = 0. Note that in (5), rank(C) = k
is bounded by the size of the data q: if k > q, the system
of equations in (5) becomes underdetermined. As a conse-
quence, in scarce data settings (q � k), the methods per-
forms very poorly (see Figure 5). Pokrass et al. [33] solve
the problem of [29] with additional prior on the diagonal
structure of C, which holds only for approximately isomet-
ric manifolds. Our method is generic and can handle highly
non-isometric manifolds.

Kovnatsky et al. [18] look for a pair of bases in which
one tries to achieve a diagonal C. The bases are constructed

as a rotation of the Laplacian eigenbases (7) by means of
orthonormal matrices A,B. This problem is equivalent to
the setting of our problem (11) with µ1 = µ4 = 0, with the
only difference that the Dirichlet energy terms are replaced
with off-diagonality terms.

Finally, we emphasize that our method is “basis-free”:
we work directly with the correspondence matrix, and rather
than imposing some structure in the correspondence rep-
resentation in some basis (as done in prior works of [33,
18, 28]), impose structure on the correspondence matrix di-
rectly. This also allows us to work simultaneously with
very different manifold representations (such as meshes and
graphs, see Figure 8). The factors U,V in our problem
can be interpreted as ad hoc bases in which the correspon-
dence is represented as the identity matrix, T = UIV>.
These bases are coupled (see Figure 3, bottom), and thus
our problem also acts similarly to the simultaneous approx-
imate Laplacian diagonalization procedure [18].

3.3. Numerical optimization

Manifold optimization We used manifold optimization
toolbox manopt [4] to solve our problem, in which the
non-differentiable L1-norm term was approximated using
|t| ≈

√
t2 + ξ. The main idea of manifold optimization is

to model the space of fixed-rank matrices as a C∞ Rieman-
nian manifold Mk = {X ∈ Rm×n : rank(X) = k} and
perform descent (e.g. by the method of conjugate gradients)
on this manifold. The intrinsic gradient of the cost function
onMk is a vector in the tangent space; in order to construct
the conjugate gradient search direction, gradients from pre-
vious iterations must be brought to the same tangent space
by means of parallel transport onMk. After performing a
descent step on the tangent space, the iterate is retracted to
the manifold by means of the exponential map. For addi-
tional details on the use of manifold optimization in matrix
completion problems, we refer the reader to [47]. In our
MATLAB implementation, for a typical experiment it takes
∼ 4 sec/iteration, where the cost function stops changing
after ∼ 90 iterations.

Initialization Assume we are given some T = Ψk′CΦ>k′
as initial correspondence matrix. In our experiments, to re-
duce the convergence time, we used the correspondence of
Ovsjanikov et al. [29] as the initial T. Hence, A = C
and B = I (we pad zeros to be consistent with dimen-
sions of matrices). The second option is based on SVD
of T = UΣV> and then setting A = Ψ>k′UΣ1/2 and
B = Φ>k′VΣ1/2.



4. Results
4.1. 3D Shapes

Data We used the TOSCA [6] dataset containing CAD
models of human and animal with 5K-50K vertices, and the
SCAPE [1] dataset, containing meshes of scanned humans
in different poses with about 10K vertices. For meshes,
we used the cotangent formula (2) to construct the Lapla-
cian. Point clouds were created by removing the mesh struc-
ture from triangular meshes; 10 nearest neighbors were then
used to construct unnormalized graph Laplacians according
to (1) with σ found using the self-tuning method [53]. In our
experiments, as the data term we used one of the following
three types of descriptors:

Segments produced by the persistence-based segmenta-
tion of [40], represented as binary indicator functions. A
typical number of segments per shape was 3− 4.

Localized WKS+HKM. 100 Wave kernel signatures
(WKS) [2] and 100 Heat kernel maps (HKM) [30], local-
ized on the aforementioned segments, resulting in a total
of 200 functions per segment, or 600 − 800 functions per
shape.

Shape MSER. Stable regions detected using the method
of [22], around 8 − 15 regions per shape. The MSER re-
gions were represented as binary indicator functions. Alter-
natively, one can use the regions computed as in [35, 51].

The Segments, WKS, and HKM descriptors were pro-
vided by the authors of [29]. ShapeMSER descriptors were
computed using the code and settings of [22].

Wave kernel signature (WKS) Heat kernel map (HKM)

Segments ShapeMSER

Figure 4. Examples of descriptors used as data (columns of F,G)
in our experiments.

Performance criteria For the evaluation of the corre-
spondence quality, we used the Princeton benchmark pro-
tocol [16] with two error criteria:

Hard error is the criterion used in [16] for point-wise
maps. Assume that a correspondence algorithm produces
a pair of points (xi1 ,yj′1), whereas the groundtruth corre-
spondence is (xi1 ,yj1). Then, the inaccuracy of the corre-
spondence is measured as

εhard(xi1) =
dY (yj1 ,yj′1)(∑m

j=1 a
Y
j

)1/2 , (12)

and has units of normalized length on Y (ideally, zero).
Here aY is the local area element on Y .

Soft error is the generalization of (12) to soft maps.
Under functional correspondence, Tδi1 = ti1 ∈ L2(Y ),
which ideally should be δj1 . The inaccuracy of functional
correspondence is measured as the average geodesic dis-
tance from the j1th point on Y , weighted by the absolute
value of the corresponding function,

εsoft(xi1) =

∑m
j=1 dY (yj1 ,yj)|tj,i1 |(∑m
j=1 a

Y
j

)1/2∑m
j=1 |tj,i1 |

. (13)

Note that (12) is a particular setting of (13) where tj,i1 =
δj−j′1 .

For a set of values ρ ≥ 0, we plot the percentage of
points 1

n |{x ∈ X : ε(x) ≤ ρ}| producing correspondence
better than ρ (the higher the curve, the better).

Influence of parameters To study the behavior of our
problem, we conducted a set of experiment in ‘sterile’ con-
ditions, using a pair of near-isometric human shapes with
ideally corresponding F,G. The number of corresponding
functions in the data term was q = 50. The correspon-
dence quality was evaluated using the soft criterion (13), to
rule out any artifacts introduced by conversion to point-wise
map.

Rank. We set problem (11) in the fixed rank regime
with parameters k′ = 350, µ1 = µ2 = 10−8, µ3 = 10−1,
µ4 = 0, ξ = 10−3 and varied the rank k. For comparison,
we ran the methods of Ovsjanikov et al. [29] and Pokrass
et al. [33] with the same k. Note that the performance of
[29, 33] degrades when k > q, as opposed to increase in the
performance of our approach (Figure 5), meaning that our
prior is better than the other ones. Practically, this means
that the correspondence quality they can obtain is bounded
by the amount of given data, while our method can work
well with very scarce data.

Localization We repeated the same experiments with
µ1 = µ2 = 10−4, k = 45 fixed, and varying µ3. Increas-
ing the weight of the L1 term results in better localization
of the correspondence (Figure 6), and, as a consequence,
better performance.

Princeton benchmark We used the Princeton evalua-
tion protocol (allowing for symmetric matches, since our
method is fully intrinsic and thus produces correspondence
defined up to intrinsic symmetry) on the SCAPE dataset and
followed verbatim the settings of [29, 33].
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Figure 5. Influence of the rank. Top: quality (soft error) of corre-
spondence between near isometric poses of the human shape ob-
tained using different rank k. Note that increasing the rank above
the number of corresponding functions q results in correspondence
quality degradation in the methods of Ovsjanikov et al. [29] and
Pokrass et al. [33], while with our method the performance in-
creases. Bottom: functional correspondence of a delta function
(red dot on the leftmost shape) using different methods. Note the
Gibbs phenomenon manifested as negative values.

We compared the methods of [29, 33] (using code pro-
vided by the authors) and our method, in two settings:
scarce data, using Segments (one binary indicator function
per segment), and rich data, using localized WKS+HKM
(200 functions per segment). Our method was used with
the parameters k′ = 350, k = 250 for the first case, and
k′ = 50, k = 30 for the second. In both cases, we used
µ1 = µ2 = 10−8, µ3 = 10−5, µ4 = 10−8, and ξ = 10−3.
Resulting functional maps were converted into point-wise
maps using the ICP-like method of [29]. Correspondence
quality was evaluated using the hard error criterion. For
comparison, we also reproduce the performance of some re-
cent state-of-the-art point-wise correspondence algorithms:
blended maps [16], best conformal (least-distorting map
without blending), Möbius voting [21], HKM [30], and
GMDS [7]. The results are shown in Figure 7. Our method
achieves state-of-the-art performance; its advantage is espe-
cially prominent in the scarce data setting.
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Figure 6. Influence of L1 on the localization of the correspon-
dence. Top: quality (soft error) of correspondence between near
isometric poses of the human shape obtained using different val-
ues of µ3. Bottom: functional correspondence of a delta function
(red dot on the leftmost shape) for different µ3.
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benchmark (symmetric correspondences, hard error criterion) on
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Robustness Figure 8 depicts examples of shape corre-
spondence obtained with the proposed technique. The top
row shows examples of SCAPE shape matching using Seg-
ments data. Given that this data is very scarce (3 − 4
segments per shape), we find it quite remarkable that our
method is able to obtain very high quality correspondence.
Second row shows examples of correspondence in the pres-
ence of geometric and topological noise, using ShapeMSER
data. Our method handles well even large missing parts.
Third row shows examples of non-isometric shape match-
ing, and fourth row shows a particularly challenging setting



Figure 8. Examples of correspondence between near-isometric SCAPE human shapes (first row); TOSCA shapes contaminated with
geometric and topological noise (second row); non-isometric shapes (third row); and mesh to point cloud (fourth row). Leftmost shape is
used as reference. Similar colors encode corresponding points. (Compare to Figures 3, 4, and 6 in [33])

of mesh to point cloud matching.

5. Conclusions
We presented a novel method for finding functional cor-

respondence between manifolds based on the geometric ma-
trix completion framework. We model the correspondence
between the spaces of functions on two manifolds as a ma-
trix, whose rows and columns have the geometric structure
of the underlying manifolds, captured through their Lapla-
cian operators. We discuss several flavors of our problem,
and present an efficient subspace version thereof.

Experimental results on standard shape correspondence
benchmarks show that our method beats some of the recent
state-of-the-art methods, and compares particularly favor-
ably to previous functional correspondence methods in sit-
uations when the given correspondence data is very scarce.
This allows tackling challenging cases such as matching
non-isometric shapes, shapes with missing parts, different
representation (meshes vs point clouds) and shapes cor-

rupted by geometric and topological noise. The proposed
approach may cope with any other multimodal data - the
only change would be the construction of the Laplacian that
captures its geometric structure 1.

In terms of optimization, while manopt is well-suited
for smooth optimization, it would be advantageous to devise
a version of manifold optimization for non-smooth func-
tions such as the L1-norm. An alternative path is to use
Augmented Lagrangian methods.

On a more philosophical note, we believe that the impor-
tance of our work is in bringing a well-known signal pro-
cessing technique into the domain of geometric processing,
continuing the trend of [33] who introduced sparse cod-
ing to the problem of shape correspondence. Conversely,
our work follows the very recent trend of bringing geomet-
ric structure into signal processing problems such as com-
pressed sensing and matrix completion. We believe that a
cross-fertilization of these two fields could be very fruiful.

1See the report [17] for additional applications.
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